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ABSTRACT The human commensal and opportunistic fungal pathogen Candida
albicans displays extensive genetic and phenotypic variation across clinical isolates.
Here, we performed RNA sequencing on 21 well-characterized isolates to examine
how genetic variation contributes to gene expression differences and to link these
differences to phenotypic traits. C. albicans adapts primarily through clonal evolu-
tion, and yet hierarchical clustering of gene expression profiles in this set of isolates
did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene
expression was prevalent in some strain backgrounds. Association of gene expres-
sion with phenotypic data by differential analysis, linear correlation, and assembly of
gene networks connected both previously characterized and novel genes with 23 C.
albicans traits. Construction of de novo gene modules produced a gene atlas incor-
porating 67% of C. albicans genes and revealed correlations between expression
modules and important phenotypes such as systemic virulence. Furthermore, tar-
geted investigation of two modules that have novel roles in growth and filamenta-
tion supported our bioinformatic predictions. Together, these studies reveal wide-
spread transcriptional variation across C. albicans isolates and identify genetic and
epigenetic links to phenotypic variation based on coexpression network analysis.

IMPORTANCE Infectious fungal species are often treated uniformly despite clear evi-
dence of genotypic and phenotypic heterogeneity being widespread across strains.
Identifying the genetic basis for this phenotypic diversity is extremely challenging
because of the tens or hundreds of thousands of variants that may distinguish two
strains. Here, we use transcriptional profiling to determine differences in gene
expression that can be linked to phenotypic variation among a set of 21 Candida
albicans isolates. Analysis of this transcriptional data set uncovered clear trends in
gene expression characteristics for this species and new genes and pathways that
were associated with variation in pathogenic processes. Direct investigation con-
firmed functional predictions for a number of new regulators associated with growth
and filamentation, demonstrating the utility of these approaches in linking genes to
important phenotypes.

KEYWORDS Candida, coexpression networks, gene expression, transcriptional
networks, variation

C andida albicans resides within the oral cavity, gastrointestinal tract, and genitouri-
nary tract and on the skin of its human host as a commensal species (1).

Development of an immunocompromised state can lead to C. albicans overgrowth of
these same niches, producing debilitating mucosal infections and life-threatening

CitationWang JM, Woodruff AL, Dunn MJ,
Fillinger RJ, Bennett RJ, Anderson MZ. 2021.
Intraspecies transcriptional profiling reveals key
regulators of Candida albicans pathogenic
traits. mBio 12:e00586-21. https://doi.org/10
.1128/mBio.00586-21.

EditorMichael Lorenz, University of Texas
Health Science Center

Copyright © 2021 Wang et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Matthew Z.
Anderson, anderson.3196@osu.edu.

* Present address: Joshua M. Wang, New York
University, School of Medicine, New York, New
York, USA.

Received 3 March 2021
Accepted 17 March 2021
Published 20 April 2021

March/April 2021 Volume 12 Issue 2 e00586-21 ® mbio.asm.org 1

RESEARCH ARTICLE

https://orcid.org/0000-0003-1683-2170
https://doi.org/10.1128/mBio.00586-21
https://doi.org/10.1128/mBio.00586-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mbio.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00586-21&domain=pdf&date_stamp=2021-4-20


bloodstream infections (2, 3). Critical to its success as both a ubiquitous commensal
and opportunistic pathogen of multiple body sites is the ability of C. albicans to persist
and proliferate in a wide range of physiological temperatures, oxic environments, nu-
trient availabilities, and pH conditions (4–6).

Clinical isolates of C. albicans represent a genetically diverse collection of heterozy-
gous diploid organisms that can be separated into 17 clades by multilocus sequence
typing (MLST), with Clade I making up the majority of typed isolates (7–9). Recent
sequencing efforts have examined genomes from across the C. albicans phylogeny (10,
11). Analysis of these genomes supports a primarily clonal lifestyle for C. albicans, with
occasional interclade mating generating recombinant genomes in a subset of isolates
(10, 12). Thus, C. albicans evolves principally through the acquisition and accumulation
of iterative mutations, leading to expanded genotypic diversity over time.

This genotypic diversity contributes to extensive phenotypic variation among C.
albicans isolates, including an assortment of alternative cell states associated with dis-
tinct colonization and pathogenic traits (11, 13–21). Some phenotypes are biased to-
ward specific C. albicans clades (22, 23). For example, inherent resistance to the anti-
fungal 5-flucytosine (5-FC) is mediated by a single missense mutation in FUR1 found
ubiquitously across Clade I strains but absent in those from other clades (24, 25). In
contrast, most phenotypes are heterogeneous both within and across C. albicans
clades (11, 26–28), suggesting multilocus control of these traits. This incongruence
between genetic and phenotypic similarity in C. albicans deviates significantly from
other asexual species in which phylogenetic conservation has been used to predict
phenotypic traits (29–31). It has also complicated large-scale investigations of the
underlying polymorphisms that contribute to C. albicans phenotypic diversity and lim-
ited identification of genotype-phenotype relationships (10, 11, 23). Instead, pheno-
typic diversity may associate more strongly with other molecular signatures such as
gene expression and protein abundance (32–34).

The ability to rapidly respond to environmental cues is central to microbial adaptive
potential. C. albicans adopts distinct transcriptional profiles in different cell states or
when cultured under different physiologically relevant conditions (13, 35, 36). Altered
transcriptional states can be detected as early as 5 min following exposure to new
environments (37–40). Distinct transcriptional responses in C. albicans are also
observed in response to cues in the host, and these may contribute to colonization
and pathogenesis in different niches (41–43).

Altered expression of hundreds of genes following environmental shifts compli-
cates distinguishing the regulatory genes that govern these transcriptional changes
from downstream effectors. Defining the genetic regulons associated with specific
transcription factors or responses has typically relied on a simple model of conditional
expression focused on a single gene or environmental condition (44–46), while the
broader transcriptional architecture of C. albicans cells remains largely undefined.
Concerted efforts to determine the transcriptional regulation of phenotypic switching
between the C. albicans “white” and “opaque” states or between planktonic and bio-
film communities has revealed the existence of highly interconnected transcription fac-
tor networks that collectively control differentiation between these states (47–51).
Genes within these circuits encode some of the most well-characterized transcription
factors in C. albicans and yet account for only a small fraction of the complete reper-
toire of transcriptional regulators. Thus, integration of large-scale expression data
across C. albicans isolates could aid in elucidating the transcriptional networks underly-
ing the regulatory architecture of this important human pathogen.

Here, we describe transcriptional profiling of 21 C. albicans isolates representing
five clades with significant genotypic and phenotypic diversity (11). Gene expression
profiles of these strains did not reflect their phylogenetic relationships at either the
strain or clade level. Moreover, differential gene expression of up to 35% of the anno-
tated genes was found between any two strains grown under identical conditions,
with several strains displaying extensive strain-specific gene expression. Transcriptional
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differences between strains were associated with specific phenotypes that corroborate
previous experimental studies and also predicted new molecular functions related to
pathogenesis. Furthermore, unbiased clustering of genes based on correlated gene
expression levels revealed a transcriptional map of cellular functions from which coex-
pression modules were linked to pathogen-associated phenotypes. Experimental
investigation of two coexpression modules uncovered new regulators of filamentation
and a cell state-specific module and found that these contribute to intraspecies pheno-
typic variation in C. albicans.

RESULTS

A previous investigation sequenced the genomes of 21 C. albicans isolates and
identified widespread genetic and phenotypic variation among the strain set (11).
Candidate gene approaches identified one strain with a homozygous nonsense muta-
tion in the transcriptional regulator EFG1 that caused a defect in filamentation and
increased commensal fitness while decreasing systemic virulence (11). More recently,
loss of EFG1 function was also linked to formation of the “gray” phenotypic state in
clinical isolates (13). However, broader attempts to link genetic polymorphisms to phe-
notypic differences present a significant challenge as multiple loci may regulate a sin-
gle trait. Consequently, many of the causative polymorphisms contributing to pheno-
typic variation remain unknown. To gain greater insight into the underlying basis of
phenotypic diversity in C. albicans, we transcriptionally profiled the set of 21 isolates
with diverse geographical origins, sites of infection, and clade designations within the
C. albicans phylogeny (see Fig. S1 in the supplemental material).

Gene expression does not reflect genetic relatedness. To compare gene expres-
sion across the 21 isolates, RNA was harvested from cells cultured in rich medium
(yeast extract-peptone-dextrose [YPD], 30°C) in exponential phase. Transcript abundan-
ces were averaged between biological duplicates and binned across the 6,468 genes.
The largest fraction of transcripts in the SC5314 reference genome were present at low
but detectable expression levels (10 to 100 transcripts per million [TPM]), although the
number of genes within each expression range fluctuated considerably among strains
(Fig. S2A; see also Table S1 at https://figshare.com/articles/dataset/mBio_Wang_etal
_2020_supplement_TableS1/14211179/1). For example, P37037 expressed 25.3% of its
genes at fewer than 10 TPM whereas this proportion increased to ;50% in GC75.
Differential binning of gene expression occurred even among strains in the same clade
(e.g., compare Clade II strains P57072 and P76067), suggesting that large changes in
genome-wide transcript abundance exist even between closely related strains.

To determine if gene expression patterns were reflective of genetic relatedness,
hierarchical clustering of genome-wide TPM values was performed. Similarity in gene
expression profiles failed to reproduce the genetic phylogeny of these strains when
averaged between replicates (Fig. 1A) or as individual samples (Fig. S2B). Variability in
low-abundance transcripts was not responsible for obscuring phylogenetic similarity
as none of the 50 genes with the greatest dynamic range in expression recapitulated
the phylogenetic tree (Fig. S2C). In fact, averaged expression of only 0.5% of all genes
(31 of 6,468) was associated with phylogenetic similarity, and these genes were func-
tionally enriched for transcriptional regulation by glucose (Fig. S2D).

In a few select cases, averaged gene expression levels among strains within a single
clade were similar, such as those within Clade III and among a subset of Clade SA
strains (Fig. 1B, outlined in yellow). Indeed, gene expression within this strain set was
more similar among intraclade comparisons than interclade comparisons (Wilcoxon
test, W= 4,978, P value = 0.022), supporting evidence of clade-associated expression
signatures among these isolates. Regardless, intra- and interclade correlations of gene
expression largely overlapped (average: 0.783 versus 0.759; range: 0.33 to 0.97 versus
0.54 to 0.96, respectively) (Fig. 1C), and Clade III strains largely drove the differences
between intraclade and interclade comparisons, which disappeared when these strains
were removed (Brunner-Munzel test [BM] = 0.500, df = 78.9, P= 0.62). The two isolates
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in this set that have been proposed to harbor recombinant genomes, P60002 and
P94015 (12), exhibited divergent genomes consistent with interclade comparisons of
nucleotide divergence, and P60002 displayed the most divergent gene expression
comparisons of any other strain (Fig. 1C). This further supports these isolates as being
genetically distinct with unique expression patterns compared to other strains from
their assigned clades and is in line with these two isolates having undergone interclade
recombination during their evolutionary history (12).

Gene expression patterns were also compared between C. albicans clades, as some
phenotypes have been associated with specific clades and clade-level comparisons can

FIG 1 Gene expression does not reflect strain phylogeny. (A) Hierarchical clustering of strains by Spearman’s correlation and average
distances was performed for transcript abundance of the 6,468 genes across C. albicans strains using averaged values between replicates.
Clade designations based on reported fingerprinting clades (FP) are indicated by color. (B) Gene expression was averaged among biological
replicates, and the averages were compared between individual strains. Spearman’s correlation values were calculated in all pairwise
combinations and visualized as a heat map ordered to reflect phylogenetic relatedness. FP clades are color coded, and clades with strong
clustering are outlined in yellow. (C) The genetic similarity between isolates (x axis) was compared to similarity in transcript abundance as
defined in panel B (y axis). Pairwise comparisons between all strains are represented as dots and color coded to denote intraclade
comparisons (I, red; II, orange; III, blue; SA, dark gray) or marked as light gray for comparison across clades. Two clusters emerged with
interclade comparisons showing less nucleotide similarity and a greater range of expression correlation scores (left) that extended below
intraclade comparisons (right). Two recombinant isolates, P60002 and P94015 (indicated in purple and magenta, respectively), clustered only
within interclade comparisons. (D) Clade gene expression profiles were built using the average from all strains within the clade. The clade-
average profiles were compared by Spearman’s correlation and visualized by a heat map.
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reduce the influence of “outlier” strains (22, 23). However, with the exception of Clades
II and III, similarities in clade-average expression levels were not enriched among the
more closely related clades (Fig. 1D and Fig. S3). Thus, genetic similarity contributes to,
but does not strictly determine, similarity among C. albicans gene expression profiles.

Gene expression differences between C. albicans isolates span biological traits.
The set of C. albicans strains analyzed here exhibits up to 1.7% nucleotide divergence
in pairwise comparisons (12), highlighting the potential for large-scale differences in
genetic regulation and gene expression. The number of differentially expressed genes
between any two isolates varied considerably, ranging from 43 to 1,457 genes (adjusted P
value 0.05, $2-fold change) (see Table S2 at https://figshare.com/articles/dataset/mBio
_Wang_etal_2020_supplement_TableS2/14211218/1 and Table S3 at https://figshare.com/
articles/dataset/mBio_Wang_etal_2020_supplement_TableS3/14211224/1), and increased
with greater dissimilarity in overall gene expression (Pearson’s test; r = 20.86, n=210,
P, 2.2E216) (Fig. S4). Investigation of gene ontologies (GO) associated with differentially
expressed genes between isolates returned 147 process terms spanning the full breadth
of biology (see Table S4 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020
_supplement_TableS4/14211233/1). The most prevalent GO terms were associated with
ribosome biogenesis followed by nucleic acid and aromatic compound metabolism, sug-
gesting that some isolates may have evolved unique growth characteristics, pathways to
control nutrient utilization or signaling, and/or preferred nutrient conditions for optimal
growth. Conversely, consistent gene expression levels across isolates point to core func-
tions required for basic cellular processes in this diploid yeast. Of the 5,956 complete and
intact open reading frames (ORFs) present across all 21 C. albicans isolates, 2,036 genes
displayed indistinguishable expression levels among all strains. These include genes for
key cellular functions such as amino acid charging of tRNAs, RNA polymerase function,
and core translational processes (see Table S5 at https://figshare.com/articles/dataset/
mBio_Wang_etal_2020_supplement_TableS5/14211239/1).

A distinctive class of genes considered were those expressed at unique levels within
a single strain compared to all other strains and therefore classified as having strain-
specific expression. The number of strain-specific genes varied considerably, ranging
from 0 in isolates 12C, 19F, P37005, and P57055 to 171 in GC75 (q# 0.05 and 2-fold
change) (Fig. S5). Strain-specific expression was enriched for cellular processes ranging
from cell wall organization (GC75) to oxidation-reduction (P78042) to mannosyltransfer-
ase activity (P60002) and RNA polymerase I activity (P57072) (see Table S6 at https://
figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement_TableS6/14211242/1).
Isolates with the largest number of uniquely expressed genes typically clustered closely
with other strains in the phylogenetic tree (Fig. S1), further highlighting the disconnect
between genetic relatedness and gene expression.

Characteristics of functional noncoding RNA elements. Untranslated regions in
C. albicans can serve as regulatory platforms for protein binding to control transcript
stability and translation (52, 53). The average 59 untranslated region (UTR) length for
5,076 genes with detectable expression among all sequenced isolates centered at 1 to
25 bp and decreased in frequency with greater lengths (Fig. S6A). Prior analysis has
revealed that some C. albicans transcription factors have extended 59 UTRs greater than
1 kb in length (36, 52–54). Analysis of all transcription factor genes among the 21 strains
showed they encoded significantly longer 59 UTRs compared to the genome-wide av-
erage (286 versus 97 bp, respectively; Wilcoxon test, W= 3.97E5, P value, 2.2E216)
(Fig. S6B and see Table S7 at https://figshare.com/articles/dataset/mBio_Wang_etal
_2020_supplement_TableS7/14211248/1). In contrast, 39 UTRs were, on average,
between 25 and 75 bp for the 5,899 genes with detectable expression. Genes involved
in protein translation were found to contain significantly longer 39 UTRs than the genome
average (141 versus 44bp, respectively; Wilcoxon test, W=8.63E5, P value, 2.2E216)
(Fig. S6C and see Table S8 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020
_supplement_TableS8/14211251/1), which may also implicate important regulatory func-
tions for these regions through either transcriptional or translational control (55).

Mobile genetic elements play an important role in shaping genome evolution
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through promoting recombination, disrupting gene function, and forming new tran-
scriptional units (56). Previous work has catalogued the transposable elements (TEs)
present in the C. albicans genome using their associated long terminal repeats for clas-
sification among clinical isolates (11, 57). Transcriptional profiling of the 21 C. albicans
isolates revealed active expression of multiple transposon families within C. albicans.
The most highly transcribed transposons were flanked by gamma-class long terminal
repeat (LTR) sequences, although the abundance of actively transcribed retroelements
varied immensely between strains (Fig. S7A). The RNA abundance of TEs did not reflect
strain relatedness or changes in genomic copy number among the isolates (Pearson’s
test; r=0.062, df = 19, P=0.79) (Fig. S7B), suggesting that mechanisms of transposon
quiescence or inactivation may contribute to differences in expression among strains.

Gene expression does not correlate with chromosomal position. A previous
report suggested that genes found at the chromosome ends could exhibit higher lev-
els of expression plasticity, variable gene expression among cell populations (58). To
assess expression plasticity, the coefficient of variation (CV) between biological repli-
cates was calculated for all genes and averaged across the 21 strains. The average CV
in 10-kb sliding windows remained fairly constant across the genome, centered at
approximately 0.15 (Fig. S8A). Subtelomeric genes in the 15 kb most proximal to the
telomeric repeats did not show increased variability compared to the rest of the ge-
nome; in fact, the CV decreased slightly in the subtelomeres. Additionally, only two of
nine TLO genes with transcript abundance data across all strains showed elevated plas-
ticity compared to the genome average (Student’s t test; P, 0.05) (Fig. S8B). Instead,
the majority of genes with significantly elevated expression plasticity were scattered
throughout the genome (see Table S9 at https://figshare.com/articles/dataset/mBio
_Wang_etal_2020_supplement_TableS9/14211263/1).

Differentially expressed gene sets associate with C. albicans phenotypes.
Previously, the 21 sequenced C. albicans isolates were characterized for a diverse set of
in vitro and in vivo phenotypic traits (11). Differentially expressed genes between
groups with extreme phenotypes can implicate the causative networks or pathways
that are responsible for the divergent traits (Fig. 2A).

To identify genes that associate with quantitative phenotypes, we compared differ-
entially expressed genes between strains that displayed phenotypic extremes in the
work of Hirakawa et al. (11). Overall, gene expression profiles between groups for any
given phenotype were overwhelmingly similar, with the extreme groups differentially
expressing between 2 and 209 genes for each phenotype (.2� change, q# 0.05) (see
Table S10 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement
_TableS10/14211266). Growth phenotypes were associated with the largest number of
differentially expressed genes (Fig. 2B), which may reflect the conditions used for RNA
isolation (logarithmic-phase growth in YPD medium at 30°C). Genes involved in cell
cycle regulation, lipid metabolism, and carbohydrate metabolism were overrepre-
sented among those differentially expressed between strains with high/low growth
rates. Surprisingly, phenotypes not directly linked to the growth conditions under which
RNA was prepared also showed differential expression of genes enriched for associated
biological processes (see Table S11 at https://figshare.com/articles/dataset/mBio_Wang
_etal_2020_supplement_TableS11/14211275/1). For example, strains with contrasting
abilities to filament on Spider medium showed differential expression of genes associ-
ated with biofilm formation (11 of 129, q=7.78E23) and oxidoreductase activity (8 of
129, q=9.61E23), even though they were grown as planktonic cells in YPD medium at
30°C (Fig. 2C). Interestingly, strains harboring supernumerary chromosomes differen-
tially expressed genes involved in oxidoreductase activity using NAD1/NADH acceptors
compared to their euploid counterparts (2 of 9, q=3.07E22; Fig. 2D). Thus, gene
expression differences could be connected to a variety of phenotypes, even though
cells were isolated from a single experimental condition. This analysis was limited to
phenotypes with clear opposing differences, however, and suggested that more
dynamic models of expression-phenotype relationships could identify additional loci
responsible for phenotypic variation.
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Linear models link gene expression with variation in simple traits. The differen-
tial gene expression analysis described above relied on categorical definitions (such as
phenotypic extremes) and therefore failed to acknowledge that gene expression and
quantitative traits often fall along a continuum. To incorporate nondiscrete values, gene
expression and phenotypic measurements were fit to a linear model. A generalized least-

FIG 2 Differential expression predicts genes associated with C. albicans phenotypes. (A) The workflow used to
identify phenotype-associated genes is depicted. Phenotyping results for 8 traits determined in the work of
Hirakawa et al. (11) were used to (1) screen strains to (2) identify strains with extreme phenotypes. (3)
Differential gene expression (2-fold change, q, 0.05) was identified among strains with opposing phenotypic
groups, and (4) enrichment analysis was performed for biological terms. (B) The fold change in expression
between groups with opposing phenotypic measurements as defined in panel A is plotted for all genes and
the eight phenotypes investigated. Genes showing significantly different expression levels between the
opposing phenotypic groups are color coded by phenotype, and genes without statistically supported
differences are in gray. (C) Values of transcripts per million (TPM) are plotted as a heat map on a log2 scale for
differentially expressed genes within the enriched gene ontology term “Single-species biofilm formation”
between strains that filament poorly (low) or profusely (high) on Spider agar medium at 30°C. Two biological
replicates per strain are displayed. (D) The TPM values for each euploid (blue) and aneuploid (red) isolate
sample are plotted for the two differentially expressed genes within the enriched GO term for aneuploidy.
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squares model of regression was used to account for the potential influence of population
structure on gene expression among the 21 strains. Expression values for the ;6,400
genes were plotted for all 21 isolates against a panel of 23 phenotypic measurements
spanning growth rates, drug resistance, stress resistance, filamentation, and virulence, and
significant associations were identified (see Table S12 at https://figshare.com/articles/
dataset/mBio_Wang_etal_2020_supplement_TableS12/14211278/1). Notably, growth
rates correlated strongly with expression of a significant portion of the genome (e.g.,
expression of 1,879 genes correlated with growth rates in YPD medium at 37°C) (Fig. 3A).
Genes connected to growth rates across a range of conditions were often overrepresented
for functions related to the cell cycle or cell division (see Table S13 at https://figshare.com/
articles/dataset/mBio_Wang_etal_2020_supplement_TableS13/14211281/1). For example,
increased growth rates in minimal, Spider, and synthetic complete dextrose (SCD) media
at 30°C displayed a linear relationship with increased expression of genes overrepresented
in the mitotic cell cycle (q, 1.40E24) and spindle assembly (q, 0.05). This analysis also
identified core regulatory processes associated with growth rates including expression lev-
els of Mediator, a major transcriptional regulatory complex (59). Expression of Mediator
subunits was overrepresented for growth rates in YPD at 30°C, x [(1, n=1,320) = 9.48,
P=2.07E23] (Fig. 3B).

In contrast, linear modeling found fewer significant relationships between gene
expression and more complex traits such as biofilm formation or virulence. Intriguingly,
however, the expression of a large number of genes correlated linearly with the degree
of hyphal growth observed under filamentation-inducing conditions. One of these genes,
CZF1, is a key transcription factor required for the transition to hyphal growth (60), as well
as a member of the core transcriptional network governing biofilm formation (47). Our
results revealed that higher expression of CZF1 in clinical isolates (in YPD medium) corre-
lated with increased filamentation when cells were grown on Spider medium (Fig. 3C).
Elevated expression of other hypha-regulated genes including RFX2, BRG1, and ROB1 also
correlated with increased filamentous growth under these conditions (q=4.66E23,
5.23E23, and 7.08E24, respectively). Both BRG1 and ROB1 are regulatory targets of Czf1
and Rfx2 (47, 51, 61), demonstrating that multiple members of known regulatory path-
ways can be uncovered by linear modeling of expression. Additionally, expression of ribo-
some and mitochondrial genes correlated with the extent of filamentation across a range
of conditions (Fig. 3D), consistent with previous reports (62–64). Thus, linear modeling
captured expression dependencies of key regulators with simple phenotypes but was less
proficient in detecting relationships between gene expression and more complex C. albi-
cans phenotypes.

Construction of gene networks associated with phenotypic traits. To capture
additional cellular pathways and processes associated with both simple and complex
traits, we constructed gene expression networks using weighted gene correlation net-
work analysis (WGCNA) (65). Implementation of network construction using transcript
abundance of all genes across the set of 21 isolates produced 43 distinct coexpression
modules (ME) (Fig. 4A; also see Table S14 at https://figshare.com/articles/dataset/mBio
_Wang_etal_2020_supplement_TableS14/14211287/1).

Spatial organization of the coexpression modules produced a striking arrangement
in which transcriptional cross talk between modules was evident (Fig. 4B). Color coding
was used to highlight different coexpression modules in which nodes are individual
genes and edges have a correlation score of at least 0.93 (Fig. 4B). Surprisingly, we
found that eight of the 10 largest modules connect to one another to produce a ring
structure, where most modules interact with a limited set of one to three other modules
and that collectively incorporates expression of 67% of annotated C. albicans genes
(4,377 of 6,468 genes). The two largest modules form the backbone of the ring structure:
ME1, which includes the RNA processing and vesicular transport machinery, and ME2,
which encompasses the translational machinery (see Table S15 at https://figshare.com/
articles/dataset/mBio_Wang_etal_2020_supplement_TableS15/14211290/1). These proc-
esses are connected through ME4, which is enriched for genes involved in RNA binding
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in the nucleolus and ribosomal genes for RNA processing and translation. Genes required
for ubiquitination and the proteasome are enriched in ME3 and connected to ME1, indica-
tive of transcriptional cross talk in protein turnover. ME3 is linked to ME5, which contains
the genes for glycerophosphodiester transport and lipid production; to ME9, which is
enriched for genes involved in the metabolism of nucleotide sugars and production of
biofilm matrix; and finally to ME2, which links back to translation. Thus, our analysis pro-
duced a gene expression atlas that delineates the interconnected transcriptional control
of core cellular processes in C. albicans.

Gene coexpression modules were subsequently correlated with previously char-
acterized phenotypes (11) to infer potential regulatory links (Fig. S9). Related pheno-
types clustered to the same modules in many cases (e.g., growth rates in different

FIG 3 Linear regression reveals genes correlated with C. albicans phenotypic traits. (A) Expression of each gene and quantitative phenotype scores from all
biological replicates were fitted to a linear model and tested for significance using Pearson’s correlation. The correlation score was plotted for each of 23
phenotypes and color coded by phenotype for significantly associated genes. Gray points indicate no significant association. (B) Representative correlation
scores for components of the Mediator transcriptional regulator complex with growth in YPD medium at 30°C are indicated on the right. Mediator
components significantly associated with these growth conditions are indicated in the Mediator schematic by thick black outlines. (C) The expression levels
of four genes previously known to be involved in C. albicans filamentation are plotted for the 21 isolates compared to their filamentation score on Spider
solid medium at 30°C. The regulatory relationship of the four genes is indicated by arrows. (D) The value of transcripts per million (TPM) of all annotated
ribosomal genes in the C. albicans genome is plotted for the 21 isolates by ascending filamentation scores on solid Spider medium at 30°C. A best-fit line
is indicated in red.
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media clustered to ME8, and filamentation across multiple conditions clustered to
ME30). These module-phenotype links often included previously characterized ge-
notype-phenotype associations. For example, elevated expression of ME30 and
ME16 genes correlated with increased filamentation and encompassed known acti-
vators of filamentation such as BRG1 (ME30) and SUV3 (ME16) (66, 67). However,
most genes in these modules have not been previously linked to filamentation and
therefore represent candidates for further investigation.

FIG 4 Coexpression modules reconstruct biological relationships in C. albicans cells. (A) A weighted gene
coexpression network analysis (WGCNA) of transcript abundance across all strains resolved 43 modules. A gene
dendrogram obtained by average linkage hierarchical clustering is depicted above each associated module. ME8 and
ME30 are indicated. (B) The relationship between genes within all modules was visualized using a correlation cutoff of
0.93. Eight of the 10 largest modules formed connections with each other and are color coded as indicated. The
relationship between each module is represented spatially, where genes are represented as individual points and their
correlated expression is represented by edges.
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Identification of a putative state-specific network. Two phenotypes, growth rates
and filamentation, were strongly associated with several gene coexpression modules
(Fig. S9). To test WGCNA predictions of module-phenotype associations, we first inter-
rogated the ME8 module, which was linked to growth rates under several conditions
(Fig. 5A). Interestingly, a single strain, P37037, expressed genes in ME8 at higher levels
than did all other isolates (Fig. 5B), suggesting that ME8 conferred unique attribute(s)
to this strain. The elevated expression of ME8 genes in P37037 may be due to coordi-
nated gene regulation and/or interconnectivity, as 17 of the 18 genes within the ME8
network connect to a minimum of 12 other genes within the same network (Fig. 5C).

Analysis of P37037 colony sectors revealed two distinct cell types that resembled
the previously defined “white” and “gray” states of C. albicans (Fig. 5D). C. albicans is
most commonly isolated in the white state, which is considered the default state. In
contrast, the gray state represents an efg1/efg1 null state that can readily arise in
strains that are EFG1/efg1 heterozygous due to spontaneous loss of the functional al-
lele (13). P37037 is functionally heterozygous for EFG1 as it contains a polymorphism at
nucleotide 755 that inactivates one allele via a G252D mutation in the encoded protein
(13). Sequencing of the EFG1 locus in P37037 confirmed the heterozygous polymorphic
site (G/A) in white populations whereas all assayed gray colonies (4/4) had become
homozygous (A/A) to produce cells lacking functional EFG1 (Fig. 5D). Consistent with
previous observations of conversion to the gray state (13), gray sectors often arose
within white colonies but no white sectors were observed within gray colonies.

We hypothesized that gray cells within the mixed population from P37037 may be
responsible for resolving the ME8 network and, potentially, its association with growth.
Indeed, transcriptional profiling of gray P37037 cells demonstrated significantly ele-
vated expression of ME8 genes compared to the white state (Fig. S10A). Interestingly,
only 9 of these 18 genes displayed differences in expression between white and gray
cells in the SC5314 background (Fig. S10B), indicating that strain background also influ-
ences white versus gray expression profiles. To test the association between cell state
and growth, the doubling times of P37037 white and gray cells were compared in mul-
tiple medium types. White cells grew significantly faster than gray cells in both nutri-
ent-rich (YPD and SCD) and nutrient-poor (minimal) media at 30°C (Student’s t test;
P, 0.001) (Fig. 5E).

Three putative transcription factors in the ME8 module that had no previously
described growth phenotypes (KNS1, OFI1, and ZCF31) were individually disrupted in
strain P37037 to determine if genes within this module impact growth rates in either
the white or gray cell state beyond the influence of cell state alone. Disruption of
any of the three genes did not alter growth rates of white cells. In contrast, disrup-
tion of OFI1 significantly decreased growth rates in the gray state, although dou-
bling times were challenging to measure due to the lack of a clear logarithmic
growth phase for these cells (Wilcoxon test; W = 70, P = 0.017) (Fig. 5F and G; see also
Fig. S11 at https://figshare.com/articles/figure/mBio_Wang_etal_2020_supplement_FigS11/
14211173/1). Loss of KNS1 also decreased the growth rates of gray cells, but this difference
did not reach statistical significance (see Fig. S11 at https://figshare.com/articles/figure/
mBio_Wang_etal_2020_supplement_FigS11/14211173/1). Thus, genes in the ME8 module
exhibit state-specific expression that reflects differences in growth between white and gray
states.

Dissection of a novel network that regulates filamentation. We also examined a
second coexpression module, ME30, given that this module was associated with fila-
mentation, but not growth rates, across a range of conditions (Fig. 5A). In contrast to
ME8, this module displayed relatively low interconnectivity and exhibited a range of
expression values across isolates (see Fig. S12A at https://figshare.com/articles/figure/
mBio_Wang_etal_2020_supplement_figS12_pdf/14211164/1). Expression of genes in
the ME30 module was elevated in strains with higher filamentation scores compared
to those that filament poorly (e.g., SC5314 versus P37037, respectively) (Fig. 6A). ME30

genes included the previously characterized BRG1 gene that encodes a transcriptional
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FIG 5 Identification of a gray-specific module associated with cell state growth differences. (A) Two modules defined by WGCNA, ME8 and ME30, were
correlated with phenotypes of the set of 21 C. albicans isolates. Significant associations are indicated by increasingly darker red hues, and gray indicates no
association. Each cell provides the Pearson’s correlation statistic (top) and q value (bottom). (B) A heat map represents the transcript-per-million (TPM) gene
expression of ME8 genes on a log2 scale ranging from 26 to 6 for biological replicates for three isolates, SC5314, 19F, and P37037. Genes in bold were
tested experimentally. (C) Strongly correlated expression of 18 genes from ME8 is depicted where each gene is represented by nodes and correlated
expression is shown as edges. Correlation scores are .90%. (D) The white and gray cell states found in P37037 are shown for both colonies and cell
images (at �40 magnification). The EFG1 locus was genotyped by Sanger sequencing from both P37037 cell types. P37037 white cells encoded a
heterozygous G/A and gray cells encoded a homozygous A/A at nucleotide 755 in EFG1. (E) Growth rates for P37037 white and gray cell states. The
average doubling time during logarithmic phase growth was determined in YPD, SCD, and minimal SD media and plotted as the mean with standard
deviations. n= 6. (F) Growth curves during an 18-h window are displayed for wild-type, D/Dofi1, and D/Dofi11OFI1 strains in the P37037 background and

(Continued on next page)
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activator of filamentation (66), further suggesting a role for ME30 in promoting hyphal
formation. Four genes from ME30 with potential regulatory roles (UME7, transcription
factor; FGR2, putative transmembrane transporter; PHO100, putative phosphatase; and
orf19.6864, putative ubiquitin ligase), in addition to BRG1, were disrupted in the high-

FIG 6 Genes within a coexpression module promote C. albicans filamentation across conditions. (A) A heat map represents the RNA transcripts per
million (TPM) of all ME30 genes on a log2 scale ranging from 26 to 6 for SC5314 and P37037, isolates that filament strongly and poorly across multiple
conditions, respectively. Genes in bold were tested experimentally. Colony images were taken following growth on Spider agar medium at 30°C for
7days. (B) SC5314 wild-type cells, mutants in five genes from the ME30 module, and the complemented mutants were grown for 1 and 4 h in RPMI at
30°C and visualized at �40 magnification. Bar=5 mm. The fraction of filamentous cells is plotted for SC5314 wild-type cells, mutants in five genes from
the ME30 module, and the complemented mutants. n=9, 11, 4, 10, 4, 10, 4, 7, 4, 8, and 4 for 1 h and n=9, 10, 4, 10, 4, 10, 4, 10, 4, 10, and 4 for 4 h in
order from left to right. (C) The filamentation score for SC5314 wild type, ME30 mutants, and the complemented mutants following growth on solid YPD
(left) or Spider (right) medium for 7 days. n=14, 14, 6, 14, 7, 13, 7, 9, 6, 19, and 7 for YPD and 17, 12, 6, 12, 6, 8, 7, 8, 7, 14, and 6 for Spider medium for
strains from left to right. Significance was determined relative to the wild type. * denotes P, 0.05. ** denotes P, 0.01. *** denotes P, 0.001.

FIG 5 Legend (Continued)
color coded as indicated. Measurements of optical density were taken in 15-min intervals. (G) Growth rates for white (left) and gray (right) cells in the wild
type, three mutant lines (D/Dkns1, D/Dofi1, D/Dzcf31), and their complemented P37037 strains. Significance was determined relative to the wild type (WT).
n=6. ** denotes P, 0.01. *** denotes P, 0.001.
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expression strain SC5314 and assessed for filamentation in liquid and on solid media.
Loss of each gene reduced filamentation in liquid RPMI medium at 1 h, when hyphal
initiation begins in SC5314 (Fig. 6B). Thus, most cells in the D/Dbrg1 background
remained as yeast whereas loss of the other four ME30 genes produced a heterogene-
ous mix of yeast cells and cells forming germ tubes. After 4 h in RPMI medium, all
ME30 mutant cultures contained mostly hyphae, although significantly fewer filamen-
tous cells were present in the D/Dbrg1, D/Dfgr2, D/Dpho100, and D/Dume7 strains
(Wilcoxon test; P, 0.05) (Fig. 6B). Many of the mutants that formed filamentous cells
remained as pseudohyphae at these later time points, compared to the wild-type
background, which grew as a mix of hyphal and pseudohyphal cells (see Fig. S12B at
https://figshare.com/articles/figure/mBio_Wang_etal_2020_supplement_figS12_pdf/
14211164/1). Complementation of each mutant restored the wild-type phenotype at
both the 1- and 4-h time points (Fig. 6B; see also Fig. S12B at https://figshare.com/
articles/figure/mBio_Wang_etal_2020_supplement_figS12_pdf/14211164/1). Plating cells
to single colonies on YPD and Spider media at 30°C produced similar outcomes with
reduced filamentation of most ME30 mutants. Strains lacking BRG1, FGR2, and UME7 dem-
onstrated reduced colony filamentation after 7 days on both YPD and Spider media with
D/Dpho100 colonies also generating less filamentation on Spider medium (Wilcoxon test;
P, 0.05) (Fig. 6C). Similar to liquid filamentation, complementation of each mutant with
a wild-type copy of the disrupted gene restored filamentation to wild-type levels
(Fig. 6C). These results suggest that ME30 genes are responsible for activating filamenta-
tion responses in C. albicans and may be particularly important for hyphal initiation.
Mutants in ME30 genes did not display any growth phenotypes, consistent with these
defects being filamentation specific (Fig. 5A; see also Fig. S12C at https://figshare.com/
articles/figure/mBio_Wang_etal_2020_supplement_figS12_pdf/14211164/1). Thus, our
collective experimental validation of phenotypes predicted to associate with coexpression
modules demonstrates the power of this approach to define gene function across C. albi-
cans strains and to link previously uncharacterized loci to biological processes important
for disease.

DISCUSSION

A hallmark of C. albicans biology is the extensive genetic and phenotypic plasticity
displayed among clinical isolates. This study expands previous observations that con-
siderable transcriptional variation exists between natural isolates of the species (23,
27). We demonstrate that phylogenetic relationships between a set of 21 strains are
not mirrored at the transcriptional level, as closely related strains often display con-
trasting expression profiles under identical growth conditions. Notably, the construc-
tion of coexpression modules identified genes and pathways that underlie pheno-
typic differences between isolates. Furthermore, it permitted the direct evaluation of
target genes for their roles in virulence-associated traits, thereby demonstrating the
utility of this unbiased approach for delineating genes contributing to phenotypic
diversity.

A striking finding in our analyses was the incongruence between constructed phy-
logenies and transcriptional profiles in C. albicans. Previous work has described tran-
scriptional profiles in bacteria that reflect strain phylogeny and even phenotypic simi-
larity based on shared lifestyle characteristics (68–70). In some eukaryotes such as
Saccharomyces cerevisiae, strong selective pressures based on niche specificity may
explain incongruence between genetic and transcriptional profiles (34, 71). Here, we
show that C. albicans strains express genes largely independently of their genetic simi-
larity and that there is no clear association with the niche of isolation, although we rec-
ognize the limited number of multilocus sequence type (MLST) clades represented by
these isolates (7 of 17) as well as incomplete clinical information for these strains. The
lack of a connection between genotype and gene expression is highlighted by the
prevalence of strain-specific expression patterns for several isolates. This indicates that
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phenotypic variation between C. albicans isolates arises, in large part, from transcrip-
tional differences that cannot be simply predicted by genetic phylogenies or clinical
correlates.

Transcriptional differences among the 21 C. albicans isolates provided new insights
into functional variation between isolates. Genes involved in metabolic processes were
often differentially expressed among strains and may contribute to the range of
growth rates seen for these isolates (11). Genes regulating transcriptional activation
and hypha formation also showed variable expression and were linked to differences
in growth rates and filamentation, respectively. This is despite the fact that all expres-
sion profiling involved cells grown under a single culture condition (replete medium at
30°C). Why might cells grown under one condition reflect expression differences that
affect function in another? One possibility is that strains express genes in preparation
for exposure to a new environment. Such priming can result from epigenetic reprog-
ramming following a previous exposure (72), stochastic expression of regulators that
promote bet hedging (73), and/or chromatin remodeling that favors activation of cer-
tain promoters (74). Priming of C. albicans cells could promote population fitness dur-
ing environmental shifts including transitions between different host niches (75). C.
albicans strains may also contain subpopulations of cells with distinct expression pro-
files that favor alternative environmental conditions, with the fraction of these subpo-
pulations varying between strains. Additionally, cell variation in a population can arise
due to changes in transcription factor binding that will disproportionately affect gene
expression but will not cause general fitness defects (76). Single-cell analysis and tran-
scriptional profiling of large strain sets grown under multiple environmental conditions
will help differentiate between these possibilities.

Our expression analysis of the set of 21 C. albicans strains facilitated the construc-
tion of a gene expression map of the species and the incorporation of a large propor-
tion of uncharacterized loci into coexpression clusters linked to putative functions.
Similar approaches in other systems have revealed the function of uncharacterized
genes and their contributions to complex phenotypes (77–79). However, previous sys-
tems-level analyses have often skirted direct molecular testing of predicted gene func-
tions. Here, experimental tests of C. albicans genes associated with growth and fila-
mentation revealed functional roles for cell state and transcriptional regulators linked
to two coexpression modules, ME8 and ME30. Analysis of genomic sequences could
not predict the results described here as no inactivating mutations are present within
ME8 and ME30 genetic alleles assayed in our strain set (11). Our study therefore reveals
how expression profiling allows for an analysis of genotype-phenotype relationships
using a variety of gene expression models instead of only assessing discrete mutation
types.

Expression of ME8 module genes was linked to the gray cell state, which was recently
shown to arise due to mutations that abolish EFG1 function (13). The EFG1 locus is hetero-
zygous in P37037, and loss-of-heterozygosity (LOH) events can therefore cause cells to
become efg1 null and adopt the gray state (13). Unexpectedly, our analysis identified ME8
as a gray-specific coexpression module in P37037, where gray cells grow more slowly
than white cells and which produced the expression module-phenotype association. ME8
genes that are upregulated in P37037 gray cells versus white cells are not uniformly up-
regulated in SC5314 gray cells (see Fig. S10B in the supplemental material). These results
further emphasize that C. albicans phenotypes and expression profiles are dependent on
their genetic background (11, 23, 26, 27). The existence of an EFG1 heterozygote capable
of accessing the gray state is not particularly uncommon (;2% of assayed clinical iso-
lates), and this hemizygous state may reflect advantages in gray state colonization of the
gut or oral cavity compared to white cells (13, 15). Reduced growth rates of gray cells
compared to white state cells in our assays could reflect differences from conditions in
the host or, more simply, differences between genetic backgrounds. We evaluated the
phenotypic consequences of deleting three genes from the highly interconnected ME8
module and showed that loss of OFI1 significantly reduced the growth rates of P37037
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gray cells. Thus, we uncovered a novel factor with a cell state-specific phenotype which
further validated our approach.

A functional dissection of the ME30 module similarly connected several poorly char-
acterized genes to a key phenotype in C. albicans. In this case, novel regulators of fila-
mentation were discovered despite the wealth of research into filamentation pathways
in this species (21, 80–82). Most studies have focused on genetic dissection of filamen-
tation in SC5314 and have relied on candidate gene or transcriptional profiling
approaches. We note that our identification of ME30 genes as regulators of filamenta-
tion did not rely on the presence of ORF-inactivating mutations but on differential
expression across isolates that correlated with filamentation responses. Inclusion of the
well-characterized filamentation regulator BRG1 (66) emphasized the potential for
other ME30 genes to regulate filamentation. Indeed, all assayed genes in ME30 appear to
promote this process, albeit to different degrees, which likely reflects the lack of highly
interconnected expression within this module (see Fig. S12 at https://figshare.com/
articles/figure/mBio_Wang_etal_2020_supplement_figS12_pdf/14211164/1). All mutants
of ME30 genes disrupted hyphal formation at early time points, suggesting that these
genes play a critical function in hyphal initiation and operate across multiple conditions,
even though the ME30 module was defined using cells grown in the yeast form. The pri-
ming of filamentation via ME30 genes is supported by defined roles for Brg1 in recruiting
Hda1, a histone deacetylase that remodels chromatin at the promoters of hypha-specific
genes and occluding Nrg1, a negative regulator of filamentation (66, 83). Elevated expres-
sion of BRG1 during rich medium growth could reduce the activation time needed to
transcribe UME6 and other genes that promote filamentation, while maintaining a pheno-
typically yeast state. The particularly long 59 UTR of BRG1 may indicate complex regula-
tion of this gene, including undefined molecular pathways that include other ME30
genes, especially those with clear regulatory capacities (e.g., FGR2, PHO100, and UME7)
(54, 84). Thus, our study indicates that ME30 module genes may play broad roles in the
regulation of filamentation in C. albicans.

MATERIALS ANDMETHODS
Media and reagents. Yeast extract-peptone-dextrose (YPD) and synthetic complete dextrose (SCD)

media were prepared as previously described (85). Spider medium was prepared (1% nutrient broth, 1%
mannitol, 0.2% K2HPO4) and equilibrated to a pH of 7.4. Minimal medium was prepared as 0.17% yeast
nitrogen base, 0.5% ammonium sulfate. YPD containing 200mg/ml nourseothricin (Werner Bioagents,
Jena, Germany) was used to select for nourseothricin-resistant (NATR) strains.

RNA sequencing (RNA-Seq) library preparation. Two independent cultures for each of the 21 clini-
cal isolates were grown at 30°C in YPD overnight. Cultures were diluted 1:100 into fresh YPD and
allowed to grow to an optical density (OD) of 1.0. RNA was harvested from cells using a MasterPure yeast
RNA purification kit (Epicentre, Madison, WI) and treated with DNase I (Fisher Scientific, Hampton, NH).
RNA quality was measured on an Agilent 2100 Bioanalyzer, and RNA with RNA Integrity Number (RIN)
scores of$7.5 was used for construction of sequencing libraries.

Poly(A) RNA was isolated and used to construct strand-specific libraries using the dUTP second-
strand marking method (86, 87) as previously described (88). The 42 sequencing libraries were pooled
and sequenced on the Illumina HiSeq to generate 151 base-paired-end reads. To measure gene expres-
sion, reads were aligned to the C. albicans SC5314 reference genome. RNA-Seq reads were then mapped
to the transcripts with STAR (version 2.0.9) (89). Count tables were generated with HTSeq (version 0.9.0)
(90), and differentially expressed genes were identified using EdgeR (version 3.28.1) (91).

FASTQ processing and alignments. Sequenced reads were returned in FASTQ format, and quality
score was confirmed using FastQC. All 42 samples exceeded the minimum allowed Phred quality score
(28) across all bases. An average of 8.1 million reads were obtained per samples. Reads were aligned
using the Spliced Transcripts Alignment to a Reference (STAR) with the alignIntronMin and
alignIntronMax parameters set to 30 and 1,000 (92). Greater than 90% of reads mapped to defined genes
(range, 96 to 98%). All other parameters were executed with default values. For each gene, the number
of aligned reads was calculated using HTSeq-count (90). Gene features were defined as those exon
regions annotated in the SC5314 Assembly 21 features file (https://tinyurl.com/yt2vmb4c), for a total of
6,468 features. These read counts per feature were normalized into TPM values, which can be publicly
accessed at https://goo.gl/PqgGtH. The RNA-sequencing library contained a known defect with strand
orientation, where orientation was incorrectly denoted as opposite of actual designation. All analyses
(including features count) had taken this into account and corrected for it prior to analysis.

Hierarchical clustering of gene expression. TPM values for all C. albicans genome features from
the Assembly 21 genome feature file were used to build dendrograms of similar gene expression.
Hierarchical clustering was performed using Spearman’s correlation and average linkage. To assess, trees
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of similarity between biological duplicates were built and tested with 1,000 bootstraps using the
‘pvclust’ package (version 2.2-0) in R (version 3.5.3). For comparisons across strains, average TPM values
were calculated between strains and hierarchical clustering was performed.

Correlation of expression with strain phylogeny. Phylogenetic relatedness among the 21 clinical
isolates focused on strains that clustered well within their respective canonical clusters (I, II, III, and SA).
To increase the tightness of these well-represented clusters, outlier strains with long branch lengths
(P94015, P60002, and P75010) were removed. Based on each gene’s individual transcriptomic profile, we
performed unsupervised clustering on each gene’s expression for the remaining 18 strains to bin into 4
groups using the R library kmeans. Hierarchical clustering was then performed on those genes for which
these 4 groups contained at least half of the expected strains organized the same as for whole-genome
analysis. For each gene’s hierarchical clustering, the number of strains inconsistently assigned was
counted, and only 31 genes had at most six incorrectly assigned strains, less than expected by chance.
No gene reported perfect homology with the phylogenetic tree.

59 UTR and 39 UTR construction. The aligned reads in bam file formats for each of the 42 replicates
were converted into bed format using bamToBed (https://bedtools.readthedocs.io/en/latest/content/
tools/bamtobed.html), such that each individually aligned read is denoted in each row. Next, mergeBed
(https://bedtools.readthedocs.io/en/latest/content/tools/merge.html) was applied so that overlapping
reads on the same strand are merged together into one contiguous segment. intersectBed (https://
bedtools.readthedocs.io/en/latest/content/tools/intersect.html) was used to annotate the respective
gene contained with each overlapping segment, with a minimum overlap of 1 bp. The -S flag was used
when running intersectBed (https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html) to
account for opposite strand orientation. Continuous merged reads that overlap more than one gene fea-
ture and those with negative UTR lengths were removed.

Differential gene expression by phenotypic extremes. Previous phenotyping of these 21 was
used as the basis for this analysis (11). For each phenotype with categorical extremes, both biological
replicates for strains exhibiting traits at the extremes of the distribution for each phenotype were
binned into opposing groups and compared against each other for differentially expressed genes as
described above using EdgeR (91). The following groupings were used for each phenotypic
comparison:

a) SCD30°C: P60002, P78048, P37037 versus GC75, P75063, P34048 (slow versus fast)

b) YPD30°C: P76067, P94015 versus P34048, SC5314, P75016, GC75, P57055 (slow versus fast)

c) Biofilms: GC75, P87, SC5314 versus P75016, P94015, P57072, P75010 (heavy versus light)

d) FilamentationScoreSpider30: P75016, P78042, 12C, P37005 versus GC75, P94015, P34048, P37037

(high versus low)

e) CalcofluorWhite: GC75, P75016, P75063, P60002, P75010, 19F, L26, P37039, 12C, P78048, SC5314

versus P34048, P57055, P57072, P76055, P76067 (colonies at 4th dilution versus the 1st dilution)

f) HydrogenPeroxide: P75016, P75063, P87, P60002 versus P94015, P78042, P57055 (colonies at 4th

dilution versus none at any dilution)

g) GenomeHeterozygosity: P75016, P34048, P78042, P78048, SC5314 versus P87, P94015 (high

versus low)

Differentially expressed genes were filtered for a minimum log2 fold change of 2 and a q value
less than or equal to 0.05 and included only genes that had a minimum of 1 count per million reads
in at least two samples. The expression data set was normalized using the default weighted trimmed
mean of M-values (TMM) method, and dispersion was estimated using an empirical Bayes method.
Because all replicates were collected and sequenced in a single experimental run, no batch effect is
expected.

Gene ontology annotation. Enrichment for gene ontology terms was conducted through the
Candida Genome Database (93). In complement, we introduce an R library (CAlbicansR [https://github
.com/joshuamwang/CAlbicansR/]) to facilitate nonbrowser analysis of Candida genomic data sets. Its
functionality includes an offline database for converting orf19 identifiers into gene names and vice
versa. In addition, the library also provides a function for automated searches of the Gene Ontology
Term Finder. Results are outputted into the R console.

Linear regression of phenotype on gene expression. The strength of a linear association between
a gene’s expression and phenotypic score was assessed for all genes in all phenotypes using each
sequencing set as a single data point (42 data points in all). To account for existing phylogenetic rela-
tionships, the covariance structure between strains was calculated based on a Brownian motion process
of evolution, using the R phytools package. Phylogenetic generalized least-square regression was fitted
while accounting for within-group correlation structure as defined previously. For each gene, the x axis
represented the strain’s expression of that gene and the y axis indicated the corresponding strain’s phe-
notype score, and a linear least-squares equation was calculated. The F statistic was used to assess statis-
tical significance, with a Bonferroni correction applied to each set of phenotype tests. Only genes with a
corrected P value less than 0.05 were retained.

WGCNA construction. The recommended default settings were used from the tutorial section 2.a.2
(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver
-02-networkConstr-auto.pdf) for WGCNA of all 42 sequenced samples (2 replicates each from 21 iso-
lates). Specifically, beta was set to 20 to achieve scale-free topology (first value for which R2 exceeded
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0.80) as recommended previously (94). In addition, the networkType and TOMType both were set to
signed, minModuleSize was at 10, and mergeCutHeight was at 0.15.

Identification of bimodal networks. To identify genes with expression values that follow a multi-
modal distribution, we used a Gap Statistic method (95) implemented through the R library clusGap
(https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/clusGap.html) and used hclust (https://stat
.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html) to identify clusters. Only genes with minimum
expression values were considered (TPM $ 5). A gene was considered to operate via a bimodal response
if its maximized gap statistic exceeded 0.9 and corresponding k value exceeded a minimum of 2.
Specifically, this analysis identified a subset of genes within ME8 that have significantly higher expres-
sion only in P37037.

Strain and plasmid construction. Strains, oligonucleotides, and plasmids described in this paper
are provided in Table S16 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement
_TableS16/14211296/1, Table S17 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement
_TableS17/14211299/1, and Table S18 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020
_supplement_TableS18/14211305/1, respectively. Gene disruption was performed using long oligonu-
cleotide-mediated targeting of OFI1, ZCF31, and KNS1 in P37037 through amplification of the SAT1-FLP
cassette from pSFS2A (deletion oligonucleotides listed in pairs as “Round 1 KO” or “Round 2 KO” in Table
S17 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement_TableS17/14211299/1)
and integration by lithium acetate transformation (96, 97). Integration of deletion cassettes (Deletion
Chk) and complementation plasmids (Addback Chk), as well as the presence or absence of open reading
frames for each gene (ORF Chk), was confirmed with PCR using the oligonucleotides listed in Table S17
at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement_TableS17/14211299/1. The
SAT1-FLP cassette was recycled by plating to 100 colonies on yeast extract-peptone-maltose (YPM) solid
medium top-spread with either 10mg/ml or 20mg/ml NAT. Small colonies were then patched to YPD
with or without 200mg/ml NAT to screen for nourseothricin-sensitive (NATS) colonies.

Construction of the OFI1 complementation plasmid p41 was performed by cloning PCR-amplified
OFI1 from P37037 genomic DNA (including the promoter, coding sequence, and downstream) into
pSFS2A using restriction enzymes ApaI and BamHI. The resulting plasmid was linearized in the promoter
of OFI1 using HpaI for transformation into C. albicans. Construction of plasmids p50, p52, and p53 was
performed using gap-repair cloning as described in the work of Jacobus and Gross (98) to generate
ZCF31_A, ZCF31_B, and KNS1 complementation plasmids, respectively. Briefly, ZCF31 from P37037
genomic DNA (including the promoter, coding sequence, and downstream) was PCR amplified with oli-
gonucleotides encoding 20-bp ends homologous to pSFS2A, and pSFS2a was linearized via PCR amplifi-
cation with oligonucleotides containing 20 bp of homology to ZCF31, generating 40 bp of overlap. After
digestion of the residual plasmid template using DpnI, each PCR product was gel purified and cotrans-
formed into chemically competent DH5a to be assembled into an intact plasmid. The resulting plasmids
yielded two plasmids containing different ZCF31 alleles listed as p50 (ZCF31-P37037_A) and p52
(ZCF31-P37037_B). p50 and p52 were linearized in the promoter of ZCF31 using PacI for lithium acetate
transformation into C. albicans. The KNS1 complementation plasmid p53 was generated in a similar man-
ner, but the genomic amplification was split into two fragments to introduce a novel MluI restriction site
into the promoter region. p53 was linearized in the promoter of KNS1 using MluI for C. albicans
transformation.

Pure populations of P37037 white and gray state cells were isolated from the mixed P37037 stock by
streaking MAY3 onto YPD and growing at 30°C for 5 days until individual white and gray colonies could
be differentiated. Independent colonies were inoculated into liquid YPD and grown overnight at 30°C
for storage and sequencing of EFG1 to determine the allelic makeup of this locus.

Gray state cells from P37037-derived mutant strains were obtained by streaking white state strains
onto YPD, followed by growth at room temperature. After 5 days of growth, gray sectors were identified,
struck out onto YPD, and grown at room temperature once again to obtain isolated gray state colonies.
After 3 days of growth, streaks were examined at a cellular and colony level to confirm gray state
morphologies.

CRISPR-mediated deletion of SC5314 BRG1, UME7, orf19.6864, PHO100, and FGR2 was performed as pre-
viously described using a modified lithium acetate transformation protocol (99). Colonies were screened for
gene deletions by PCR for the presence of a band using oligonucleotides flanking the excised locus (Up/
Dwn Check) and for the loss of the target gene (ORF Chk) using the oligonucleotides listed in Table S17 at
https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement_TableS17/14211299/1.

Complementation plasmids for BRG1, UME7, orf19.6864, PHO100, and FGR2 mutants were constructed
by amplifying the wild-type locus from the background strains for all CRISPR-based deletions using primers
listed in Table S17 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement_TableS17/
14211299/1 and cloning them into pSFS2a as described above using gap repair cloning. All plasmids were
cloned in two pieces with the exception of UME7, which required a three-piece cloning to include an MluI
site for linearization prior to transformation (plasmids listed in Table S18 at https://figshare.com/articles/
dataset/mBio_Wang_etal_2020_supplement_TableS18/14211305/1). Genes were confirmed to be identical
to the expected sequence by Sanger sequencing and then linearized using PacI, MluI, PacI, AgeI, and CspCI
for BRG1, UME7, orf19.6864, PHO100, and FGR2, respectively, for lithium acetate transformation. Cells were
selected on 200mg/ml NAT and confirmed to contain the gene integrated at the native locus by PCR using
primers listed in Table S17 at https://figshare.com/articles/dataset/mBio_Wang_etal_2020_supplement
_TableS17/14211299/1.

Filamentation. For liquid filamentation assays, cells were grown overnight in YPD at 30°C. The next
day, cultures were spun down, washed in phosphate-buffered saline (PBS), inoculated 1:100 into RPMI
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1640 liquid medium, and allowed to grow for either 1 or 4 h before imaging. Images were captured at
�40 magnification across 6 fields of view per sample to include at least 50 cells. At least four biological
replicates were performed per genotype.

For solid medium filamentation, cells were taken from YPD solid medium, counted by hemocytome-
ter, and plated to Spider or YPD medium at 100 cells per plate. Plates were incubated at 30°C for 7 days
and imaged. Filamentation was measured using MIPAR as previously described (100). At least six biologi-
cal replicates were performed per genotype.

Data availability. The data sets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request. The transcriptional profiling data gener-
ated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA630085. Tools developed to aid in gene ontology analysis
are available from https://github.com/joshuamwang/CAlbicansR.
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