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Low-pass sequencing (sequencing a genome to an average depth less than 1× coverage) combined with genotype imputation

has been proposed as an alternative to genotyping arrays for trait mapping and calculation of polygenic scores. To empir-

ically assess the relative performance of these technologies for different applications, we performed low-pass sequencing

(targeting coverage levels of 0.5× and 1×) and array genotyping (using the Illumina Global Screening Array [GSA]) on

120 DNA samples derived from African- and European-ancestry individuals that are part of the 1000 Genomes Project.

We then imputed both the sequencing data and the genotyping array data to the 1000 Genomes Phase 3 haplotype refer-

ence panel using a leave-one-out design. We evaluated overall imputation accuracy from these different assays as well as

overall power for GWAS from imputed data and computed polygenic risk scores for coronary artery disease and breast

cancer using previously derived weights. We conclude that low-pass sequencing plus imputation, in addition to providing

a substantial increase in statistical power for genome-wide association studies, provides increased accuracy for polygenic risk

prediction at effective coverages of ∼0.5× and higher compared to the Illumina GSA.

[Supplemental material is available for this article.]

Thousands of variants on the human genome associated with
hundreds of complex traits and diseases have been reproducibly
and robustly identified since the first large genome-wide associa-
tion studies (GWASs) for complex disease were performed in the
early years of this century (The Wellcome Trust Case Control
Consortium 2007; Yang et al. 2010; Visscher et al. 2012; Sella
and Barton 2019). Results from these studies have had an enor-
mous impact on the understanding of the genetic architecture un-
derlying complex traits in humans, with these studies playing an
essential part in bringing the current understanding full circle
back to Fisher’s original infinitesimal model compared to the
gene-centric model focused upon in the preceding decades
(Judson 1979; Risch et al. 1999; Walsh and Lynch 2018).

The ability to systematically dissect the genetic architecture
of complex traits influenced by hundreds or thousands of genetic
variants has largely been enabled by the dense genotyping array,
which cost-effectively assays the genome of an individual at hun-
dreds of thousands to millions of loci (Visscher et al. 2012).
Imputation of the resulting genotypes to existing haplotype refer-
ence panels further allows evaluation of genetic variants which are
not directly assayed, often resulting in total callsets many times
the number of directly assayed loci, and is now standard practice
in preparing genomic data sets for GWAS (Li et al. 2009;
Marchini and Howie 2010).

As genome sequencing costs have decreased over the past dec-
ade, sequencing-based alternatives to genotyping arrays have been
the subject of growing interest (Wetterstrand 2019). Specifically,
low-coverage shotgun whole-genome sequencing followed by im-
putation has been utilized for a number of problems in statistical
and population genetics, from providing the backbone for graph-
based pangenomes in sorghum to trait mapping in human phar-

macogenetics (Cai et al. 2015a; Liu et al. 2018; Gilly et al. 2019;
Homburger et al. 2019; Wasik et al. 2019; Jensen et al. 2020;
Tran et al. 2020; Rubinacci et al. 2021). As an intuition for why
this approach is useful, a sample sequenced at a target coverage
of 0.5× is expected to have at least one read on 33 million of the
85 million sites in the 1000 Genomes Phase 3 release, whereas a
genotyping array will probe a number of variants which is one to
two orders ofmagnitude fewer, albeit with higher average accuracy
(The 1000 Genomes Project Consortium 2015).

For many use cases, there are a number of advantages to
low-pass sequencing (lps) over genotyping arrays; for example,
(1) there is a lack of ascertainment bias with regard to which var-
iants/sites on the genome are assayed, (2) sequence data can be
used to discover novel variation both at the sample or population
level (such as in Tran et al. 2020; Liu et al. 2018), (3) massively
parallel low-pass sequencing can be achieved by multiplexing
large numbers of samples to reduce cost, and (4) the fact that
the average expected accuracy of a sample’s imputed genotypes
can be fine-tuned by adjusting the target coverage for the sample,
something which is useful when designing experiments within
real-world logistical or budgeting constraints (see Pasaniuc et al.
2012 for a detailed simulation-based cost-benefit analysis of
low-pass sequencing compared to genotyping arrays for GWAS
study designs).

However, studies in the literature which investigate the appli-
cations of low-pass sequencing often do so bymeans of simulation
or by down-sampling (often already-aligned) sequence reads from
samples previously sequenced at higher coverages (Gilly et al.
2019; Homburger et al. 2019). Although useful, these approaches
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are unable to capture the real-world idiosyncrasies of data genera-
tion in extremely low coverage sequencing and ignore factors such
as the use of different library preparation methods which are opti-
mized for sequencing at given target coverages (Aird et al. 2011;
Jones et al. 2015).

Here, in order tomore realistically represent real-world results,
weperforman investigationof low-pass sequencingdatawhere the
low-coverage genomes are obtainednot by down-sampling higher-
coverage samples but by direct sequencing to extremely low target
coverages (0.5× and1.0×). As a point of comparison,we chose to as-
say the same samples on the Illumina Global Screening Array
(GSA), a modern genotyping array specifically designed to capture
multi-ethnic genetic variation. We chose these coverages because
the all-in cost of library preparation, sequencing, and data analysis
for a 0.5× target coverage sample was approximately at parity with
the Illumina GSA (as of 2019) and that for 1.0× target coverage se-
quencingwas fast approaching the samewithhistoricallydropping
sequencing costs (Wetterstrand 2019).

Results

Experimental overview

In order to compare the relative performance of low-pass sequenc-
ing and genotyping arrays across populations, we selected 60 EUR
and 60 AFR individuals (Supplemental Table 1) from the 1000
Genomes Phase 3 release (1KGP3) (The 1000 Genomes Project
Consortium 2015) on which to perform five experiments (Table
1; Supplemental Table 2), which we denote experiments A–E.

The samples columndescribes thenumberof unique cell lines
and the number of replicates run for each of them. Library prepwas
performed by Gencove for experiments A–C, and libraries were se-
quenced on the IlluminaHiSeqX. For experimentD,DNAwas sent
to BGI Americas for library prep and sequencing. Empirical cover-
age for each samplewas calculated by dividing the number of bases
sequenced by the size of the human genome (∼3.3 Gb).

For experiment A, we performed library prep on and se-
quenced these 120 unique individuals in triplicate to a target cov-
erage of 0.5× on an Illumina HiSeq X. For experiment B, we
performed library prep on and sequenced these 120 unique indi-
viduals in triplicate to a target coverage of 1.0× on an Illumina
HiSeq X. For experiment C, we performed library prep on and se-
quenced NA12878, a CEU female sample, 30 times to a target cov-
erage of 1.0× on an Illumina HiSeq X. For experiment D, we
selected a subset of 30 EUR and 30 AFR samples from the set of
120 unique individuals and sent DNA to BGI Americas for se-
quencing to a target coverage of 1.0× on a BGISEQ 500. For exper-
iment E, we assayed these 120 unique individuals in triplicate on
the Illumina GSA v3.0 via the Broad Institute.

Experiment C was conducted principally to illustrate the ef-
fects of varying empirical coverage on imputation accuracy (with

all else held equal) and to provide insight into the repeatability
of low-pass sequencing on biological replicates and empirical var-
iation in sequencing coverage given a fixed target coverage
(Supplemental Fig. 1).

For each assayed sample passing QC (Methods; Supplemental
Table 3), we imputed the sequence or genotype array data to the
1KGP3 haplotype reference panel in a leave-one-out manner
(Methods) and compared the imputed calls against the left-out ge-
notypes from the 1KGP3 reference panel (which we treated as the
“gold-standard” or “truth” set). We also computed polygenic risk
scores from the imputed dosages for each sample and the gold-
standard truth set for breast cancer (BC) and coronary artery dis-
ease (CAD) using variant weights from recent state-of-the-art stud-
ies (Inouye et al. 2018; Mavaddat et al. 2019).

Defining “effective coverage”

The nominal (mapped) coverage of a sample having undergone
whole-genome sequencing is defined as the number of sequenced
(andmapped) bases divided by the size of the genome (in this case,
∼3.3 Gb). This quantity is useful as an indicator of how much se-
quence data is available for downstream analysis but does not
give any useful information as to how spatially uniform (with re-
spect to the genome coordinate system) the sequenced data are dis-
tributed. Spatial uniformity of sequencing reads is particularly
important for low-pass sequencing followed by imputation
because imputation panels catalog variation across the entire ge-
nome, and the imputation quality at a given variant is influenced
by the amount of sequence data mapped to regions near that var-
iant and which overlap other variants in the imputation panel.

We therefore introduce the concept of a sequenced sample’s
effective coverage λeff, which is a function of the fraction of poly-
morphic sites in a haplotype reference panel covered by at least
one sequencing read. Under an idealized Poisson distribution of
sequencing reads across sites, this fraction is determined by the
sequencing coverage alone (Methods). Specifically, given an
imputation panel with n sites and a set of aligned reads from a sin-
gle sample, we can compute the fraction of those n sites covered by
at least one read fcovered and compute that sample’s effective cover-
age λeff =− ln(1−fcovered).

The advantage of using this quantity rather than nominal
coverage as a way to summarize sequence results on a sample, par-
ticularly at ultralow coverages, is that the assumptions of an ideal-
ized sampling process is “built-in” to its definition. This allows
results from, for example, different library preparation methods
to be compared on more equal footing (see Fig. 1; Supplemental
Figs. 1–3, where experiment D underwent a different library prep-
aration method than experiments A–C).

Indeed, plotting nominal and effective coverage versus non-
reference concordance (NRC) (Methods) for all the sequenced sam-
ples (Fig. 1) illustrates how NRC is better predicted by a sample’s

Table 1. Details of experiments conducted; experiments A–D were based on low-pass sequencing (lpSeq) whereas experiment E used the
Illumina GSA v3.0

Experiment Mean coverage Samples Assay Library prep Sequencer

A 0.67 120 (3 replicates) lpSeq KAPA HyperPlus Illumina HiSeq X
B 1.25 120 (3 replicates) lpSeq KAPA HyperPlus Illumina HiSeq X
C 1.20 1 (30 replicates) lpSeq KAPA HyperPlus Illumina HiSeq X
D 1.26 60 (1 replicate) lpSeq MGIEasy BGISEQ 500
E (array) NA 120 (3 replicates) Illumina GSA v3.0 NA NA
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effective coverage rather than the nominalmapped coverage, with
cubic restricted spline fits explaining a larger degree of variance
when considering effective coverage rather thanmapped nominal
coverage (R2 = 0.89 vs. R2 = 0.82). Note that this figure and accom-
panying fit are not meant to be a rigorous parametric treatment of
NRC versus different coverage metrics but are rather meant to pro-
vide an intuition.

The results from experiment C illustrate that this pattern also
holds across replicates of the same individual, where the only de-
gree of freedom left is the effective coverage of the sample.

Plots of effective coverage versus NRC and overall concor-
dance broken down by variant type (SNPs vs. indels), population,
and variant filtration status are shown in Supplemental Figures 4–9
and show qualitatively similar results. When poorly imputed var-
iants are filtered out of a callset (variants with a maximum geno-
type probability of <90%) (Methods), the relationship between
effective coverage and concordance weakens significantly, sug-
gesting that the genotype posterior probabilities generated during
imputation are relatively well-calibrated (Methods).

Comparison of imputation quality metrics across experiments

Genotype concordance

We then examined how NRC and imputation r2 varied across ex-
periments A, B, D, and E. In order to do this, for experiments A,
B, and E, we took a random sample of one of the replicates run
for each unique cell line, such that comparisons across experi-
ments concerned only a single, representative sample of each
cell line per experiment (Methods). For experiment D, we retained
all samples, as there were no replicates. The remainder of this sub-
section compares metrics and results from these representative co-
horts across experiments. The mean effective coverage of the
representative cohorts varied from experiment to experiment
(Supplemental Table 4), ranging from an overall (mean± standard

deviation) of 0.42±0.22 for experiment
A to 0.71±0.17 for experiment B to
1.24±0.11 for experiment D.

Reference to nonreference and mi-
nor allele frequencies are with respect to
those found in the 1KGP3. For all analy-
ses, we treated the genotypes in the
1KGP3 for each sample’s cell line as the
gold-standard “truth” set.

We observed that imputed geno-
types in EUR cohorts were considerably
and consistently more accurate than
those imputed into the AFR cohorts on
average both before and after filtering
out poorly imputed variants both for
SNPs and indels, with the difference in
mean NRC for unfiltered SNPs ranging
from 0.0143 in experiment D to 0.08 in
experiment E (Table 2). Within each ex-
periment, two-sample unpaired Welch’s
t-tests for differences in means between
results for EUR and AFR samples all yield-
ed significant (P<0.001) results.

Furthermore, we observed that ge-
notypes imputed from sequence were
consistently and considerably more ac-
curate than those imputed from array

data, with the mean AFR NRC being 7% higher for sequence
data with an average of 0.4× effective coverage compared to the ar-
ray data (Table 2; Supplemental Tables 5–7). Two-sample paired
t-tests for differences in means between the array results and
sequence results in Table 2 (given a superpopulation) all yielded
significant (P<0.001) results.

In order to compare performance across the allele frequency
spectrum, we computed the mean nonreference concordance for
SNPs within a given allele frequency bin within each representa-
tive cohort (Fig. 2; Supplemental Fig. 10; Supplemental Table
12). The average NRCs for experiment E’s representative cohorts
were significantly lower than those of all other experiments at all
frequency bins, and qualitatively similar patterns hold for overall
genotype concordance as well (Supplemental Tables 8–11). These
results indicate that low-pass sequencing at an effective coverage
of ∼0.4× or higher consistently yields more accurate imputed ge-
notype calls at sites of common variation than the Illumina GSA
and that this pattern holds across both EUR and AFR cohorts.

In particular, the NRC at low (<5%) allele frequencies in AFR
populations often exceeds the corresponding NRC for EUR popu-
lations (Supplemental Fig. 11) for the sequence-based experi-
ments. We also observe this pattern for the imputation r2s,
which we address next.

Imputation r2

Genotype concordance is an important metric which provides a
straightforward and intuitive quantification of the performance
of genotype imputation. However, in the context of genome-
wide association studies, a more relevant quantity is the imputa-
tion r2, which is defined as the squared correlation between the im-
puted dosage and the true genotypes of a given set of samples at a
given variant. This is because the imputation r2 at a given variant is
proportional to the expectation of the χ2 statistic resulting from an
association test at that particular variant, of which the powerof the

Figure 1. Nonreference concordance (NRC) (Methods) for imputed SNPs for all EUR samples in exper-
iments A–Dplotted against effective coverage λeff (left) or nominal mapped coverage (right). Wemodeled
the NRC as the response variable for a k=5 knot cubic restricted spline with the respective coverage met-
ric as the explanatory variable; the fitted values are shown as a solid line with the surrounding shaded
regions representing 95% confidence intervals. The knot locations were set at the 5th, 27.5th, 50th,
72.5th, and 95th percentiles of the respective coverage metrics following Harrell’s rule of thumb
(Harrell 2017).
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test is a function (Pritchard and Przeworski 2001; Chapman et al.
2003;Marchini 2019). A practical consequence of this is that a pro-
portional increase in the imputation r2 at a particular variant can
be interpreted as the same proportional increase in effective sam-
ple size at that variant, so that an increase in mean imputation
r2 across the genome directly corresponds to increased statistical
power (Pritchard and Przeworski 2001). This quantity can be com-
puted on a site-by-site basis and stratified into allele frequency bins
according to the allele frequencies in the haplotype reference
panel.

At common variants (minor allele frequency>5% in the
1KGP3), the mean imputation r2 for sequence-based experiments
ranged from 0.92 to 0.96 for the EUR representative cohorts com-
pared to a mean r2 of 0.91 for experiment E, representing an aver-
age increase in power of ∼1%–6% for samples with mean effective
coverages ranging from ∼0.47× to 1.24× (Supplemental Tables 4,
15). For the AFR representative cohorts, the mean imputation r2

for sequence-based experiments ranged from 0.89 to 0.95 com-
pared to 0.83 for the GSA, representing an average increase of pow-
er of ∼7%–15% for samples with mean effective coverages ranging
from ∼0.38 to 1.24 (Supplemental Table 15). For all experiments
and superpopulations at common variants, the mean dosage r2

for the imputed sequence was significantly higher (P<0.001,
two-sample Welch’s t-tests) than the corresponding mean dosage
r2 for the imputed array data.

Stratifying imputation site-wise r2s into minor allele frequen-
cy bins, we observed that for the sequence-based experiments, the
average r2s across the allele frequency bins scaled with the average
effective coverage of each representative cohort (Fig. 3), in line
with the expectation that higher-effective-coverage sequence
data affords greater imputation accuracy.

For the AFR cohorts, we observed
that sequence-based experiments uni-
formly outperformed genotyping arrays
for all minor allele frequency bins,
whereas for EUR cohorts the same was
true above minor allele frequencies of
0.01 for all but the cohort with the lowest
mean effective coverage, experiment A
(Supplemental Fig. 13).

In particular, at minor allele fre-
quencies of ∼5% and lower, for a given
sequence-based experiment, imputation
performance in the AFR cohorts often
exceeded performance at similar allele
frequencies in the EUR cohorts, a
pattern opposite to that which was
observed at higher allele frequencies
(Supplemental Fig. 13; Supplemental
Tables 13, 14). This pattern was not
observed for the imputed array data,
where the imputation r2s for all allele

frequency bins were higher in the EUR cohort than in the AFR
cohort.

Similarly to Marchini (2019), we hypothesize that this is due
to the fact that, at higher allele frequencies, the stronger linkage
disequilibrium (LD) structure within European populations domi-
nates and affordsmore accurate haplotype tagging,whereas at low-
er allele frequencies, the effects of greater genetic diversity in
African populations dominate, resulting in a larger number of pos-
sible haplotype combinations and an increased chance that any
one rare variant is tagged by at least one of these.

Because low-pass sequencing yields measurements at orders-
of-magnitude more sites than genotyping arrays, it is possible to
measure a larger range of these possible haplotypes, which is re-
flected by this pattern holding only for the sequence-based
experiments.

Polygenic risk scores

Polygenic risk scores were calculated from imputed dosages for
each sample in all experiments for breast cancer and coronary ar-
tery disease using recently published results in order to evaluate
the accuracy of PRS estimation across experiments and assay types
(Inouye et al. 2018;Mavaddat et al. 2019).We chose to useweights
from these studies because of their demonstrated ability to stratify
disease risk beyond conventional risk factors. Of the 1,745,179 var-
iants with nonzero effect sizes in the CAD PRS, 1,738,589 (99.6%)
were present in the haplotype reference panel, and 225,667 were
directly typed on the GSA. Of the 313 variants with nonzero effect
sizes in the BC PRS, all were present in the haplotype reference
panel, and 75 were directly typed on the GSA.

Table 2. Mean and interquartile range (in parentheses) nonreference concordance (NRC) across samples for each representative cohort for un-
filtered SNPs by experiment and superpopulation

Experiment

Superpopulation A B D E (array)

AFR 0.9002 (0.8896–0.9089) 0.9217 (0.9123–0.9288) 0.9419 (0.9378–0.9434) 0.8308 (0.8119–0.8425)
EUR 0.9227 (0.913–0.9342) 0.9438 (0.9397–0.9477) 0.9562 (0.9531–0.9594) 0.9067 (0.898–0.9116)

Figure 2. Average nonreference concordance for unfiltered SNPs by superpopulation by nonreference
allele frequency in 1KGP3. The NRC for imputed sequence data was consistently higher than the NRC for
the imputed GSA data across the allele frequency spectrum. Filtering to confidently imputed variants re-
veals a similar pattern (Supplemental Fig. 10).
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We compared the PRS estimates from each sample to the
“true” PRS calculated for that cell line from the 1KGP3 genotypes
(Supplemental Figs. 14, 15). The estimated scores were highly cor-
related with the true scores for all experiments, and the r2s for AFR
estimates within experiments and across
traits were consistently lower than those
for their corresponding EUR counter-
parts (Supplemental Table 16). This dif-
ference was particularly pronounced for
the CAD PRS, with r2s ranging from
0.96 to 0.99 across experiments for the
EUR samples and r2s ranging from 0.87
to 0.94 for the AFR samples.

We investigated the relationship
between measurement error in PRS (as
quantified by the squared error of an esti-
mate) and effective coverage for the
sequence-based experiments. Figure 4
shows that the squared error in PRS
estimates for all experiments across pop-
ulations and traits decreases with
increasing effective coverage and that
the measurement error in samples se-
quenced to an effective coverage of
∼0.5× or higher generally affords lower
measurement error than the array-based
estimates, with samples sequenced to
an effective coverage of more than 1×
(experiment D) having an approximately
three- to fourfold decrease in squared er-
ror for both traits in the AFR cohort and
the EUR cohort for CAD and approxi-
mately the same squared error for the
EUR cohort for BC (∼1.08-fold decrease)
(Supplemental Tables 17–19). Given a
superpopulation and trait, the majority
of sequence-based PRS estimates had a

mean squared error thatwas significantly
(at an α=0.05 level) different from the
corresponding array-based PRS estimates
(Supplemental Table 19).

One thing to note is that the mea-
surement error of PRS estimates depends
on the quality of genotypes at the vari-
ants involved in computing the PRS,
which means that, for arrays, the mea-
surement error will depend on the pro-
portion of the variants involved that are
directly typed versus imputed. Here, a
minority of the variants comprising the
polygenic risk scores (13% and 24% for
CAD and BC, respectively) were directly
typed on the GSA. Presumably, the mea-
surement error for array-based estimates
would be substantially lower in a differ-
ent situation in which all the variants
comprising a PRS are directly typed
instead.

Discussion

The use of dense genotyping arrays followed by imputation to a
haplotype reference panel has enabled population-scale genome-

Figure 3. Comparison of imputation quality across experiments for each superpopulation. Variants
were binned according to their minor allele frequency in the 1KGP3 and imputation r2 averaged across
variants in each bin. For all experiments, the 1KGP3 genotypes were treated as “truth” and imputation r2

was computed by taking the squared correlation coefficient between the vector of imputed alternate al-
lelic dosages and the truth genotypes. Same results on a log scale are shown in Supplemental Figure 13.
Note that imputation performance at lowMAF for a given sequencing experimentwas often higher in the
AFR cohort compared to the EUR cohort.

Figure 4. For each imputed sample, we computed a PRS for breast cancer and CAD and calculated the
squared error of the estimate compared to the PRS of the “truth” genotypes in the 1KGP3. Each dot rep-
resents this squared error for each sequenced sample for a given trait and is colored by the experiment to
which it belongs. To provide a point of comparison to PRS estimated from imputed array data, we com-
puted the mean squared error for each cell line across array replicates and averaged that across all cell
lines. This quantity is represented by the dashed line for each trait and superpopulation along with the
standard error of the mean, represented by the shaded regions about each dashed line. The mean
squared error for each experiment was calculated in the same way and is rendered as a colored line seg-
ment on the rightmostmargin of each panel. These results indicate that sequencing at effective coverages
of 0.5 or higher generally affords lower measurement error in PRS estimates.
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wide association studies to become routine in characterizing the
genetic architecture of complex traits and disease. An alternative
technology is low-pass whole-genome sequencing followed by im-
putation, which has been successfully used for a number of prob-
lems in statistical and population genetics (Pasaniuc et al. 2012;
Gilly et al. 2019; Tran et al. 2020) and which was recently shown
to recapitulate comparable disease risk stratification performance
using a handful of polygenic risk scores derived from imputed ar-
ray data from an independent cohort (Homburger et al. 2019).

We introduced the notion of effective coverage, a quantity
which describes the coverage of a sequenced sample under an ideal
sampling process and which is more predictive of imputation accu-
racy thannominal coverage.We showed that, with increasing effec-
tive coverage, genotyping concordance and imputation r2 increase
commensurately, while the measurement error of PRS estimates
from the imputed genotypes decreases. We note that because the
same amount of sequencing coming from different library prepara-
tion methods can yield different effective coverages, systematic
comparisons of different library preparationmethods on thismetric
is warranted. For instance, the BGISEQ library prep used in this ex-
periment contrasts to the Illumina prep in that it is a PCR-freework-
flow, where every replicated copy generated during DNA nanoball
rolling-circle replication comes directly from the native genomic
fragment (Patterson et al. 2019; Xia et al. 2019). This has the advan-
tage of reducing propagated amplification error and any potential
PCR bias of the template due to selective amplification, both of
which are well-characterized artifacts of excess PCR.

We observed that, at sites of common variation (MAF>5%),
imputation r2 was consistently and substantially higher in
imputed sequence data compared to imputed array data and in
Europeans compared to Africans (Supplemental Table 15).
Conversely, at rare variants (MAF<5%), we observed that imputa-
tion r2 was consistently higher in Africans than Europeans, a result
which we hypothesize is due to different aspects of the LD struc-
ture in these populations dominating in different regimes of the al-
lele frequency spectrum. A consequence of this observation is that
studies of rare variants may (all other things being equal) be more
powerful in African-ancestry cohorts as compared to European-
ancestry cohorts under some study designs.

We compared PRS estimates for coronary artery disease and
breast cancer and found that the measurement error of PRS esti-
mates decreased with increasing effective coverage for sequenced
samples. For CAD, we found that low-pass sequence data yielded
consistently lower measurement error in PRS estimates in both
the African and European cohorts, with samples sequenced to an
effective coverage of ∼1.2× yielding an approximately three- to
fourfold decrease inmean squared error when compared to PRS es-
timated from the Illumina GSA. The same decrease was observed
for BC estimates in the African cohorts, whereas the mean squared
error for BC in the European cohort at that effective coverage was
approximately the same as the array estimates (∼1.08-fold relative
decrease).

Because imputation accuracy from genotyping array data is
known to depend heavily on the size and composition of the hap-
lotype reference panel used (Schurz et al. 2019), it will be interest-
ing to replicate these results for low-pass sequence across different
panels, particularly as extremely large panels (e.g., HRC and
TOPmed) (McCarthy et al. 2016; Taliun et al. 2021) as well as pan-
els comprising currently underrepresented populations (e.g.,
NeuroGAP-Psychosis [Stevenson et al. 2019]) come online.

In the context of understanding how genetic variation con-
tributes to phenotypic variance, it has become increasingly clear

in recent years that a whole-genome approach is necessary due
to the fact that the degree of polygenicity underlying the majority
of complex traits in humans is quite well-approximated by Fisher’s
infinitesimal model (in which variation arises from infinitely
many loci of infinitesimal effect) and, indeed, also that complex
traits are mainly driven by noncoding variants (Fisher 1919;
Risch et al. 1999; Barton et al. 2017; Boyle et al. 2017).
Consequently, methods to accurately assess genetic variation
across the whole genome in diverse populations will become in-
creasingly essential to ongoing efforts to elucidate the genetic ar-
chitecture of complex traits, as well as the population genetic
processes which gave rise to it (Berg and Coop 2014; Guo et al.
2018). Our results show that low-pass sequencing is a competitive
alternative to genotyping arrays, by affording increased GWAS
power and reduced measurement error in the estimation of poly-
genic risk scores for individuals across multiple populations at a
similar price point.

We have discussed the implications of using low-pass se-
quencing versus genotyping arrays in the context of PRS estima-
tion and GWAS at length, but there are other, orthogonal
considerations that should be taken into account when making a
choice between lps and genotyping arrays for practical purposes.
For instance, sequence data allows more sensitive detection of
copy number and structural variation due to the sheer number
of reads that are produced even at extremely low coverages (for in-
tuition, 2.2 million 150-bp reads correspond to a coverage of 0.1×
for the human genome) (Dong et al. 2016; Zhou et al. 2018).
Analysis of mitochondrial count is also straightforward using se-
quence data, and having sequence data on the mitochondria en-
ables straightforward DNA contamination detection using read
count data (Krause et al. 2010; Cai et al. 2015b). Furthermore,
the use of sequencing enables analysis of the microbiome and
metagenomic profiling by yielding reads deriving from nonhu-
man DNA within a given biological sample (Wood et al. 2019).

As low-coverage sequencing becomes increasingly popular as
an alternative to genotyping arrays, it is worthwhile to include
some discussion on costs and logistical considerations involved
in such projects. With sequencing experiments, the two primary
factors determining cost are (1) the cost of sequencing, and (2)
the cost of sample preparation. For instance, the list price of a
NovaSeq S4 flow cell as ofOctober 2020 is≈$15,000US,which cor-
responds to a sequencing cost of ($15,000/1536) = $9.76 per sam-
ple for 0.5× sequencing and ($15,000/768) = $19.52 per sample
for 1× sequencing (NovaSeq Reagent Kits; https://www.illumina
.com/products/by-type/sequencing-kits/cluster-gen-sequencing-
reagents/novaseq-reagent-kits.html). On the library preparation
side, miniaturized/modified workflows currently allow for library
preparation costs of under $10/sample (in our specific case, we es-
timate our costs for the miniaturized Kapa Hyper Prep workflow at
around $6/sample). The all-in cost of library preparation and se-
quencing therefore comes out to be just under $16/sample for
0.5× coverage and just under $26/sample for 1× coverage, compar-
ing favorably with the list price of the Illumina GSA (approximate-
ly $49/sample as of November 2020 [Infinium Global Screening
Array 24-pack; https://www.illumina.com/products/by-type/
microarray-kits/infinium-global-screening.html]).

For future directions, there are methodological advances that
could be made in order to fully leverage the information that se-
quencing provides. Genotyping arrays suffer from ascertainment
bias which manifests in two ways: (1) measurements are always
made on the same set of loci across the genome; and (2) measure-
ments at a given loci do not allow for novel variant discovery (i.e.,
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you have to know what you are looking for) (Nielsen 2004;
Lachance and Tishkoff 2013).

Low-pass sequencing by its nature overcomes consideration
(1), but whether a problem similar to (2) remains depends on the
analytical techniques utilized downstream of actual sequencing.
For instance, the current implementation of the imputation tool
used here (loimpute [Wasik et al. 2019]) does not allow for variants
which are novel to the reference panel to be called, thus causing a
similar effect in post-imputation sequence data as consideration
(2) in unimputed array data. In other words, this means that the
effective upper bound in genotyping accuracy is governed by the
composition of the reference panel and whether a particular indi-
vidual’s genetic variation is cataloged therein. A potentialmethod-
ological improvement would thus be to develop a way to enable
novel variant calls at sites with overwhelming read-based
evidence.

As research into the genetic architecture of complex disease
and traits continues to accelerate, it will become increasingly im-
portant for data generation techniques to be as population-agnos-
tic as possible in order to capture global genetic variation in an
unbiased manner. Our results demonstrate that low-pass sequenc-
ing provides a competitive alternative to genotyping arrays in the
context of genome-wide association studies and polygenic risk
scoring across diverse populations.

Methods

Data generation

Purified genomic DNA (gDNA) from 60 selected individuals of
European ancestry and 60 selected individuals of African ancestry
from the 1000 Genomes Project Phase 3 was obtained from the
NIGMS Human Genetic Cell Repository at the Coriell Institute
forMedical Research. GenomicDNAwas extracted from immortal-
ized B lymphocytes and eluted in TE buffer (10 mM Tris, pH 8.0/1
mM EDTA) for shipping.

To prepare the 120 gDNA samples for sequencing, 30 µL from
each was plated and diluted to 10 ng/µL using 10 mM Tris-HCl,
and sequencing libraries were prepared in triplicate using a
miniaturized version of the KAPA HyperPlus kit (Roche KK8514)
with Illumina-compatible KAPA Unique Dual-Indexed Adapters
(Roche KK8727).

Following library preparation, a subset volume of 10 µL was
pooled from each of the resulting libraries. The pooled libraries
were purified with a double-sided size-selection using SPRIselect
paramagnetic beads (Beckman Coulter Life Sciences B23318) to
narrow the library fragment size range and remove dimerized
adapters from the samples. To characterize the purified pools, the
concentration was measured using the Invitrogen Qubit Fluorom-
eter (Thermo Fisher Scientific Q33238), and the library fragment
size was assessed using the Agilent 2100 Bioanalyzer (Agilent
G2939BA) with a High Sensitivity DNA Kit (Agilent 5067-4626).

Sequencing of purified library pools of 30 and 60 samples was
performed to 0.5× coverage and 1× target coverages, respectively,
using paired-end 150-bp reads on the Illumina HiSeq X platform.

To prepare NA12878 for sequencing 30 times to 1 target cov-
erage, 10 µL from the source gDNA sample were aliquoted into 30
separate wells of a 96-well plate and diluted to 10 ng/µL using 10
mMTris-HCl. Sequencing libraries were prepared from these dilut-
ed samples using aminiaturized version of the KAPAHyperPlus kit
(Roche KK8514) with Illumina-compatible KAPA Unique Dual-
Indexed Adapters (Roche KK8727). The 30 libraries were pooled
and purified with a double-sided size-selection using SPRIselect
paramagnetic beads (Beckman Coulter Life Sciences B23318),

checked for concentration and fragment size, and sequenced on
a single lane of an Illumina HiSeq X flow cell.

A subset of 1 µg gDNA from 30 samples selected from each
population (60 total) was aliquoted into plates and submitted to
BGI Americas Corporation for DNA nanoball library prep and se-
quencing (DNBseq) using paired-end 100-bp reads on the
BGISEQ-500 sequencing instrument.

Sample genotyping was performed using the Infinium
Illumina Global Screening Array v3.0 (Illumina 20030770) by
the Broad Institute Genomic Services group. Each of the 120 sam-
ples was genotyped in triplicate. To prepare the 360 samples for
genotyping, a total mass of 1 µg gDNA from each sample was ali-
quoted into barcode-labeled tubes and submitted to the Broad
Institute for processing.

Quality control

Of the 360 samples in experiment A assayed on the Illumina
HiSeq X, 351 passed QC and the remainder failed due to contam-
ination or low read count (less than 0.1× nominal coverage). Of the
360 samples in experiment B assayed on the IlluminaHiSeqX, 350
passed QC and the remainder failed due to contamination or low
read count (less than 0.1× nominal coverage). Of the 30 samples in
experiment B assayed on the Illumina HiSeq X, all 30 passed QC.
Of the 60 samples in experiment D sequenced on BGI machines,
58 passed QC and two failed due to contamination. Of the 360
samples in experiment E assayed on the Illumina GSA, 358 passed
QC and two failed due to low call rate (below 97%).

See Supplemental Tables 2 and 3 for a more comprehensive
breakdown.

Effective coverage

Consider an idealized sampling process whereby shotgun se-
quence data is generated for a given sample to a coverage of λ.
We can thenmodel the number of reads k on a site on the genome
as a random variable described by a Poisson distribution thus pa-
rameterized. Recall that the probability mass function for a
Poisson distribution with these parameters is

f (k; l) = lke−l

k!
. (1)

Then, the probability that this site is coveredbyat least one read is

P(k . 0; l) =
∑1

k=1

f (k; l) (2)

= 1− f (k = 0; l) (3)

= 1− e−l. (4)

Suppose now that we have a set of n such sites on the genome
(which, in our case, represents the n sites in a haplotype reference
panel) which are all independent and identically distributed. Then,
the total number of sites X covered by at least one read is described
by a binomial distribution with p=P (k>0; λ) =1− e−λ, which has
an expected value of E[X] =np=n(1−e−λ). Defining fcovered=X/n as
the proportion of sites covered, we have E[ fcovered] = (1−e−λ).

This quantity describes the expected proportion of sites in a
haplotype reference panel covered by at least one read under the
assumptions described above, and fcovered is a quantity which
can be empirically computed for any given sample that has been
sequenced. The definition of effective coverage then follows natu-
rally as that value of λwhich one obtains when plugging in an ob-
served fcovered into the relation

Effective coverage = leff := − ln (1− fcovered) (5)

Low-pass sequencing increases the power of GWAS
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which, as we show in the main text, is more predictive of variant
call accuracy than nominal mapped coverage.

Overall and nonreference concordance

Consider two sets of genotype calls at the same set of n sites/vari-
ants, with each genotype being coded 0, 1, and 2 for homozygous
reference, heterozygous, and homozygous alternate allele. Assume
further that there is no missingness in these genotypes. Then, at
each site, compare the genotype calls between the two callsets—
there are nine possible combinations of genotypes—(0, 0), (0, 1),
(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2). Each combination
can be represented as a cell in a 3×3 table like Table 3, and the total
number of each combination can be tallied across all sites. For in-
stance, if the callsets had 100 sites at which both samples were ho-
mozygous reference—corresponding to (0, 0)—then, at the end of
tallying, a would be equal to 100 in Table 3.

Then, we define the nonreference concordance between the
two callsets as

NRC = e+ i
b+ c + d + e+ f + g + h+ i

. (6)

Similarly, the overall concordance is defined as

Overall concordance = a+ e+ i
a+ b+ c + d + e+ f + g + h+ i

. (7)

Selecting samples for representative cohorts

In order to select the representative samples for each experiment
for each superpopulation cohort in this section, we chose one sam-
ple for each cell line for each superpopulation in each experiment
so that results compared across assays would concern the exact
same samples.

For AFR cell lines, there was at least one replicate in experi-
ments A, B, and E which passed QC for all 60 unique cell lines,
so the set of representative samples comprised all 60 cell lines
(Supplemental Table 3). For EUR cell lines, there were 57 out of
60 unique cell lineswhichhad at least one replicate in experiments
A, B, and E which passed QC, so the set of representative samples
comprised a single sample per experiment of these 57 cell lines
(Supplemental Table 3).

Imputation

For the genotyping array data, we used Eagle v2.4.1 (Loh et al.
2016) to perform reference-based phasing for each sample and
Minimac4 (Das et al. 2015) for imputation. We received sample-
level VCFs with genotypes on the hg19 build of the human refer-
ence genome from the Broad Institute; to prepare the samples for
phasing and imputation, we filtered out failing probes and dupli-
cate/multi-allelic variant probes as marked in the FILTER field of
the VCFs.

The sequence data were aligned to the hs37-1kg refer-
ence genome (obtained from NCBI at the following URL:

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
human_g1k_v37.fasta.gz) and Gencove’s loimpute for imputa-
tion. Themodel underlyingGencove’s loimputehas beenprevious-
ly described in the supplementary note in Wasik et al. (2019).

We note that the results of this study should not change in
any nontrivial sense if analyses were repeated using build 38 of
the human reference genome, as the most substantial differences
between the builds are not relevant to imputation of variants on
well-characterized regions of the genome (wherein the majority
of the variation cataloged by the 1KGP3 callset reside).

To confirm that the qualitative results held when using other
imputation software, we repeated the imputation process for the
representative cohorts across experiments for Chromosome 21 us-
ing IMPUTE5 for the array data and GLIMPSE for the sequence
data. The resultingNRC by allele frequency curves showed qualita-
tively similarly results, with the imputed sequence data showing
consistently higher accuracy than the imputed array data across
the allele frequency spectrum (Supplemental Fig. 12).

All samples were imputed to the 1000 Genomes Phase 3 re-
lease haplotype reference panel on hg19 (The 1000 Genomes
Project Consortium 2015) in a leave-one-out manner (such that
the cell line the sample belongs to was not in the panel being
used). The same was done for the reference-based phasing step
for the array data.

Poorly imputed variants were marked as those variants for
which none of the posterior probabilities (the GP field in a VCF)
for the possible genotypes (hom-ref, heterozygous, hom-alt) was
greater than 0.9. In other words, when we refer to “filtered vari-
ants,” we are referring to the callset of imputed variants with var-
iants with max(GP) < 0.9 removed.

Data access

The raw sequence data generated in this study have been submit-
ted to the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number PRJNA686136. All raw
and processed sequencing and microarray data from this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE165845 and are also available in a public AWS S3
bucket at s3://gencove-sbir/ (https://gencove-sbir.s3.amazonaws
.com/index.html). These data are also accessible from figshare
(https://doi.org/10.6084/m9.figshare.13637892.v1, https://doi.org/
10.6084/m9.figshare.13641094, and https://doi.org/10.6084/m9
.figshare.13641120) and as Supplemental Code.
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Table 3. Possible combinations of genotype calls between two call-
sets at a given biallelic site

0 1 2

0 a b c
1 d e f
2 g h i

The diagonal represents concordant calls.
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