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ABSTRACT

The coronavirus disease 2019 outbreak is evolving rapidly
worldwide. The lungs are the target of the primary infection
and patients with lung cancer seem to have a poor prog-
nosis. To our knowledge, this is the first reported investi-
gation of a possible role of interleukin-17 target therapy in
patients with lung cancer and concomitant severe acute
respiratory syndrome–coronavirus-2 infection.
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Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: COVID-19; Lung cancer; IL-17 target therapy;
Monoclonal antibody

Possible Role of interleukin-17 in Severe
Acute Respiratory Syndrome–
Coronavirus-2 Infection

In the lungs, the interleukin-17 (IL-17) cytokine is
produced by T helper-17 cells in response to viral
infection.1 IL-17 activates several signaling pathways,
which in turn lead to the induction of chemokines.
Chemokines recruit immune system cells to the inflam-
mation site. The persistence of the pathogen generates
hyperactivity of the immune system, which can lead to a
cytokine storm.1

Furthermore, IL-17, in synergy with IL-6, pro-
motes viral persistence by inhibiting apoptosis.2 As
per the same study, it is possible to determine the
biologic mechanisms related to organ damage medi-
ated by viruses through the IL-17 pathway.2 The role
of IL-17 does not seem to be confined to these
mechanisms. In fact, in addition to mediating the
cytokine storm (resulting in lung damage) and
inhibiting the apoptosis of infected cells (resulting in
viral persistence), it also seems to have the ability to
increase the replication of some viruses by actually
increasing their virulence.3 It has also been found in
an experimental model that viral persistence, caused
by generating a continuous increase in IL-17, pro-
duces acute respiratory distress syndrome,4 which is
what happens in severe acute respiratory syndrome–
coronavirus-2 (SARS–CoV-2) infection. The increasing
level of IL-17 could also be related to the hyper-
coagulation status in patients with coronavirus dis-
ease 2019 (COVID-19).5
Adverse Outcome of COVID-19 Related
to Previous Comorbidity

On investigation of the risk factors related to the poor
prognosis of COVID-19, it was revealed that the IL-17
pathway was always altered in these cases. In fact,
with advancing age, inflammatory response to viruses is
altered with an excessive increase in the production of
IL-17.6 The same effect is noted in patients with asthma,7

among smokers,8 diabetics,9 patients with heart condi-
tions,10,11 and men.12
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Specific IL-17 and SARS–CoV-2 Evidence
There is emerging evidence supporting the role of IL-

17 in SARS–CoV-2 pathogenesis, including a report on
the first anatomopathologic lung analysis (with a high
number of T helper-17 lymphocytes in the alveolar
space)13 and two recent publications,14,15 which
reviewed the immune response in a patient with SARS–
CoV-2 infection.

Protumor Effect of IL-17 in Lung Cancer
The role of IL-17 in lung cancer is well-recognized16

and it has been known to induce VEGF secretion in
cancer cell lines.17 This effect was dependent on the
STAT3-GIV–associated protein pathway, which was
abolished when the cells were exposed to a small
interfering RNA.18 It was observed that those patients
who had increased levels of serum IL-17 had poorer
survival and enhanced angiogenesis compared with
healthy controls.19 Furthermore, exposure of three
different NSCLC cell lines to IL-17 has also been reported
to increase neoangiogenesis and promote in vivo tumor
growth in severe combined immunodeficient mice
through a CXCR-2-dependent mechanism. IL-17 up-
regulated several proangiogenic CXC chemokines,
including CXCL1, CXCL5, CXCL6, and CXCL8. Inhibition of
IL-17 with monoclonal antibodies abolished this up-
regulation and could be potentially useful in patients
with COVID-19 when other systemic therapies have been
excluded.

Potential Role of IL-17 Antibody in the
Treatment of Patients With Lung Cancer
and COVID-19

The use of IL-17 antibody is well-recognized; it is
currently approved in the treatment of psoriatic
arthritis. Moreover, the therapeutic role of IL-17 anti-
bodies has already been established not only in different
cancer types16 but also in the treatment of lung infection
with H1N1 virus,19 in acute respiratory distress syn-
drome,4,20 and pulmonary fibrosis.21 From this analysis,
and in the context of the global pandemic, there seem to
be some theoretical elements to testing the potential
utility of IL-17 antibodies in patients with lung cancer
and COVID-19 in a clinical trial setting, with its poten-
tially high social impact and given the lack of specific
validated treatments.

Potential Future Applications
If a clinical trial is performed and it is found that the

IL-17 target therapy can determine both the control of
the tumor and resolution of SARS–CoV-2 infection, it can
also be applied to other tumors in which IL-17 plays a
role.15 A clinical trial in patients without cancer could
also provide opportune data specific to COVID-19
treatment.
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