
Differential Stem and Progenitor Cell Trafficking by 
Prostaglandin E2

Jonathan Hoggatt1,2, Khalid S. Mohammad3,*, Pratibha Singh1,*, Amber F. Hoggatt1,4, 
Brahmananda Reddy Chitteti5, Jennifer M. Speth1, Peirong Hu1, Bradley A. Poteat5, Kayla 
N. Stilger1, Francesca Ferraro2, Lev Silberstein2, Frankie K. Wong2, Sherif S. Farag5, 
Magdalena Czader6, Ginger L. Milne7, Richard M. Breyer8, Carlos H. Serezani1, David T. 
Scadden2, Theresa Guise3, Edward F. Srour1,5, and Louis M. Pelus1

1Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN

2Harvard Stem Cell Institute, Harvard Medical School / Massachusetts General Hospital, Boston, 
MA

3Medicine / Endocrinology, Indiana University School of Medicine, Indianapolis, IN

4Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL

5Medicine / Division of Hematology and Oncology, Indiana University School of Medicine, 
Indianapolis, IN

6Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN

7Eicosanoid Core Laboratory, Division of Clinical Pharmacology, Vanderbilt University, Nashville, 
TN

8Division of Nephrology and Hypertension, Vanderbilt University, Nashville, TN

SUMMARY

To maintain lifelong production of blood cells, hematopoietic stem cells (HSC) are tightly 

regulated by inherent programs and extrinsic regulatory signals received from their 

microenvironmental niche. Long-term repopulating HSC (LT-HSC) reside in several, perhaps 

overlapping, niches that produce regulatory molecules/signals necessary for homeostasis and 

increased output following stress/injury 1–5. Despite significant advances in specific cellular or 
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molecular mechanisms governing HSC/niche interactions, little is understood about regulatory 

function within the intact mammalian hematopoietic niche. Recently, we and others described a 

positive regulatory role for Prostaglandin E2 (PGE2) on HSC function ex vivo 6,7. While exploring 

the role of endogenous PGE2 we unexpectedly observed hematopoietic egress after nonsteroidal 

anti-inflammatory drug (NSAID) treatment. Surprisingly, this was independent of the SDF-1/

CXCR4 axis. Stem and progenitor cells were found to have differing mechanisms of egress, with 

HSC transit to the periphery dependent on niche attenuation and reduction in the retentive 

molecule osteopontin (OPN). Hematopoietic grafts mobilized with NSAIDs had superior 

repopulating ability and long-term engraftment. Treatment of non-human primates and healthy 

human volunteers confirmed NSAID-mediated egress in higher species. PGE2 receptor knockout 

mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced 

EP4 receptor signaling. These results not only uncover unique regulatory roles for EP4 signaling 

in HSC retention in the niche but also define a rapidly translatable strategy to therapeutically 

enhance transplantation.
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Mice were treated with the prototypical NSAID indomethacin (Supplemental Fig. 1a) to 

reduce endogenous PGE2 production, resulting in a significant increase in hematopoietic 

progenitor cells (HPC) in the peripheral blood (PB) that was not accompanied by an increase 

in white blood cell count (Supplemental Fig. 1b,c), likely accounting for the lack of previous 

detection of this observation despite decades of clinical NSAID use. No increase in HPC 

egress was seen in mice treated with the lipoxygenase inhibitor baicalein, suggesting a 

cyclooxygenase (COX) pathway-specific effect. Co-administration of indomethacin with the 

clinically used mobilizing agent granulocyte-colony stimulating factor (G-CSF), 

significantly enhanced (~2 fold) HPC mobilization (Supplementary Fig. 1b). NSAIDs with 

varying COX-1- and COX-2-selectivity demonstrated significant mobilization with 

indomethacin, aspirin, ibuprofen, and meloxicam (Supplementary Fig. 2). Meloxicam 

inhibits both COX-1 and COX-2 within the bone marrow microenvironment 

(Supplementary Fig. 3) and when compared to other dual inhibitors it has a reduced 

incidence of gastrointestinal discomfort 8 and inhibition of platelet aggregation 9. Therefore, 

meloxicam was used in the majority of the studies. We did not extensively test the 

differential roles of COX-1 and COX-2 and, therefore, there may be similar activity of 

NSAIDs with different COX-1/COX-2 inhibitory profiles when compared to meloxicam.

Meloxicam, similar to indomethacin, increased egress of HPC (Fig. 1a, Supplementary Fig. 

4) and the phenotypic HSC-enriched populations Sca-1+ c-kit+ lineage− (SKL) or the highly 

purified CD150+ CD48− (SLAM) SKL populations (Fig. 1b, Supplementary Fig. 4). 

Enhanced egress was maintained in 5-ALOX knockout mice (Supplementary Fig. 5), further 

demonstrating effects are not due to general eicosanoid inhibition. Enhancement in egress 

was also not specific to G-CSF, as meloxicam enhanced mobilization by the clinically used 

CXCR4 antagonist AMD3100 (Supplementary Fig. 6).
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Despite significant increases in phenotypic HSC and functional HPC in the PB, two early 

transplant attempts did not show enhanced HSC engraftment (Supplementary Figs 7a,b). 

Since we previously showed that PGE2 signaling was a positive regulator of HSC CXCR4 

expression and homing to the niche 6, we hypothesized that while HSC/HPC yield was 

increased in NSAID grafts, CXCR4 expression might be reduced, accounting for apparent 

lack of enhanced engraftment. To test this hypothesis we staggered the administration of 

NSAID and G-CSF to allow for hematopoietic mobilization and restoration of normal 

endogenous PGE2 signaling before transplant (Supplementary Fig. 7c). CXCR4 levels were 

significantly lower after NSAID treatment and staggered administration allowed for restored 

receptor levels, while maintaining enhanced HSC egress (Supplementary Fig. 7d,e). We 

competitively transplanted mobilized grafts from G-CSF, or non-staggered and staggered G-

CSF + meloxicam treated mice. Staggered administration resulted in significant 

enhancement of LT-HSC engraftment, with a 48 hour stagger resulting in a 2.6 fold LT-

HSC increase (Figs. 1c,d,e and Supplementary Fig. 8). When grafts were transplanted non-

competitively, staggered co-administration of meloxicam resulted in 4-day faster recovery of 

neutrophils (Fig. 1f) and platelets (Fig. 1g) compared to G-CSF alone. Secondary 

transplantation confirmed sustained LT-HSC activity with multi-lineage reconstitution 36 

weeks post-transplant (Supplementary Fig. 9).

To confirm NSAID-mediated hematopoietic egress in higher species, 4 baboons were 

treated with a standard regimen of G-CSF, or the combination of G-CSF + meloxicam in a 

crossover design (Fig. 2a). While individual baboon responses to G-CSF varied, in all cases 

meloxicam treatment increased CD34+ cells (Fig. 2b) and CFU-GM (Fig. 2c) in PB. 

Meloxicam treatment on its own also resulted in significant HSC/HPC egress (Figs. 2 d,e). 

In healthy human volunteers, meloxicam treatment resulted in significant increases in 

CD34+ cells (Fig. 2f), and functionally defined HPC (Figs. 2 g,h,i), matching hematopoietic 

egress seen with meloxicam treatment in baboons and mice. Thus, short-term endogenous 

PGE2 inhibition, closely resembling current clinical NSAID treatment, results in a 

previously unappreciated increase in HSC and HPC mobilization.

Meloxicam treatment increased functionally defined myeloid progenitors and phenotypically 

defined granulocyte-macrophage progenitors in the bone marrow, but no differences in 

phenotypically or functionally defined HSC were observed (Supplementary Fig. 10). Since 

PGE2 signals through four receptors (EP1-4), each with unique signaling pathways 10, we 

hypothesized that the myeloid expansion and egress was due to lack of signaling via one or 

more EP receptors. Only agonists capable of activating the EP4 receptor inhibited myeloid 

HPC (Supplementary Fig. 11a). To further confirm the specific role of the EP4 receptor, 

similar assays were performed using knockout mice for each of the EP receptors. 

Comparison of all knockout strains showed that only HPC from conditional EP4−/− mice 

had reduced response to inhibition by PGE2 (Supplementary Fig. 11b) and a 2.3 fold 

increase in marrow CFU-M compared to wild-type (Supplementary Fig. 11c). Co-

administration of EP4 antagonists with G-CSF significantly enhanced mobilization, similar 

to meloxicam, while EP1, 2 and 3 antagonists failed to increase mobilization (Fig. 3a). 

Furthermore, when a selective EP4 agonist was co-administered with G-CSF + meloxicam, 

the meloxicam enhancement of mobilization was abrogated, and to the same degree as 

dmPGE2 co-administration (a long-acting PGE2 analog). Agonists that did not target the 
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EP4 receptor failed to alter meloxicam enhancement. EP4 antagonism with G-CSF enhanced 

mobilization of LT-HSCs (Figs. 3b,c,d), indicating that the NSAID-mediated effects in 

hematopoietic egress are due to reduced EP4 receptor signaling. Consistent with 

pharmacologic data, conditional EP4 deletion increased HPC/HSC egress (Supplementary 

Fig. 11d,e,f), and enhanced mobilization by meloxicam was abrogated (Figs. 3e,f). These 

data implicate PGE2/EP4 receptor signaling in mediating the egress effects of NSAIDs, 

however we did not conduct a comprehensive lipidomic profile and therefore cannot exclude 

contributions of other eicosanoids.

In vitro and in vivo results indicate that lack of EP4 signaling drives HPC expansion, 

possibly elucidating one mechanism responsible for enhanced HPC egress: more marrow 

HPC allows more to be mobilized to the periphery. However, no alterations in bone marrow 

HSC content were observed (Supplementary Fig. 10), suggesting that HSC mobilization 

results from a different mechanism, perhaps acting on the HSC niche. Gross histological 

analysis of NSAID treated mice over 0–4 days showed a progressive increase in laminarity 

of endosteal lining osteolineage cells (Supplementary Fig. 12,13), similar to that seen after 

G-CSF treatment 11. Comparable results were observed in collagen 2.3-GFP reporter mice, 

showing marked attenuation of osteolineage cells (Fig. 4 a–d), and in mice after conditional 

EP4 deletion (Supplementary Fig. 14). Dynamic bone formation assays using staggered 

double calcein labeling and modified Goldner's trichrome staining support significant 

attenuation of osteolineage cellular function (Supplementary Fig. 15).

Currently, there is considerable debate regarding direct or indirect roles of osteoclasts (OC) 

in hematopoietic niche regulation and HSC/HPC retention (reviewed in 12,13). To assess the 

role of OCs, mice were treated with meloxicam and/or G-CSF with or without zoledronic 

acid (ZA), a potent inhibitor of OC activity 14. Similar to a recent report 15, ZA resulted in 

an increase in HSC/HPC mobilization by meloxicam and G-CSF (Supplementary Fig. 16), 

suggesting that increased OC activity is not a mitigating mechanism for NSAID-mediated 

hematopoietic egress. Niche attenuation and HSC/HPC mobilization by G-CSF have 

recently been reported to be mediated by marrow-resident monocyte/macrophage 

populations 15–17. In contrast to G-CSF 15, immunohistochemical (IHC) analysis 

demonstrated that meloxicam does not reduce F4/80+ macrophages (Supplementary Fig. 

17a), nor is there a reduction in phenotypically defined macrophages assessed by flow 

cytometry (Supplementary Figs. 17b,c). We observed no changes in sinusoidal endothelial 

cell number or apoptotic state (Supplementary Fig. 18), nor sinusoid vessels or endothelial 

cell number by IHC (Supplementary Fig. 19). Similarly, there was no alteration in Nestin+ 

cell number (Supplementary Fig. 20). No differences in marrow MMP-9 or soluble c-kit, 

agents reported to regulate HSC motility within the bone marrow niche 18, were observed in 

NSAID treated mice (data not shown), suggesting other unique HSC retentive molecule(s) 

are regulated by EP4.

We fractionated osteolineage cells into 3 sub-populations 19,20 (Supplementary Fig. 21a). 

QRT-PCR analysis revealed that all 3 populations expressed all 4 EP receptors, with EP4 

expressed most predominately (Supplementary Fig. 21b). Meloxicam treatment resulted in 

reductions in mRNA expression of several hematopoietic supportive molecules, including 

Jagged-1, Runx-2, VCAM-1, SCF, SDF-1, and OPN (Supplementary Fig. 21c). Similarly, 
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IHC staining demonstrated reductions in SDF-1, OPN and N-cadherin expression (Fig. 4e). 

Analysis in EP4 conditional knockout mice showed a significant reduction in mesenchymal 

progenitor cells compared to Cre(-) littermates and wild-type controls (Supplementary Fig. 

21d), further demonstrating a role for EP4 signaling in hematopoietic niche maintenance.

Since the interaction of SDF-1 with its cognate receptor CXCR4 is a well-known mediator 

of niche retention we sought to determine whether reduced expression of SDF-1 mediated 

the hematopoietic egress caused by NSAID treatment. Surprisingly, despite the robust egress 

of cells in CXCR4 conditional knockout mice, both HPC and HSC trafficking to the 

periphery were significantly enhanced by meloxicam (Supplementary Fig. 22). Osteopontin 

has been reported as both a regulator of HSC quiescence 21 and niche retention 22. In 

contrast to CXCR4, when OPN knockout mice were treated with meloxicam or G-CSF for 6 

days, meloxicam enhanced mobilization of HPC (Fig. 4f) but, quite unexpectedly, not HSC 

(Fig. 5g,h) (additional data in Supplementary Fig. 23), while both HPC and HSC were 

mobilized by G-CSF in wild-type mice. This surprising result indicates that NSAID-

mediated OPN reduction is specifically responsible for the observed HSC niche egress, 

while increased peripheral HPC results from an independent mechanism(s). To elucidate the 

differential roles of hematopoietic intrinsic versus stromal niche EP4 signaling in mediating 

HPC/HSC egress, we created chimeric mice in which we could conditionally delete EP4 

from donor hematopoietic cells or recipient stromal cells (Fig. 4i). EP4 expression on 

hematopoietic cells was required for NSAID-mediated egress of HPC (Fig. 4j), while EP4 

on stromal cells was specifically necessary for HSC egress (Fig. 4k). These studies 

demonstrate that PGE2 signaling differentially regulates HPC and HSC retention in the 

marrow through both cell intrinsic and extrinsic mechanisms, and future studies should 

define the relative roles of individual stromal niche cell contributions to EP4-mediated niche 

retention. To our knowledge, this is the first report of an agent capable of mobilizing both 

HSC and HPC and doing so through cell stage specific mechanisms.

METHODS SUMMARY

C57Bl/6 and OPN−/− mice were purchased from Jackson Laboratories. B6.SJL-PtrcAPep3B/

BoyJ mice were bred in-house. CXCR4flox/flox mice were generated as described 23 and were 

a kind gift from Y. Zou, Columbia University. EP1−/−, EP2−/−, EP3−/−, and EP4flox/flox 

mice were generated as described 24–26. Conditional mice were bred to Ubc-Cre/ERT2 mice 

from Jackson. Female olive baboons, Papio anubis, were housed individually in 

conventional caging of the Biological Resources Laboratory, University of Illinois (UI) at 

Chicago. Primate research was approved by the UI Animal Care and Use Committee 

(IACUC). The IACUC of IUSM approved all protocols. The IRB of IUSM approved human 

subject research and informed consent was acquired from all volunteers.

METHODS

Animals and Subjects

C57Bl/6 (CD45.2) mice were purchased from Jackson Laboratories (Bar Harbor, ME). 

B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) mice were bred in-house. CXCR4flox/flox mice 

were generated as described 23 and were a kind gift from Yong-Rui Zou. EP1−/−, EP2−/−, 
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EP3−/−, and EP4flox/flox mice were generated as described 24–26. OPN−/− mice were 

purchased from Jackson Laboratories. Nestin-GFP 27, Col2.3-GFP 28 and 5-ALOX 29 mice 

were generated as described. EP4flox/flox mice were bred to Ubc-Cre/ERT2 mice from 

Jackson to generate conditional EP4 knockout mice. All mice were maintained on a C57Bl/6 

background. Female olive baboons, Papio anubis, within the weight range of 16–19 kg, 

were housed individually in conventional caging and holding rooms of the Biological 

Resources Laboratory, a centralized animal facility for the University of Illinois at Chicago 

Medical Center, Chicago, IL. The conducted primate research was approved by the 

University of Illinois at Chicago Animal Care and Use Committee. The Animal Care and 

Use Committee of IUSM approved all protocols, and the Institutional Review Board 

approved human subject research. Informed consent was obtained from all volunteers.

Peripheral blood and bone marrow acquisition and processing

Peripheral blood from mice was obtained by cardiac puncture following CO2 asphyxiation 

using an ethylenediaminetetraacetic acid (EDTA) rinsed syringe. Blood was transferred to 

tubes containing EDTA for complete blood cell (CBC) analysis. CBC analysis was 

performed on a Hemavet 950FS (Drew Scientific, Oxford, CT). Peripheral blood 

mononuclear cells (PBMC) were prepared by centrifugation over Lympholyte Mammal 

(Cedarlane Laboratories Ltd, Hunby, Ontario, Canada) at 800g for 30–40 minutes at room 

temperature, followed by triplicate washes. Bone marrow cells were harvested by flushing 

femurs with ice-cold PBS and single-cell suspensions prepared by passage through a 26-

gauge needle. For baboons, peripheral blood was obtained from the femoral vein of baboons 

anesthetized with an intramuscular injection of 10 mg/kg ketamine hydrochloride 

(Bionichepharma, Lakeforest, IL). Blood was collected into 10 ml sterile EDTA vacutainers 

(Becton, Dickinson and Company, Franklin, NJ) and transported on ice to IUSM for 

analysis. Complete blood counts with differentials were performed on a Hemavet 950FS. 

Peripheral blood was then diluted 1:3 with PBS and mononuclear cells were isolated using 

Ficoll-Paque™ Plus (Amersham Biosciences, Pittsburgh, PA), per manufacturer’s protocol.

Colony assays

Bone marrow cells or PBMC were resuspended in McCoy’s 5A modified media 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 0.6 X modified essential 

medium (MEM) vitamin solution, 1 mM sodium pyruvate, 0.8 X MEM essential amino 

acids, 0.6 X MEM nonessential amino acids, 0.05% sodium bicarbonate (all from Gibco, 

Grand Island, NY), serine, asparagine, glutamine mixture and 15% HI-FBS (Hyclone Sterile 

Systems, Logan, UT) as described 30,31. Cells were mixed with 0.3% agar (Difco 

Laboratories, Detroit, MI) in McCoy’s 5A medium with 10 ng/ml rhGM-CSF and 50 ng/ml 

rmSCF (R&D Systems, Minneapolis, MN). PBMC were cultured at 2×105 cells per ml and 

bone marrow cells at 5×104 cells per ml. All cultures were established in triplicate from 

individual animals, incubated at 37 °C, 5% CO2, 5% O2 in air for 7 days and colonies 

quantitated by microscopy. In some experiments, total CFC including CFU-GM, BFU-E and 

CFU-GEMM were enumerated in 1% methylcellulose/IMDM containing 30% fetal bovine 

serum, 1 U/ml recombinant human erythropoietin (EPO), 10 ng/ml rhGM-CSF or rmGM-

CSF and 50 ng/ml rhSCF or rmSCF as described 32,33. In some experiments, phenotypically 

defined CMP and GMP were plated at 500 cells per plate and colony growth determined in 
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agar CFC assays with rmGM-CSF + rmSCF or with rmM-CSF. For analysis of CFC in 

baboons, similar assays were performed using recombinant human growth factors.

Flow cytometry

All antibodies were purchased from BD Biosciences unless otherwise noted. For detection 

of SKL cells, we used streptavidin conjugated with PE-Cy7 (to stain for biotinylated 

MACS® lineage antibodies (Miltenyi, Auburn, CA), c-kit-APC, Sca-1-PE or APC-Cy7, 

CD45.1-PE, CD45.2-FITC. For SLAM SKL, we utilized Sca-1-PE-Cy7, c-kit-FITC, 

CD150-APC (eBiosciences, San Diego, CA), CD48-biotin (eBiosciences) and streptavidin-

PE. CXCR4 expression was analyzed using biotinylated Lineage antibodies, streptavidin-

PECy7, c-kit-APC, Sca-1-APC-Cy7, and CXCR4-PE. For baboon CD34 analysis, CD34-PE 

(Clone 563) was used. For macrophages, antibodies against CD115 (clone AFS98), Gr-1 

(clone RB6-8C5), and F4/80 (clone CI:A3-1) were used. Osteolineage populations were 

identified and sorted as previously described 19. For enumeration of bone marrow 

endothelial cells, femurs and tibias were crushed in a sterile mortar, and digested in 

collagenase (0.3%) at 37°C for one hour. Recovered cells were co-stained with 

fluorochrome-conjugated antibodies to CD45, Ter119, Sca-1, VEGFR3 and CD31 and total 

number of SECs (CD45−Ter119−Sca-1−VEGFR3+ CD31+) per femur was enumerated by 

flow-cytometry analysis. To examine endothelial cell apoptosis, gated 

CD45−Ter119−Sca-1−VEGFR3+ CD31+ cells were stained with Annexin V (BD 

Biosciences) and LIVE/DEAD staining dye (Invitrogen). For enumeration of myeloid 

progenitors (CMP, GMP and MEP), femurs and tibias were flushed with 5 ml IMDM 

containing 2% FBS. Lineage-positive cells were depleted using lineage-cell depletion kit 

(Miltenyi Biotec) and lineage-negative cells were stained with fluorochrome-conjugated 

antibodies to Sca-1, c-Kit, IL-7Rα, CD34 and FCRϒll/lll and analyzed by flow cytometry. 

The Lin− IL-7Rα− Sca-1−c-Kit+ fraction was subdivided into three subpopulation; CMP 

(FCRϒll/llllowCD34+), MEP (FCRϒll/llllowCD34−), and GMP (FCRϒll/lllhiCD34−) and 

collected by sorting. All flow cytometry analyses were performed on an LSRII flow 

cytometer (BD). Cell sorting was performed on a BD Aria or Reflection II or Reflection III 

sorters.

Peripheral blood mobilization

Several different mobilization strategies were employed, with specific details of dosing and 

schematics of dosing regimens shown on the data figures or included in the figure legends. 

In general, mice were given subcutaneous treatments of vehicle, NSAID (at varying doses), 

G-CSF (50µg/kg, twice a day for 4 days), or G-CSF plus NSAID. For studies exploring 

mobilizing agents other than G-CSF, mice were treated with AMD3100 (5 mg/kg day 5; 

single injection), and peripheral blood harvested at 1 hour post-AMD3100 treatment. For 

comparisons of multiple different NSAIDs, all NSAIDs were dosed by oral gavage using an 

enhanced oral gavage technique 34. Each gavage treatment was given in a 0.2 ml bolus (10 

ml/kg) of 0.5% methyl cellulose (Methyl Cellulose M-0512, Sigma- Aldrich, St. Louis, MO) 

with an NSAID suspended in solution. For EP receptor analysis, mice were mobilized with 

G-CSF in combination with Meloxicam, AH6809 (EP1-3 antagonist, 10 µg per mouse, ip, 4 

days), AH23848 (EP4 antagonist, 10 µg per mouse, ip, 4 days), L-161,982 (EP4 antagonist, 

10 µg per mouse, ip, 4 days) or G-CSF plus Meloxicam and an EP2, EP1/3 or EP4 agonist 
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(10 µg per mouse, ip, 4 days) or dmPGE2 (10 µg per mouse, ip, 4 days). For baboon studies, 

a baseline bleed was performed for CBC, CD34 and CFC analysis. Two days later, 2 

baboons were treated with 10µg/kg G-CSF, and 2 baboons were treated subcutaneously with 

10µg/kg G-CSF and 0.2 mg/kg Meloxicam on day 1, followed by 0.1 mg/kg Meloxicam 

subsequent days, for 5 total days. Blood was collected following treatment regimen for 

CBC, CD34, and CFC analysis. Following a 2 week resting period, the above procedure was 

repeated, switching treatment groups for individual baboons. Additionally, after another 2 

week resting period, blood was collected before and after a 5 day treatment regimen with 

Meloxicam and CBC, CD34, and CFC were analyzed. For healthy volunteer studies, 

subjects naive to any medications within 30 days received a baseline bleed, followed by a 

second bleed after a 5-day regimen of 15 mg of meloxicam per day, orally. CD34 cells were 

assessed by the ISHAGE procedure 35 performed by the Stem Cell Laboratory of the IUSM 

Bone Marrow Transplant Program. CFC were assessed as described above.

Limiting dilution competitive transplantation

CD45.1 mice were mobilized with a standard 4 day regimen of G-CSF, or G-CSF plus a 4 

day regimen of Meloxicam (6 mg/kg). In some studies designed to evaluate timing and 

duration of NSAID dosing in combination with G-CSF, initiation of the NSAID regimen 

preceded G-CSF and was staggered such that NSAID administration ended simultaneous 

with the G-CSF regimen (no stagger), 1 day prior to G-CSF (1 day stagger) or 2 days prior 

to G-CSF (2 day stagger) (regimens as depicted in the corresponding data figure). On day 5, 

PBMC were acquired and transplanted at 1:1, 2:1, 3:1 or 4:1 ratios with 5×105 C57Bl/6J 

WBM competitors into lethally irradiated C57Bl/6J recipient mice. Peripheral blood 

chimerism was monitored monthly, and CRU and LT-HSC frequency calculated. 

Transplants to evaluate LT-HSC mobilized in OPN−/− mice or with EP4 antagonist were 

performed competitively at a 4:1 ratio; 800,000 PBMC from CD45.2 mice versus 200,000 

WBM from CD45.1 mice and peripheral blood chimerism and multilineage reconstitution 

assessed 16 weeks post-transplant.

Recovery assay

Mice were mobilized with G-CSF or G-CSF plus meloxicam with staggered dosing as 

described above and 2×106 mobilized PBMC transplanted non-competitively into cohorts of 

10 lethally irradiated recipients per group. A cohort of non-irradiated mice was bled on the 

same schedule as the experimental treated groups of mice. Every other day, 5 mice from 

each group were bled (~50µl from a tail snip) and neutrophils and platelets in blood 

enumerated using a Hemavet 950FS. Alternate groups of 5 mice were bled on each 

successive bleeding time point so that mice were only bled once every 4 days. Recovery of 

neutrophils and platelets to 50% and 100% were determined by comparison to the average 

neutrophil and platelet counts in the control group throughout the experimental period. After 

90 days, mice were sacrificed, bone marrow harvested, and transplanted at a 2.5:1 ratio with 

2×105 congenic competitors into lethally irradiated recipients to determine long-term 

repopulating ability of the primary mobilized graft.
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EP4 Chimera generation and mobilization assay

Chimeras were generated using EP4Cre flox/flox and age and sex matched EP4flox/flox 

littermate controls. EP4flox/flox mice were lethally irradiated and transplanted with 2 ×106 

WBM cells from either EP4flox/flox mice, allowing for generation of a WT:WT chimera, or 

from EP4Cre flox/flox mice allowing for generation of a KO:WT chimera. Similarly, 

EP4Cre flox/flox mice were lethally irradiated and transplanted with 2 × 106 WBM cells from 

EP4flox/flox mice, allowing for generation of a WT:KO chimera. At 8 weeks post-transplant, 

all mice were treated with 2mg tamoxifen for three consecutive days, rested for 3 days and 

injected for 3 more days. Mice were then treated with G-CSF or G-CSF + meloxicam 

starting 10 days after the last treatment, and peripheral blood CFC and SLAM SKL assessed 

as described. EP4 gene deletion was confirmed by qRT-PCR.

Quantitative RT-PCR

For EP receptor expression on sorted osteolineage cells, total RNA was extracted with 

Purelink™ RNA micro Kit (Invitrogen, Grand Island, NY). On-column DNase treatment 

was performed according to the manufacturers' instructions to eliminate contaminating 

genomic DNA. Conventional reverse transcription was followed with SuperScript™ III 

First-Strand Synthesis System (Invitrogen). QRT-PCR was performed by using SYBR 

advantage qPCR Premix kit (Clontech) on MxPro-3000 (Agilent, LaJolla, CA). Primers 

were synthesized at IDT (Supplementary Table 1). A primer concentration of 250 nM was 

found to be optimal in all cases. The PCR protocol consisted of one cycle at 95 °C (5min) 

followed by 45 cycles of 95°C (15s), 55°C (30s) and 72°C (30s). The dissociation curves 

were determined on each analysis to confirm that only one product was obtained. Expression 

of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthine guanine 

phosphoribosyl transferase (HPRT) were generally used as reference genes. The average 

threshold cycle number (Ct) for each tested mRNA was used to quantify the relative 

expression of each gene. For analysis of hematopoietic supportive molecules on sorted 

osteolineage cells from vehicle treated or NSAID treated mice, quantitative RT-PCR was 

performed with the TaqMan gene expression assay kit (Life Technologies) (Supplementary 

Table 2) with cDNA generated from the High Capacity cDNA Reverse Transcription Kit 

(Life Technologies). Microfluidic quantitative RT-PCR was performed on BioMark 

Dynamic Arrays according to manufacturer’s instructions (Fluidigm Corporation).

Micro-computed tomography µCT

Formalin fixed tibiae and femora were imaged with micro-CT using a microCT-viva 40 

(Scanco Medical AG, Bassersdorf, Switzerland) using a voxel size of 10.5 um in all 

dimensions (N=5). The bones were mounted in a cylindrical specimen holder to be captured 

in a single scan. Bones were secured in the specimen holder with gauze and were completely 

submerged in 70% ethanol. The region of interest comprised 100 transverse CT slices. Scans 

with an isotropic resolution of 10.5 µm were made using a 55-kV peak voltage X-ray beam. 

Fractional bone volume (BV/TV, Fraction) and architectural properties of trabecular 

reconstructions, apparent trabecular thickness (Tb.Th.), trabecular number (Tb.N.), 

trabecular spacing (Tb.Sp.), and connectivity density (Conn.D.) were calculated.
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Dynamic and Static bone histomorphometry

Dynamic bone formation assays using staggered double calcein labeling, as we described 36. 

Bone histomorphometry was performed on 7 µm thick sections of undecalcified femurs 

embedded in methylmethacrylate using standard procedures. The mineral apposition rate 

(MAR, mm/day), mineralizing surface (MS/BS) and bone formation rate (BFR/BS, 

mm3/mm2/day) were measured on femora. Modified Goldner's Trichrome staining 

procedure was performed on 7 µm thick sections of undecalcified femurs embedded in 

methylmethacrylate. The osteoid surfaces as well as quiescent surfaces were measured on 

the tissue sections. Bone marrow sinusoids were visualized with Anti-VEFGFR3 on 3.5 um 

section. Vessels were identified by the positive staining around the vessel walls and vessel 

areas were measured using automated measuring system and expressed as a percentage / 

tissue volume. Vessel surface was traced with the same automated system. Vessel wall that 

showed an intact epithelial surface was expressed as endothelial surface over total vessel 

surface. For Col2.3 GFP analysis, 3.5 um thick sections were obtained from treated Col2.3 

GFP mice. Sections were visualized under fluorescent microscope (Leica D100) using a 

FITC filter. Images were captured at 400× magnification at 4 different areas in the mid shaft 

of the femur. GFP+ osteoblasts were counted on endocortical bone surface and data was 

expressed at number of osteoblasts/endocortical bone surface. Osteoblast surface defined as 

endocortical bone surface covered by osteoblasts were measured and expressed and 

osteoblasts surface over endocortical bone surface. All histomorphometry was done on 

images captured using a Leica microscope outfitted with Q-imaging camera (W. Nuhsbaum 

Inc., McHenry, IL) and the histomorphometry was done using Bioquant Osteo software 

automated measuring system (Bioquant imaging corporation, Nashville, TN). All 

histomorphometry values were expressed according to the standard nomenclature 37,38.

Immunohistochemistry

Immunohistochemical analysis was performed on decalcified paraffin-embedded tissue 

sections. Antibodies against N-Cadherin (Abcam Inc., Cambridge, MA) primary: Rabbit 

polyclonal to N-Cadherin and SDF1 N-terminal respectively, Secondary : anti-Rabbit from 

Vector Laboratories (Burlingame, CA). Osteopontin (OPN) Ab was purchased from R&D 

Systems primary: Anti-mouse OPN, Secondary: Biotynylated anti-goat HRP conjugate, 

HRP-DAB System and DAB Chromogen. Rat IgG2 isotype was used as a primary antibody 

negative control for SDF-1, OPN and N-Cadherin in the concentration of 1:50. Isotype 

staining control was performed under the same conditions as the antibody staining.

COX metabolite and activity analysis

Mice were treated with vehicle control or meloxicam s.c. bid. One hour after the last 

treatment, femurs were pulled and flushed with 1 ml of ice cold PBS, quickly brought to 

single cell suspension and the flash frozen. COX-1 and COX-2 derived metabolites were 

assessed by GC/MS as we have previously described 39,40. The second femur was processed 

in an identical way and COX-1 and COX-2 activity determined using a fluorescent COX 

activity assay following the manufacturer’s instructions (Cayman Chemicals, kit #700200).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NSAIDs mobilize hematopoietic stem and progenitor cells
Meloxicam enhances mobilization of HPC, a, and HSC b, into blood (n=4–5 mice/group/

experiment; 3 experiments). c, Chimerism; d, competitive repopulating units (CRU); and e, 

LT-HSC frequency (Poisson distribution) 36 weeks after limiting dilution competitive 

transplants of peripheral blood mononuclear cells (PBMC) from mice treated with G-CSF 

and combination regimens (n=8 mice/group, assayed individually). Mice were treated with 

G-CSF or a staggered regimen of G-CSF + Meloxicam and PBMC transplanted into lethally 
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irradiated mice. f, Neutrophil and g, platelet recovery were monitored for 90 days. *P<0.05, 

** P<0.01, ***P<0.001; unpaired two-tailed t-test. All error bars represent mean ± s.e.m.
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Figure 2. Non-human primates and healthy human volunteers mobilize HSC/HPC in response to 
NSAID treatment
a, Four baboons were treated with G-CSF +/- Meloxicam in a cross-over design and b, 

CD34+ cells and c, CFU-GM in peripheral blood (PB) determined. d, CD34+ cells and e, 

CFU-GM in PB determined pre- and post-5 days of meloxicam alone treatment. Seven 

healthy human volunteers were treated with 15 mg/day p.o. for 5 days, and were assessed 

for f, CD34+ cells; g, CFU-GM; h, BFU-E, and i, CFU-GEMM pre- and post-treatment. 

Statistics represent paired, two-tailed t-test.
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Figure 3. Prostaglandin E2 EP4 receptor antagonism/knockout expands bone marrow HPC and 
enhances mobilization
a, HPC mobilization with G-CSF, G-CSF + meloxicam, G-CSF + EP receptor antagonists, 

or G-CSF + meloxicam + EP receptor agonists (n=5 mice/group, assayed individually). b, 

The EP4 antagonist L-161,982 enhanced HSC mobilization (n=4 mice/group, assayed 

individually), and c, long-term reconstitution 16 weeks post-transplant with d, multi-lineage 

reconstitution (n=5 mice/group, assayed individually). e, Meloxicam enhances mobilization 

of HPC, and f, SLAM SKL cells in WT littermates, but not in EP4 conditional knockouts 
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(n=3,4 mice/group, assayed individually). *P<0.05, ** P<0.01, ***P<0.001; unpaired two-

tailed t-test. †P<0.05 compared to G-CSF + meloxicam. All error bars represent mean ± 

s.e.m.
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Figure 4. NSAIDs attenuate hematopoietic supportive molecules and differentially mobilize HSC 
and HPC in OPN knockout and EP4 conditional knockout mice
a, b, Assessment of Col2.3-GFP cells after vehicle or meloxicam demonstrates reduced c, 

percentages and d, number of osteolineage cells (n=4 mice/group, assayed individually). e, 

Immunohistochemical staining of hematopoietic supportive molecules after treatment with 

meloxicam (400X). f, Meloxicam enhances mobilization of HPC in OPN −/− mice, with g,h, 

no enhancement in long-term reconstitution 16 weeks post-transplant. i, Representation of 

chimera generation allowing conditional knockout of donor hematopoietic cells, or recipient 
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stromal cells. EP4 was deleted with tamoxifen 8 weeks post-transplant and mice treated with 

G-CSF or G-CSF + meloxicam. j, Enhanced mobilization of HPC by meloxicam when EP4 

is expressed on hematopoietic cells and k, enhanced mobilization of HSC when EP4 is 

expressed by stromal cells (n=4 mice/group, assayed individually). *P<0.05, **P<0.01, 

***P<0.001; unpaired two-tailed t-test. Error bars represent mean ± s.e.m.
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