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ABSTRACT

Analysis of large data sets is currently a major challenge. Strong efforts are being under-
taken to tackle this problem by developing new methods or modifying existing ones. The Z
association method is a new method for describing directional association in contingency
tables. It allows to arbitrarily group categories for each of the two variables, for which the
contingency table is analyzed. The Z coefficient was calculated on a sample data set with
gene mutations in different cancer types. Results showed some association with both gene
mutations and annotation groups. Detailed results obtained for particular cancer types
versus particular genes and annotation groups were in line with well-known facts in cancer
genomics. The ‘‘MEUSassociation’’ R library allows to analyze the directional association
between two categorical variables, and the mutual relationship is summarized in a contin-
gency table, by means of the Z association coefficient. The method implemented in the
library allows to compute the standard Z coefficient and to apply it in a case, where all
possible singular coefficients Z(A:B) are computed at the same time, giving information of
association between particular rows and columns. Investigating the ranked list of the highest
singular coefficients allows to reduce the complexity of a large-scale data set. Both the Z
coefficient and its R implementation are important tools in categorical data analysis.

Keywords: association coefficient, associations in contingency tables.

1. INTRODUCTION

Mutual relationship between two categorical phenomena can be summarized by a contingency

table. There are many methods to study such relationships. They include well-known and widely used

testing procedures such as the chi-square test of independence (Cochran, 1952), which has some limitations

for small cell counts, and the Fisher’s exact test (Fisher, 1934) or its extension the Fisher–Freeman–Halton

test (Freeman and Halton, 1951) can be used for 2 · 2 or larger tables, respectively. For paired or stratified

nominal data, one can use the McNemar’s (McNemar, 1947) or the Cochran–Mantel–Haenszel (Cochran,
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1954; Mantel and Haenszel, 1959) tests. These tests focus on testing independence between two nominal

variables, possibly including additional conditions such as matching or stratifying.

Apart from statistical tests, there are also a number of measures of association calculated for contingency

tables. These include the association coefficient C, the phi coefficient, or its extension the Cramer’s V

coefficient (Cramér, 1946), all being symmetric and based on the chi-squared statistics. Another example is

the Goodman–Kruskal’s lambda (Goodman and Kruskal, 1979) coefficient measuring the proportional

reduction of error rate, which is also asymmetric where one needs to distinguish between independent and

dependent variables. There is also another group of rank correlation coefficients applicable for ordinal

variables, which include Spearman’s rho, Goodman and Kruskal’s gamma, Kendall’s tau statistics, and

Somers’ d (Kendall, 1938; Somers, 1962; Goodman and Kruskal, 1979).

The Z coefficient described in this article belongs to the category of association coefficients. It has a

purely probabilistic definition and is an asymmetric measure of association. It also coincides with Cramer’s

V coefficient in the case of n · 2 tables. The Z coefficient was successfully applied to large a data set

analysis to determine connections between the structure of proteins and their biological function (Meus

et al., 2006). These results appeared to be aligned with the entropy-based method (Brylinski et al., 2005).

The Z association measurement was also used for comparative analysis of tandemly repeated trinucleotides

in the human genome (Piwowar et al., 2006).

In this article, the Z coefficient was used to determine the association between different cancer types and

different types of mutations in two ways: using a previously prepared and analyzed data set (Kandoth et al.,

2013) and using an original data set with the inclusion of additional information of processes in which

genes are taking part.

2. METHODS

2.1. Data set

A sample data set was taken from Kandoth et al. (2013) and consisted of information related to mutated

genes (with point mutations and small insertions/deletions) from 3281 tumors across 12 cancer types.

Analyzes were performed on two sets:

� 12 cancer types and genes;
� 12 cancer types and annotated gene groups.

Twelve cancer types: breast adenocarcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous

cell carcinoma (LUSC), uterine corpus endometrial carcinoma (UCEC), glioblastoma multiforme (GBM),

head and neck squamous cell carcinoma (HNSC), colon and rectal carcinoma (COAD, READ), bladder

urothelial carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), ovarian serous carcinoma (OV),

and acute myeloid leukemia (LAML; conventionally called AML).

Annotated group of genes (cellular processes in which groups of mutated genes are involved): tran-

scription factors/regulators, histone modifiers, genome integrity, receptor tyrosine kinase signaling, cell

cycle, mitogen-activated protein kinase (MAPK) signaling, phosphatidylinositol-3-OH kinase (PI(3)K)

signaling, Wnt/b-catenin signaling, histones, ubiquitin-mediated proteolysis, splicing, and other.

2.2. Z coefficient methodology

Given two events A and B, one could ask how much the knowledge of B helps to determine the occurrence of

A. One way to measure it is to look at the ratio of error rates: one with the knowledge of B and the other without it:

(1 - P(AjB)= 1 - P Að Þð Þ. The smaller the ratio, the more information on the occurence of A is due to the

knowledge of B. This idea leads to the definition of a Z coefficient. Given two events A and B, which define two

natural partitions (family of mutually distinct events, covering the whole event space) with their respective

complements A and B, we define squared Z association coefficient between A and B by the following formula:

Z2 A : Bð Þ = Z2 A‚ A : B‚ B
� �

= 1 - P Bð Þ � 1 - P(AjB)

1 - P Að Þ �
1 - P(AjB)

1 - P A
� � + P B

� �
� 1 - P(AjB)

1 - P Að Þ �
1 - P(AjB)

1 - P A
� �

" #
(1)

The above definition (1) can be interpreted as a value of one less than the averaged product of the family of error

rate ratios calculated either with or without the knowledge of B. This definition can also be seen as a generalization
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of the Pearson correlation coefficient for two categorical variables in the following way. Having two numeric,

binary variables X and Y, one can calculate the Pearson correlation coefficient. Its value is equal to the Z

association coefficient calculated for the contingency table summarizing mutual relationship between X and Y.

Having two generic partitions A1, A2, ., Ak and B1, B2, ., Bn, one can define k · n contingency table pij

with the standard notation pij = P Ai \ Bj

� �
, pi� = P Aið Þ, and p�j = P Bj

� �
. Now one can generalize the above

definition (1) to the following:

Z2 A1‚ A2‚ . . . ‚ Ak : B1‚ B2‚ . . . ‚ Bnð Þ = 1 -
X

j = 1‚ ...‚ n

p�j
Y

i = 1‚ ...‚ k

1 - pij

p�j

1 - pi�

" #
(2)

The above-defined Z association coefficient (2) has the following characteristics:

� ranges between 0 and 1;
� is equal to 0 in the case of independent variables (when entries in the contingency table are determined

by marginal counts, or more precisely pij = pi� � p�j);
� is equal to 1 in the case of maximal dependency, that is, where each Bj determines only one possible

value for some Ai (in each column there is only one positive entry);
� is not symmetric (switching roles of partitions A1, A2, ., Ak and B1, B2, ., Bn, except the 2 · 2 tables

case, generally leading to different results);
� is not monotonic (grouping particular columns or rows can both increase and decrease the value of the

coefficient).

The Z association coefficient is also equal to Cramer’s V coefficient (Cramér, 1946) in the case of n · 2 tables.

2.3. MEUSassociation R library

The MEUSassociation R package implements the above Z association coefficient. In the latest version

0.4, it provides the following functionality:

� z_coefficient(M, col_groups 5 NULL, row_groups 5 NULL) returns the Z association coefficient

calculated for a given contingency table (matrix) M. It allows to specify arbitrary grouping for

columns and/or rows using col_groups and row_groups parameters.
� z_coefficient_matrix(M, col_groups 5 NULL, row_groups 5 NULL) returns a matrix of Z coeffi-

cients calculated for a given contingency table (matrix) M. Each entry of a resulting matrix corre-

sponds to the Z association coefficient calculated by distinguishing one particular column and row, and

grouping all the remaining columns and rows into the second category. It allows to specify arbitrary

grouping for columns and/or rows using col_groups and row_groups parameters. In that case, instead of

calculating Z coefficient for each column and row, it is calculated for each column and/or row group.
� z_coefficient_ranks(M, col_groups 5 NULL, row_groups 5 NULL) returns ordered Z association

coefficients calculated for each entry of a matrix M by distinguishing one particular column and row,

and grouping all the remaining columns and rows into the second category. It is similar to the above

z_coefficient_matrix function, but instead of returning results in a matrix form, it returns ordered Z

coefficients. It allows to specify arbitrary grouping for columns and/or rows using col_groups and

row_groups parameters. In that case, instead of calculating Z coefficient for each column and row, it is

calculated for each column and/or row group.

The package also provides the following example data:

� cancer_mutations is a matrix (contingency table) representing different gene mutations in different

cancer types [4].

Table 1. Z coefficient Values Calculated

for Different Cancer Types and Genes,

and for Different Cancer Types Versus Gene

Annotation Groups

Type of association Z coefficient

Cancer types vs. genes 0.34

Cancer types vs. gene annotation groups 0.18
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� cancer_mutations_gene_groups is a vector of factors specifying gene groups for different gene

mutations in different cancer types stored in cancer_mutations and specifies a biochemical process in

which a particular gene is taking part. Information about the biochemical process in which genes are

taking part can be taken from the following databases:

-> Reactome (https://reactome.org)

-> KEGG (http://www.genome.jp/kegg)

The MEUSassociation package is freely available on GitHub. The library, installation instructions, full

documentation, and test data sets are available at https://github.com/mpiwowar/MEUSassociation.git.

‘‘MEUSassociation’’ runs under R, and does not require any additional libraries.

Executing the following short code allows one to get the results presented in the article:

� library(MEUSassociation)
� data(‘‘cancer_mutations’’)
� z_coefficient(cancer_mutations)
� data(‘‘cancer_mutations_gene_groups’’)
� z_coefficient(cancer_mutations, row_groups = cancer_mutations_gene_groups)
� head(z_coefficient_ranks(cancer_mutations))
� head(z_coefficient_ranks(cancer_mutations, col_groups = cancer_mutations_gene_groups))

FIG. 1. The Z coefficient indicating the strength of association between cancer types and genes depicted on the map

with color gradation from white (minimum value) to red (maximum value).

Table 2. Highest Z Coefficients Calculated

for Particular Genes and Cancer Types

Cancer type Gene Z coefficient

KIRC VHL 0.47

COAD.READ APC 0.37

AML NPM1 0.35

KIRC PBRM1 0.30

AML FLT3 0.28

AML DNMT3A 0.27

AML, acute myeloid leukemia; COAD.READ, colon and rectal

carcinoma; KIRC, kidney renal clear cell carcinoma.

238 PIWOWAR AND KUqAGA

https://reactome.org
http://www.genome.jp/kegg
https://github.com/mpiwowar/MEUSassociation.git


3. RESULTS

The Z coefficient method was used for a data set summarizing 12 different cancer types and mutated

genes (Kandoth et al., 2013). The analysis was also repeated with genes grouped according to biochemical

processes they are involved in. All calculations were made using the MEUSassociation R library.

The resulting Z association coefficient value of 0.34 suggests that there is some association between cancer

types and gene mutations. When taking into account different gene annotation groups, the calculated Z asso-

ciation coefficient was equal to 0.18, suggesting that there is also some association between cancer types and

biochemical processes, in which particular genes are active (Table 1). It should be noted that one should be

careful when comparing Z coefficient values, especially for different table sizes, as the distribution of this

coefficient is not well understood yet and it might tend to have higher or lower values depending on the table size.

The analysis was further extended by investigating the association between each particular cancer type

and gene (Fig. 1).

The above shows that when looking at cancer types and particular genes, the strongest association exists

between KIRC and von Hippel–Lindau tumor suppressor with the Z coefficient value of 0.47 (Table 2).

A similar extended analysis was done in the case of association between cancer types and gene anno-

tation groups (Fig. 2).

The analysis shows the strongest (compared with other results) association between a combined group of the

colon (COAD) and the rectal (READ) tumors (COAD.READ) and Wnt beta-catenin signaling pathway (Table 3).

Literature provides strong evidence that the Wnt beta-catenin signaling pathway is very important in the

READ cancer mechanism ( Jung et al., 2015; Kramer et al., 2017).

FIG. 2. The Z coefficient indicating the strength of association between cancer types and gene annotation groups

depicted on the map with color gradation from white (minimum value) to red (maximum value).

Table 3. Highest Z Coefficients Calculated for

Particular Gene Annotation Groups and Cancer Types

Cancer type Annotation group Z coefficient

COAD.READ Wnt beta-catenin signaling 0.30

AML DNA methylation 0.29

OV Genome integrity 0.22

AML Metabolism 0.22

UCEC PI3K beta-catenin signaling 0.21

KIRC Transcription factor regulator 0.15

OV, ovarian serious carcinoma; UCEC, uterine corpus endometrial

carcinoma.
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4. CONCLUSION

Recent technological advances in molecular biology and other fields have given rise to numerous large-scale

data sets. Analysis of such data sets imposes serious methodological challenges due to the usual large size and

complex structure. The Z association coefficient is a tool giving valuable insight into analysis of such data sets.

‘‘MEUSassociation’’ R library implements the Z association coefficient and allows to calculate it while

grouping categories for each of two variables in an arbitrary way. In addition, the library allows for calculating

the Z coefficient for contingency tables, evaluating the association between each particular column and row (or

groups of columns and rows) while taking into account observations from the whole contingency table. These

results can also be presented as a ranked list, allowing to determine row/column pairs with the highest

association. It allows to reduce the complexity of high-volume data and to concentrate on the specific aspect.
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