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Abstract

Given the crucial role of climate in malaria transmission, many mechanistic models of

malaria represent vector biology and the parasite lifecycle as functions of climate variables

in order to accurately capture malaria transmission dynamics. Lower dimension mechanistic

models that utilize implicit vector dynamics have relied on indirect climate modulation of

transmission processes, which compromises investigation of the ecological role played by

climate in malaria transmission. In this study, we develop an implicit process-based malaria

model with direct climate-mediated modulation of transmission pressure borne through the

Entomological Inoculation Rate (EIR). The EIR, a measure of the number of infectious bites

per person per unit time, includes the effects of vector dynamics, resulting from mosquito

development, survivorship, feeding activity and parasite development, all of which are mod-

erated by climate. We combine this EIR-model framework, which is driven by rainfall and

temperature, with Bayesian inference methods, and evaluate the model’s ability to simulate

local transmission across 42 regions in Rwanda over four years. Our findings indicate that

the biologically-motivated, EIR-model framework is capable of accurately simulating sea-

sonal malaria dynamics and capturing of some of the inter-annual variation in malaria inci-

dence. However, the model unsurprisingly failed to reproduce large declines in malaria

transmission during 2018 and 2019 due to elevated anti-malaria measures, which were not

accounted for in the model structure. The climate-driven transmission model also captured

regional variation in malaria incidence across Rwanda’s diverse climate, while identifying

key entomological and epidemiological parameters important to seasonal malaria dynamics.

In general, this new model construct advances the capabilities of implicitly-forced lower

dimension dynamical malaria models by leveraging climate drivers of malaria ecology and

transmission.

Author summary

Climate plays a fundamental and complex role in malaria transmission, by acting on mul-

tiple aspects of mosquito ecology and parasite transmissibility. However, to express

malaria transmission pressure, malaria models with implicit vector dynamics have relied
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on indirect predictors of vector ecology, such as temporal seasonality or interpolations of

rainfall/temperature, instead of entomological processes directly informed by ambient

conditions. This approach obscures the specific influence of environmental conditions on

relevant vector and parasite ecology, as well as meaningful interpretation of climate vari-

ability within these models. Here, we demonstrate that both interpretability and ecological

effect from climate can be instantiated in lower dimension dynamical models through

representation of transmission pressures via a climate-driven Entomological Inoculation

Rate (EIR). This process-based model framework is driven by local rainfall and tempera-

ture, which regulate multiple aspects of the EIR, namely mosquito density, host-seeking

activity, and parasite infectivity. Our results indicate that the climate-driven model con-

struct is able to reproduce regional and local malaria transmission at seasonal and inter-

annual time scales, while enabling identification of key entomological determinants of

transmission.

Introduction

Every year, malaria infects more than 200 million people and causes about 400,000 deaths [1].

More than 90% of this burden of disease is borne by individuals in sub-Saharan Africa, most

of whom are children and pregnant women [1]. Global efforts to combat the disease have led

to its elimination in several regions around the globe [2–4]. Across Africa, scale-up of inter-

ventions, beginning with the Roll Back Malaria Initiative launched by WHO in the late 1990s,

has supported declines in rates of malaria deaths [1,5,6]. Understanding the local drivers of

transmission and the conditions promoting exposure to the malaria vector are important for

effectively controlling the spread of malaria.

The malaria parasite is transmitted to individuals by infected female Anopheles mosquitoes.

The population dynamics of these vectors, like most ectothermic insects, are moderated by

ambient conditions such as rainfall and temperature [7,8]. Additionally, temperature influ-

ences transmissibility of the malaria parasite [9,10]. Recognition of these effects of climate on

the vector and parasite has led to the formulation of explicit and implicit mechanistic climate-

driven models that simulate malaria and are used to elucidate the effects of local conditions on

mosquito populations and malaria transmission. In explicit formulations, states of transmis-

sion in host and vector populations, as well as progression through stages of the mosquito life-

cycle, are modelled in time and space. As a result, the force of infection is a direct result of the

interactions between host and vector populations as the transmission system evolves in time.

In implicit approaches, however, transmission in the host community is the primary focus.

Instead of following transmission and life stages in vector populations, a parsimonious repre-

sentation of mosquito dynamics is used to simulate the force of infection acting on the host

population. The force of infection, consequently, is a result of the interaction between explic-

itly simulated host infection dynamics and the implicitly represented mosquito dynamics.

Both explicit [11–16] and implicit [17–20] climate-based mechanistic forms are capable of

simulating malaria transmission dynamics; however, current implicit models have relied on

indirect climate modulation of the force of infection [17–20]. In these implicit forms, the use

of strongly correlated predictors of vector dynamics, such as observations of mosquito density

or temporal seasonality and smoothing interpolations of climate [17,20,21] compromises

meaningful investigation of the influence of climate on mosquito ecology. In contrast, in

explicitly forced climate-driven mathematical malaria models, climate directly regulates mos-

quito ecology and parasite transmissibility. Implicit models provide a simple yet powerful
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form for capturing the seasonal and spatial spread of mosquito-borne diseases; however, the

absence of a biologically-motivated climate-driven modulation of malaria transmission

obscures meaningful interpretation of the specific role of climate on disease dynamics. There-

fore, there is a need to enhance the implicit model forms by providing biological grounding

for the effects of climate.

In this study, we show that an implicit process-based model with direct climate modulation

of the force of infection through the malaria Entomological Inoculation Rate (EIR) can rela-

tively accurately simulate observed incidence in Rwanda–a malaria endemic country. The EIR,

defined as the number of infective bites received per day per human [22], depicts the influence

of mosquito population dynamics and infection in the host population using a compact mea-

sure of the transmission pressure experienced by a host population. Multiple components of

the EIR (namely mosquito density, mosquito feeding activity, longevity and parasite inocula-

tion) are regulated by temperature and rainfall conditions. These various modulatory roles of

ambient climate conditions on the malaria mosquito and parasite enable derivation of a cli-

mate-driven transmission pressure through the EIR.

The EIR has been used within a number of mathematical model constructs to convey the

intensity of transmission due to mosquito dynamics. For example, Killeen et al. developed a

deterministic model that calculates the EIR experienced by human populations by acknowl-

edging changes in life histories of mosquitoes and allowing average temperature conditions to

influence parasite transmissibility [23]. Similarly, Eckhoff [24] formulated a cohort/individual

mosquito population model with explicit representation of larval development, mortality and

parasite sporogony (i.e. the development of malaria parasites into sporozoites–the stage infec-

tive to hosts), which are impacted by weather conditions. A large-scale individual-based

human transmission model then combines with the vector model to predict EIR. Other studies

have used climate-driven explicit mosquito and human population models to simulate EIR val-

ues as crude estimates of malaria activity and for validation against field estimates [16,25].

Here, we use the EIR to represent the force of infection and allow the EIR to be directly

modulated by climate through established empirical relationships between climate and the

malaria vector and parasite. Similar expansions of other malaria indicator variables, include

vectorial capacity (VC) and the reproductive number (R0), in connection with climate regula-

tion [26,27]; however, our incorporation of the direct influence of climate on EIR in a simple,

implicitly-forced dynamical model of malaria is novel. Model parameters for temperature-reg-

ulation of vector and parasite biology were based on literature, whereas the parameters of rain-

fall-modulation were estimated based on data from field studies and fitting of the malaria

transmission model. To infer model parameters and simulate malaria incidence, the EIR-

based model is paired with a data assimilation method–the Ensemble Adjustment Kalman Fil-

ter (EAKF). Similar model-inference systems using the EAKF have been developed for other

infectious disease systems, have demonstrated good fit to data, and have been used to estimate

critical epidemiological and entomological parameters [28–31]. Incidence and EIR levels pre-

dicted by the model-EAKF system are subsequently compared with observed malaria out-

comes for local settings in Rwanda. In addition, model inferred parameter estimates of malaria

transmission are compared with existing estimates to assess the validity of the model-EAKF

system.

Results

Model simulation

Fitting of the dynamical model occurred at the more resolved local catchment level, while

province level predictions were taken as the aggregate of local simulations. Results from model
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fitting show that the dynamical model captures the seasonal dynamics and some of the inter-

annual variability observed in malaria incidence at aggregated province levels (Fig 1) and pub-

lic health catchment levels (supplemental Fig A in S1 Text). With simulated incidence aggre-

gated to the province level, as shown in Fig 1, the model-EAKF system explained 27.75–

65.64% of malaria variability; at the finer catchment level, it captured 3.6%– 80.82% of variabil-

ity observed in malaria incidence in all sites from 2016–2019. Performance of the model-

EAKF system was generally higher earlier in the study period, with a median of 43.66% and

41.19% of incidence variance explained across all sites in 2016 and 2017, respectively (Fig 2,

blue boxplots). Model error was also lower during these seasons. Subsequent years saw dimin-

ished model fit, with a median variance of 20.47% and 16.58% simulated by the model-infer-

ence system during 2018 and 2019. During these seasons, the model-EAKF system predicted

more intense transmission in 2018, followed by less intense transmission during the 2019 sea-

son. In contrast, large declines of malaria incidence occurred, including a complete disruption

of malaria seasonality. This disconnection between the climate-driven model and malaria

Fig 1. Model-EAKF simulated incidence of malaria at the province level from 2016–2019. The aggregated results (per capita incidence) from simulations of malaria

transmission using the model-EAKF system. Model predictions are shown in red lines, with red shading indicating the 95% credible interval (CI) of model estimated

incidence, and reported incidence is shown as gray dots. Note that the range of y-axes for model simulated and reported malaria differ among panels.

https://doi.org/10.1371/journal.pcbi.1010161.g001
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incidence is further highlighted by the progressively dwindling association between malaria

incidence and rainfall conditions within the model for most of Rwanda (Fig 3). Nonetheless,

the role of rainfall is evident in the seasonality of malaria incidence. The bimodal peaks and

troughs in predicted malaria incidence appear to be connected to the two distinct–long

(March to May) and short (October to December)–rainy seasons in Rwanda.

Because of the large disruption in the year-to-year cycle of malaria transmission, we investi-

gated whether the model-EAKF system could better constrain intra-annual malaria activity by

re-initializing the system each year (Fig 4). By fitting and simulating each year separately,

malaria incidence variability was better captured at the province level, with 41.18%–86.89% of

variance explained. At the more resolved catchment level, median variance explained rose as

well– 60.84%, 58.62%, 70.77% and 52.55% in 2016–2019 respectively (Fig 2, yellow boxplots).

This exercise was conducted annually in order to countercheck the capacity of the model-

EAKF approach to capture malaria activity in the later study period, which was poorly repre-

sented under continuous simulation. Although re-initializing each year improves the model

simulations, we caution that it could lead to over-fitting and overly confident explanation of

the data, particularly when plausible external factors affecting transmission (e.g., intensified

control) are unaccounted. For this reason, we have based our conclusions and final reports of

Fig 2. Fit of predicted malaria incidence, across all 42 catchment sites, computed over various study periods. Outcomes computed from continuous

weekly simulation of incidence are indicated by the blue boxes. Outcomes computed from yearly reinitialization are indicated by the yellow boxes. Left

panel: the coefficient of determination (R2). Right panel: log-scaled Mean Absolute Relative Error (MARE) across different sites (jittered black dots).

https://doi.org/10.1371/journal.pcbi.1010161.g002
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incidence, EIR and other malaria parameters on findings obtained under the continuous simu-

lation with the model-EAKF system.

Ento-epidemiological parameters of malaria

The average duration of Plasmodium falciparum incubation within the host population (μEI)

was inferred by the model-EAKF system to last between 9.17–13.08 days. These site-level esti-

mates were fairly similar throughout the provinces of Rwanda (Table 1). Depending on the

region and site, Plasmodium falciparum incubation (μEI) tended to be longer or shorter by no

more than a day. However, estimates of the duration of subpatency for individuals recovering

from untreated infections (μRS) were less similar among sites (Fig C in S1 Text). Study sites in

the East, Kigali City, North, South, and West provinces were found to have median subpatency

durations of 265.59 days, 240.08 days, 231.21 days, 246.13 days and 274.85 days, respectively

(Table 1 and Table A in S1 Text). The relative infectivity of subpatent infections compared to

clinical infections (qR) was estimated to be within similar ranges (0.05–0.13) for the majority

of the sites (Fig C in S1 Text; Table A in S1 Text). Additionally, malaria transmission parame-

ters were in generally comparable ranges whether model inference was conducted continu-

ously during the study period or initialized separately each year (Fig D in S1 Text).

A relatively stable entomological exposure, measured by the annual EIR, was estimated

among sites in Rwanda during most of the study period. However, the 2018 transmission sea-

son was an exception and experienced a predicted increase in EIR exposure throughout

Rwanda (Fig 5). This was in accordance with the intense transmission predicted for 2018 due

to heightened environmental capacity and suitability for mosquito survivorship and

Fig 3. Correlation between reported malaria incidence and cumulative moisture conditions for the final model. The Pearson Correlation coefficients

estimated for study sites (jittered black dots) over the entire study period are in purple and estimates for each individual year (i.e. 2016 to 2019) are in in

blue, green, light green, and yellow, respectively.

https://doi.org/10.1371/journal.pcbi.1010161.g003
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development (see supplement, Fig B in S1 Text). During the other, stable years, individuals

were estimated to experience an annual EIR of 0.19–69.53 infective bites per person per year

(bpy) (Fig 5A). However, in 2018, individuals were estimated to receive about 1.80 times more

Fig 4. Incidence of malaria as simulated by the model-EAKF system under yearly initialization. The aggregated results (per capita incidence) from

simulations of malaria transmission using the model-EAKF system, while re-initializing each year separately. On the y-axis of each panel, corresponding to

different provinces, reported incidence is shown as black dots, while model-EAKF fittings are shown in colored lines. Colored shading indicates the spread

of the 95% CI of model estimated incidence. Aggregated simulations for sites in the East, Kigali City, North, South and West provinces are indicated in blue,

yellow, grey, red and light blue, respectively.

https://doi.org/10.1371/journal.pcbi.1010161.g004

Table 1. Mean posterior estimates for two epidemiological parameters of malaria. μEI is the average duration of

parasite incubation in humans and μRS, the average duration of subpatent infection. The province median and range of

the mean estimate for sites within a province are shown for regional comparison.

Province Posterior estimate (days) for Study Sites

– μEI median (range) μRS median (range)

East (N = 9) 10.58 (10.39–13.08) 265.59 (140.74–345.08)

Kigali City (N = 3) 11.22 (11.14–11.67) 240.08 (238.85–281.20)

North (N = 7) 11.05 (9.65–12.08) 231.21 (124.22–344.36)

South (N = 11) 10.68 (9.17–12.72) 246.13 (151.62–348.75)

West (N = 12) 10.64 (9.56–12.26) 274.85 (145.01–355.16)

N = number of sites located within a province.

https://doi.org/10.1371/journal.pcbi.1010161.t001

PLOS COMPUTATIONAL BIOLOGY A simple climate-driven entomological model of malaria transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010161 June 9, 2022 7 / 29

https://doi.org/10.1371/journal.pcbi.1010161.g004
https://doi.org/10.1371/journal.pcbi.1010161.t001
https://doi.org/10.1371/journal.pcbi.1010161


infective bites per person. By region, estimated entomological exposure varied moderately

across Rwanda. Populations in the North and West were predicted to experience up to 1.79–

2.70 times more infective bites per person per year than other regions (Fig 5B). The high levels

of entomological exposure reflect the high attack rates of sites for the West; however, when the

relatively smaller effective denominator population for these areas (Fig J in S1 Text) are

accounted, the predicted force of infection increases and corroborates estimated EIR (Fig K in

S1 Text). Furthermore, these communities were predicted to have higher mosquito-survivor-

ship due to more suitable surface moisture conditions than the rest of the country (Fig B in S1

Text).

Malaria transmission within the climate-driven model is regulated through a number of

pathways. Analyses indicate that malaria dynamics were most affected by rainfall regulation of

sub-adult survivorship. Without rainfall-modulated sub-adult development, model fitness

decreased across sites, with MARE climbing by more than 40% in the final model (Fig E in S1

Text). Temperature-regulated conditions such as parasite sporogony (n), biting rate (a) and

development rate (PEAT) contributed to model fitness but played a far less substantive role con-

straining the model fitting. The absence of these temperature-forced pathways only slightly

decreased model fitness by about 3% maximum.

Discussion

Temperature and rainfall are major drivers of malaria vector population dynamics and parasite

transmission. The effects of these meteorological conditions on the ecological life traits of the

malaria vector and parasite make them important for accurately describing transmission risk.

Fig 5. Estimates of the annual Entomological Inoculation Rate (EIR) across Rwanda 2016–2019. (a) Side-by-side boxplots of field estimated annual EIR from four

entomology sentinel sites [32–35] across Rwanda (blue boxplots) and of model estimates of annual EIR for 42 study sites generated by continuous simulation of the

model-EAKF system (yellow boxplots) for 2016–2019. (b) Average annual EIR at the province level aggregated from continuous simulation of the model-EAKF system

at the site level. Blue, green, light green, and yellow colored bars represent 2016, 2017, 2018 and 2019, respectively.

https://doi.org/10.1371/journal.pcbi.1010161.g005
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Several malaria modeling studies have demonstrated that malaria and other mosquito-borne

diseases indeed can be accurately described using an implicit force of infection that depends

on indirect climate predictors of mosquito dynamics [17,20,21]. However, our study finds that

by leveraging the direct ecological effect of climate on EIR, accurate simulation of malaria

dynamics can be achieved using an implicitly-forced dynamical model of malaria transmis-

sion. The model structure accurately reproduced seasonal malaria incidence and some of the

inter-annual variability, without need for explicit representation of the vector population and

transmission dynamics. But, inter-annual malaria activity in some years was less accurately

captured, likely due to increased malaria control that was not included in the model. The

developed EIR-model framework also captured geographic differences in malaria incidence

across the varied climate regimes of Rwanda and enabled formal investigation of the role of cli-

mate in mediating the risk of malaria transmission. However, areas with higher model pre-

dicted EIR did not necessarily correspond with higher malaria incidence; geographic

differences in population-level immunity and entomological control are suspected to have

altered the climate-predicted EIR experienced by host populations.

Over the long term, the climate-driven model reproduced malaria incidence fairly well.

However, some notable disagreement, particularly in the last two years of study, between

observations and model simulations was evident. This observed disconnection suggests action

of external factors, not represented in the model, disrupting vectorial capacity and precluding

transmission. Specifically, a nationwide increase in transmission was predicted following ini-

tial years of high agreement between climate-signaled transmission and malaria incidence.

However, declines and disrupted seasonal activity were reported across Rwanda. Indeed, start-

ing in 2018, several high malaria burden regions in Rwanda began intensified malaria control

in an effort to recover gains toward malaria elimination lost due to relaxed malaria control

[36–38]. This national malaria control program in Rwanda largely relies on long-lasting insec-

ticide treated bednets (ITNs) and indoor residual spraying (IRS) [39], which are highly effec-

tive measures for reducing entomological exposure risk. ITN and IRS not only lower mosquito

density but also reduce mosquito-host contact rates as well as mosquito oviposition, doubly

lowering malaria vectorial capacity [40–42]. Additionally, their long-lasting mode of action

ensures a continuous effect on the risk of entomological exposure throughout the transmission

season. Thus, the re-adoption and upscaling of these blanket IRS and ITN campaigns, particu-

larly in regions in the East and South provinces where malaria is more intense, may explain

the drastic depression of seasonal malaria incidence and low entomological inoculation rates

reported in the last two study years across Rwanda [37,38].

In addition to capturing local dynamics, the climate-driven model also identified parame-

ters best describing local malaria that are similar to previous malaria estimates, lending more

external validity to the model. While malaria control in Rwanda increased during the latter

portion of the study record, the parameter estimates remained relatively stable from year to

year. Widespread control measures sustained over long periods of time have been known to

induce changes in population epidemiology such as population-level immunity [43,44], as

transmission become effectively interrupted and eliminated. However, given the short time-

scale of control observed here, as well as the prevalence of active transmission in Rwanda, key

parameters such as immunity might not have drifted substantially.

Model-EAKF inferred estimates for Rwanda are also in agreement with those made more

broadly for Plasmodium falciparum, which dominates transmission in Rwanda, like in all of

sub-Saharan Africa [1]. Plasmodium falciparum infections are characterized by short incuba-

tion periods before symptom onset as well as relatively short periods of patency for untreated

infections compared to other malaria species. Our model-inferred duration of P. falciparum
incubation and relative infectivity of subpatent infections agree with previous epidemiological
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estimates [45–48] and only varied slightly across Rwanda; however, malaria patency estimates

were less uniform. This variation in susceptibility could be a result of differences in malaria

burden, which may complicate acquired immunity across populations [49–51].

The intensity of malaria transmission is not uniform across Rwanda, but varies from region

to region [36,52]. The level of parasite circulation within a community alters the rate of

repeated exposure to malaria parasites and may lead to differential rates of susceptibility and

acquired immunity observed within a population [43,50]. Additional population factors at

play include community age structure, level of general health, and migration [49–51], which

may preclude a uniform rate of susceptibility and acquisition of malaria immunity across

study populations.

The malaria model framework also allowed approximation of the EIR–an indicator of the

intensity of transmission. Model predicted levels of annual EIR (0.19–114.45 bpy) were low

compared to levels in other neighboring malaria endemic countries [53], but higher than

found using empirical relationships (0.48 bpy) and dynamic simulation (2.2 bpy) in 2010 at

the country-level [54]. A comprehensive entomological field study from 2010–2013 [55], com-

prised of 12 malaria sentinel sites spanning the country, however found annual EIR ranging

from 0.99–329.01 bpy throughout Rwanda. More recent surveys from 2016–2019 similarly

suggest, that although malaria exposure risks have dropped in Rwanda, mostly due to intensi-

fied control measures, field estimates of annual EIR rates remain higher (0–61.270 bpy) than

those earlier model estimates [32–35]. The model-EAKF system estimates presented here for

the early portion of the study period closely agree with these recent field estimates. Differences

between model and field estimates could be a result of vector and parasite control activities,

which are currently uncaptured in the model. The ramping up of intensified control measures

by national malaria control programs in Rwanda, during the later years of the study [36–38],

Fig 6. Flow diagram of the malaria transmission model. Individuals within the transmission system are divided into those

who are susceptible to infection (S), exposed to the parasite (E), have clinical infection and are treated (T), have clinical

infection and are untreated (I), and have recovered from clinical disease (R). Individuals are susceptible at birth (μBS) or

following loss of immunity (end of patency) or end of treatment–related prophylaxis. Susceptible individuals become

exposed at a rate determined by the force of infection (μSE). Exposed hosts (E) then undergo intrinsic incubation of

Plasmodium falciparum at a rate determined by μEI. Following parasite incubation, infected cases begin to show clinical

symptoms, a fraction (fT) of which are assumed to be fully treated (state T) with the remainder untreated (state I). Treated

individuals return to the susceptible state at a rate determined by the duration of the prophylactic effect (μTS) due to

antimalarial therapy. Untreated infections recover naturally (μIR) from clinical disease and show no further symptoms of

clinical infection. Hosts that naturally recover, enter a state of low level parasitemia (state R) that is tolerated by the immune

system. Under this patent/subpatent state, individuals are protected from reinfection and have a relatively lower infectivity

to mosquitoes (qR) compared to full-blown clinical infections. Once patent/subpatent infections are cleared (μRS), recovered

hosts again become susceptible.

https://doi.org/10.1371/journal.pcbi.1010161.g006
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might explain the steady decline of entomological exposure risks away from the high EIR levels

estimated by our model.

Across the diverse mountainous geography of Rwanda, a non-uniform rate of entomologi-

cal exposure was found among the five provinces. In the lowlands, mostly situated in the South

and East provinces, climate suitability for malaria transmission can be expected to be higher

than in the highlands in the West and North because of generally warmer conditions that are

closer to the optimal temperature for malaria transmission. In contrast, our model estimates

suggest higher EIR levels in the less warm but wetter West and North regions, and lower levels

in the East and South, where rates of malaria incidence are typically higher [36,56,57]. This

counterintuitive finding might result from differences in malaria care seeking. Increased popu-

lation-level immunity due to a higher malaria burden in the South and East could manifest as

milder malaria episodes [51,58], differentially impacting treatment seeking behavior. As a con-

sequence, a lower entomological exposure could be inaccurately inferred for the region.

In addition, the high EIR estimates in the West may partly be explained by more focal trans-

mission, suggested by the smaller effective transmission population size estimated for this

region (see population scaling parameter [s] in Methods). Indeed, conditions are relatively

cooler in these regions and could limit the geographical range of malaria activity relative to

low altitude regions [9,59,60]. The lower denominator population from the pockets of sub-

communities with more climatically suitable environments combined with comparatively low

population-level immunity [58,60–62] could result in higher EIR rates, while much of the

high-altitude populations could remain generally less involved due to low parasite suitability.

When ‘at-risk’ denominator population is accounted for, predicted malaria rates suggest

higher risk per capita in historically low-burden areas compared to historically high-burden

regions, in a pattern that corresponds with the predicted pattern of EIR exposure (see Figs J

and K in S1 Text).

An important benefit of direct climate-mediation of transmission pressures is the ability to

examine the relative contribution of climate-driven vector ecology on malaria risk. Ecological

pathways to transmission could reveal insights for better exploiting the malaria vector depen-

dency on environmental conditions. In this study, rainfall-regulated sub-adult survivorship

proved to be the entomological factor most impactful to local transmission, well above the

temperature-regulated vector and parasite dynamics represented in the transmission system.

Note that temperature acting on adult mortality was not assessed due to the lack of tempera-

ture-regulated adult mortality in our model (see Methods). Thus, our system may underesti-

mate the role of temperature, as adult mortality is recognized as a major driver of malaria

vectorial capacity [63–65]. However, among the temperature-dependent ecology evaluated,

seasonal effects of parasite transmissibility, sub-adult duration and survivorship or feeding

activity were slight and lead to negligible impacts on the seasonal dynamics of malaria trans-

mission. The role of rainfall in malaria vectorial capacity in the region is highlighted further by

the distinct dynamics of malaria seasonality, which correspond with the two rainy seasons.

This finding is in agreement with several other studies [66–70] that have linked rainfall and

soil moisture conditions in East and sub-Saharan to Anopheles mosquito activity and malaria

transmission more than to temperature. The environmental carrying capacity for malaria mos-

quitoes (i.e., the population size that resources in the environment can support) is thought to

be defined by moisture conditions [71,72]. Anopheles mosquitoes begin their life in water and

continue developing in this aquatic environment until adult emergence. The formation and

stability of these rain-fed, short-lived water pools are likely to be more impacted by rainfall var-

iability than temperature, which is near optimal levels for mosquito development throughout

the year.
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This study demonstrates that accurate description of malaria over seasonal and inter-

annual time scales can be achieved by implicitly forced parsimonious process-based malaria

models while elaborating the direct role of climate on parasite and mosquito ecology. The use

of direct climate modulation of vector ecology, as shown here, further extends the utility of

malaria transmission models with implicit vector dynamics for examining climate drivers of

local transmission. Future modelling studies will evaluate the benefit of using similar climate-

forced models for forecasting local malaria incidence and will also assess the predictive utility

of the entomological model framework in supporting ongoing local malaria control efforts in

sub-Saharan Africa.

Methods

Model description

Compartmental model. To represent malaria transmission, we developed a compartmen-

tal model with a Susceptible Exposed Infected Recovered and Susceptible (SEIRS) form, with

an additional state T for treated individuals (Eq 1–5). Within this system (Fig 6), the human

population is divided among individuals who are susceptible to infection (S), exposed to the

parasite but not yet infectious (E), have clinical infection and are treated (T), have clinical

infection and are untreated (I), and recovered from clinical disease (R). Hosts transition

between susceptible, exposed, untreated, treated and recovered states at rates determined by

the model parameters, which represent key epidemiological and human demographic charac-

teristics. Based on birth rate estimates (μBS) from recent census data, individuals enter the Sus-

ceptible (S) group; previously infected individuals can also return to the susceptible state due

to loss of immunity (end of patency) or the end of treatment–related prophylaxis. The immu-

nity structure employed here is a simplification of more complex dynamics, which are age and

parasite specific and vary with repeated exposure. To maintain model parsimony, we adopt a

simple structure in which previous infection confers non-sterilizing immunity in which recov-

ered individuals become susceptible again. Similar simplified representations of malaria

immunity have provided reasonable fittings of observed malaria incidence [20,21,73].

Following exposure to an infectious mosquito bite, susceptible individuals move into the

exposed group at a certain rate of infection, determined by the force of infection (μSE). While

in the exposed state, individuals undergo intrinsic incubation of Plasmodium falciparum dur-

ing which parasites transition to gametocytes–the parasitic stage infectious to mosquitoes. Fol-

lowing this incubation period (μEI), which typically lasts 8–21 days in humans [45], individuals

begin to show clinical symptoms, and are caught by the surveillance system. Malaria incidence

in the transmission system is tracked by μEI
�E, the number of newly infected individuals per

unit time. These clinical infections may be fully treated (state T) by anti-malaria therapy drug

or remain untreated (state I). Based on recent Demographic and Health Survey (DHS) data on

treatment seeking behavior of individuals with fever in Rwanda [74], half of newly occurring

infections (fT) are assumed to seek and receive full treatment.

Treated individuals (in state T) return to being susceptible after the duration of the post-

treatment prophylactic effect (μTS) provided by antimalarial therapy. Only untreated infections

contribute to the force of infection and can transmit the parasite to mosquitoes with a certain

probability (PHM), as not all blood meals result in mosquito infection. Several factors such as

human gametocyte density and antimalarial treatment may affect the likelihood of infecting a

blood-feeding mosquito [75–77]. Untreated infections recover naturally (μIR) from clinical dis-

ease and show no further symptoms of clinical infection. However, given that malaria infection

can outlive clinical symptoms, recovered individuals enter a state of low level parasitemia

(state R) that is tolerated by the immune system. During this period of patent/subpatent
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infection, individuals are protected from reinfection and have a relatively lower infectivity to

mosquitoes (qR) compared to full-blown clinical infections. The host immune system steadily

and eventually clears patent and sub-patent infections, resulting in individuals returning to

susceptibility after a time based on the duration of patency and sub-patency period μRS.

Because the fatality rate from malaria parasite infection in host is relatively low and modified

by age and pregnancy, which are unrepresented in the system, infected individuals experience

no net increase in death rate. However, individuals in all compartments experience a back-

ground mortality rate (δ) determined by recent census data. The set of ordinary differential

equations representing this malaria transmission system are as follows:

dS
dt
¼ mBSP � mSESþ mRSRþ mTST � dS ð1Þ

dE
dt
¼ mSES � mEIE � dE ð2Þ

dI
dt
¼ 1 � fTð Þ mEIEð Þ � mIRI � dI ð3Þ

dT
dt
¼ fT mEIEð Þ � mTST � dT ð4Þ

dR
dt
¼ mIRI � mRSR � dR ð5Þ

P ¼ Sþ Eþ I þ T þ R ð6Þ

Force of infection. The force of infection in the transmission system is dependent on the

collective pressure exacted by the infectious populations of humans and vectors and is directly

related to the EIR–the number of infectious bites received per person per unit time. Often esti-

mated in the field as the product of the Human Biting Rate (HBR) and sporozoite rate (the

proportion of infectious mosquitoes), the EIR at time t also can be expressed mathematically

(Eq 7) using assumptions of human infectiousness and mosquito infectiousness, density, feed-

ing activity and survivorship [22]:

EIR ðtÞ ¼
ma2PHM X e� gn

g þ aPHMX
ð7Þ

where m is mosquito density, a is the per-mosquito biting rate, PHM the probability of trans-

mission from human to mosquito, g the adult mosquito death rate, n sporogony duration and

X the proportion of infectious humans at time t. We define X ¼ IþqR�R
SþEþIþTþR, as the fraction of

human states (i.e., I untreated clinical infections and R non-clinical infections adjusted by

their lower infectivity, qR) contributing to the force of infection.

Analyses of collected EIR data and new malaria infection indicate the existence of a nonlin-

ear relationship with the force of infection [22,99,100] in which risk of infection saturates at

high EIR. These findings show a clear deviation from the assumptions of the Ross-Macdonald

model [101,102] that infectious bites are linearly proportional to the rate of new infections.

Therefore, following Smith et al. [99] and others [103], we model a modified force of infection

(μSE) to acknowledge nonlinearity between infectious mosquito bites and the risk of new
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infections:

mSEðtÞ ¼ 1 � e� PMH�EIRðtÞ ð8Þ

The density of parasite in a vector, host immune status, and failure of the parasite to

advance to blood stages all can affect whether an infectious bite produces infection in a human

host [104]. Therefore, only a proportion of infectious bites PMH (i.e., the probability of mos-

quito to human transmission) lead to human infection.

Climate-regulation of vector and parasite dynamics

Many of the natural breeding sites used by female Anopheles mosquitoes for breeding and sub-

adult development such as temporary pools, puddles and hoof prints are rain-fed surface

waters. For Anopheles gambiae, the principal vector of malaria in sub-Saharan Africa,

increased moisture levels enhance the hatching success rates of eggs and progression of mos-

quito larvae to the pupae stage of development [105,106]. Eggs of An. gambiae are more toler-

ant to dry conditions than larvae or pupae and are able to survive up to 12–15 days [105,107]

but eventually die, when under prolonged dry periods. However, during periods of low and

intermittent rainfall activity, the short-term tolerance of eggs to desiccation ensures mainte-

nance of Anopheles populations and allows rebound in mosquito population levels following

the return of the wet season [108,109]. Due to this modulation of environmental breeding

capacity, rainfall is a strong regulator of the seasonal and spatial abundance of Anopheles mos-

quitoes and ultimately malaria transmission.

Temperature also modulates the malaria force of infection, by moderating mosquito popu-

lation numbers and parasite transmissibility. An. gambiae mosquitoes complete the sub-adult

life stages in about 5–8 days, if temperature conditions are optimal (20–22˚C) [8]. Adults and

pre-adult mosquitoes survive well at these optimum temperatures, too [8,9,110]. Additionally,

temperature regulates the infectivity of Anopheles mosquitoes. Parasites within infected female

Anopheles must complete a sporogonic cycle to develop into sporozoites, at which stage they

are infectious to a human host. Warm temperatures (24–28˚C) enhance this development rate,

decrease the duration of parasite incubation (5-7days) [9,10], and consequently raise the prob-

ability of an infective contact. In contrast, extreme low or high temperatures (<16 or >35˚C)

result in delayed development of the parasite and a decrease in malaria transmission risk [27].

Temperature also modulates rates of vector-hosts contact. To develop their eggs [111],

female Anopheles take at least one blood meal every gonotrophic cycle [112], during which

proteins acquired from the meal are digested and used for egg maturation [113,114]. Fully

matured eggs are oviposited, ending the gonotrophic cycle; surviving female Anopheles may

then seek another meal. The interval between feeding and oviposition is modulated by temper-

ature. Warmer conditions accelerate egg maturation and thereby decrease the time between

bloodmeals [9,115]. The resulting higher frequency of host-seeking supports more oviposition

and further inflates the malaria force of infection. The sections that follow below specify how

temperature and rainfall conditions directly relate to mosquito and parasite dynamics within

the EIR as described in Eq 7.

Mosquito density (m). Following a modified version [7,8,27] of the population density

model of Parham and Michael [116] describing a mosquito population at equilibrium, we

define adult mosquito density as:

m ¼
LðT;RÞ
mMðTÞ

ð9Þ

where L is the temperature and rainfall dependent birth rate of adult mosquitoes (defined by
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Eq 10) and μM is the mortality rate of adult mosquitoes. While existing mature mosquitoes

must survive long enough to feed, reproduce and oviposit eggs at available breeding sites, pre-

adult mosquitoes need to successfully move through egg, larvae and pupae stages in a timely

manner to emerge and contribute to the naive adult population. Temperature conditions and

water habitat availability can severely change the population balance by altering survival prob-

abilities at all life stages and as well as female oviposition. Increased adult mortality and failure

of pre-adult development because of suboptimal conditions jointly lower the reproductive

power of the mosquito population and consequently adult density. These environmentally

driven effects are reflected in the population model by setting the probability that eggs survive

to adults (PEA), the egg-to-adult development time (τEA), and the lifetime number of eggs laid

by female adults (B), as functions of temperature and rainfall.

L T;Rð Þ ¼
BðTÞ PEAðT;RÞ

tEAðTÞ
ð10Þ

We next describe each of these components and how temperature (T) and rainfall (R)

simultaneously modulate the outcomes of pre-adult mosquitoes within the model.

Lifetime number of eggs (B). The typical number of eggs laid by female Anopheles mos-

quitoes during oviposition may range from 50 to 290 [94–96]. Although the number of eggs

laid have not been linked to ambient conditions, the frequency of oviposition, which is deter-

mined by the length of the gonotrophic cycle–the time between a blood meal and egg produc-

tion–varies as a function of temperature [9]. Thus, by influencing the frequency of oviposition,

temperature affects the number of eggs laid during the adult lifespan of a female Anopheles.
Assuming a female mosquito oviposits every few days, depending on the length of the gono-

trophic cycle, and experiences a constant rate of mortality (μM), an exponential relationship

with egg laying is expected. Given these assumptions, and following White et al. [71], the num-

ber of eggs produced over the female mosquito lifespan is:

B Tð Þ ¼
ε

eGPmM � 1
ð11Þ

GP Tð Þ ¼
1

0:017T � 0:165
ð12Þ

where ε is the number of eggs laid per gonotrophic cycle, GP is the length of the gonotrophic

cycle, and μM is daily adult mortality rate.

Adult mosquito mortality (μM). Though temperature in general affects adult mosquito

mortality [110], preliminary assessments showed limited transmission and more erroneous

outcomes using temperature-dependent adult mortality data fittings [27,117]. During gono-

trophy when time is spent resting, digesting a blood meal and developing eggs, mortality may

be more affected by predation or by the use of endophily (i.e. resting indoors) versus exophily

(i.e. resting outdoors) [118–120], confounding the relationship with temperature. Therefore,

adult mosquito mortality in the mosquito population is fixed to a constant, temperature-inde-

pendent rate (μM).

Egg to adult survivorship. Mosquitoes begin their life in water as eggs and continue

developing into larvae and pupae in this aquatic environment before emerging as adults.

Though sub-adult mosquitoes are adapted to aquatic environments, they are highly sensitive

to changes of temperature and the water level of their breeding habitat. Near the optimal 24–

28˚C water temperature, larval development can be completed in about 9–14 days [8]; at

colder temperatures, larval duration can take 7–14 days longer. Larval mortality also increases

by 30–70% [7], as temperature shifts away from optimality. Additionally, significant drops in
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water habitat level or prolonged periods of desiccation, rapidly decreases the probability of

egg, larvae and pupae survival [105,106]. The critical roles of rainfall and temperature are read-

ily highlighted by the spatial and seasonal dynamics of Anopheles mosquitoes. Following the

onset peak of the rainy season, vector abundance steadily rises and peaks [108,109], as frequent

rainfall provides surface moisture for breeding sites formation, replenishes existing ponds, and

promotes egg hatching success and immature survivorship [105,106]. Furthermore, vector

populations and malaria parasite transmission risk decreases with increasing altitude [59,121],

due to cooler temperatures that do not support rapid Anopheles mosquito development and

parasite replication. Transmission risk is also shown to drop in arid regions or during periods

of drought compared to wetter regions and the rainy season [66,108,122].

Egg to adult survivorship due to rainfall (PEAR). To model the probability of survival as

a function of hydrologic conditions, we adopt a sigmoidal function, based on several studies

on the survival of immature Anopheles gambiae as surface water level changes in the breeding

site [105–107]. Chances of survival and successful completion of development increases with

increasing surface water levels, here estimated by cumulative rainfall, but are near zero when

hydrologic conditions are anomalously low and gradually plateaus when surface water levels

are high. Survival due to water variability shows similar trends across the egg, larvae and pupae

development stages, although with varying degrees of sensitivities. To limit model complexity,

we model survivorship due to hydrologic changes during egg-adult development aggregately

as:

PEA Rð Þ ¼
1

1þ e� a:Rðc:RD � b:RÞ
ð13Þ

where a.R relates the egg-adult sensitivity to surface water levels and c.RD is the standardized

anomaly of cumulative weekly rainfall data computed over D previous days for a catchment

site. The standardized anomalies for a site are calculated relative to the baseline average weekly

cumulative rainfall (over D days) received at that site during 2005–2019. The parameter b.R
indicates the mean anomaly level at which 0.5 survival is expected. Prior ranges for the length

of cumulative rainfall are informed by studies of rainfall activity and mosquito density

[20,72,97,98]. The model form for moisture-regulated survival, and the prior ranges for the

mean anomaly and the slope are derived from empirical fittings of anopheles egg survival and

moisture changes (see supplement).

Egg to adult survivorship (PEAT) and development time (τEA) due to temperature. Sev-

eral studies on the immature stages of Anopheles gambiae have shown that overall survival and

development rates of egg and pre-adult mosquitoes are linked with water habitat temperature

through a unimodal relationship [7,8,27]. Survival and development rates are highest around

24–28˚C and exposure to temperatures far from this optimal level results in death or delayed

and disrupted development of mosquitoes into the next life stage. We allow the rate of imma-

ture survival (PEA) and duration of egg-adult stage (τEA) to vary as follows:

PEAðTwÞ ¼ � 0:00924Tw
2 þ 0:453Tw þ � 4:77 ð14Þ

tEAðTwÞ ¼ ð0:000111TwðTw � 14:7Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 � Tw

p
Þ
� 1

ð15Þ

where Tw is habitat water temperature. Water temperature of mosquito habitats highly corre-

lates with surrounding ambient air temperature. However, air temperature can underestimate

mosquito survival and development, as it can be up to 6˚C cooler than breeding site water tem-

perature. Thus, to estimate the water temperature of breeding sites we use a simple linear

model as per [123,124], where Tw = k�Tair + ΔT. Here, k is the slope and ΔT is a constant>0
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capturing all antecedent impacts that raise the energy balance of the breeding site. Estimates of

k, which represents the strength of the relationship between Tair and Tw have been shown to

vary from 0.5 to 0.9[123,124] with broad uncertainty, depending on location and size of the

breeding sites. Rates of evaporation, wind conditions and season also affect the strength of the

relationship between air temperature and water temperature of aquatic habitats [123–126]. As

estimates of k exhibit large variability and high specificity to local features, we set k to unity
and ΔT to a constant value of 2˚C due to absence of information on the location, size and

ambient features of aquatic habitats in the study region. However, sensitivity analyses were fur-

ther conducted to examine the effect of various values for k and ΔT on mosquito density and

malaria transmission (see supplemental text).

Mosquito biting rate (a). Female mosquitoes require blood meals for egg development

and will feed on blood hosts to obtain the proteins and calories needed to support development

[127]. After eggs mature and are oviposited, surviving females can again seek a host for blood

feeding and repeat this cycle of gonotrophy. The amount of time spent in blood meal digestion

and egg development is strongly impacted by temperature [9,128] and does not appear to

depend on infection status of mosquitoes in the egg generation state [129]. The temperature-

dependent estimate of the mosquito biting rate is found by inversion of the duration of gono-

trophy:

aðTÞ ¼ 0:017T � 0:165 ð16Þ

Sporogony (n). Plasmodium parasites within infected mosquitoes must develop further

into sporozoites to produce infections in humans [130–132]. The duration of sporogony (n,

i.e. the extrinsic incubation period) is modulated by ambient temperature [9,133,134] in a

nonlinear fashion similar to mosquito development (Eq 17). Under warm temperatures, mos-

quitoes spend less time incubating the parasite and are likely to have more infective bites,

whereas under colder conditions mosquitoes may not live long enough to feed again and

transmit the pathogen. The relationship depicting the influence of temperature on the develop-

ment of the Plasmodium parasite within the vector can be summarized mathematically as

[135,136]:

nðTÞ ¼ ð0:000112TðT � 15:384Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35 � T
p

Þ
� 1

ð17Þ

Population scaling parameter (s). Environmental and population factors, such as prox-

imity to mosquito breeding sites, area vegetation, human genetics and behavior, and mosquito

biting behavior have been recognized for creating malaria transmission hotspots [61,137–139].

These transmission hotspots reflect the so-called 20/80 rule [140–143], common in infectious

diseases, in which a small proportion (e.g. 20%) of the population bears most of the burden of

transmission (80%) and contributes considerably more to the force of infection than sur-

rounding communities in the same region [137,140,141]. Because of this heterogeneity, the

effective number of individuals actively involved in malaria transmission may be lower than

the total human population in a region. Therefore, to model the population size of the trans-

mission system, we estimate an effective population size within the model as P–the product of

scaling parameter s and N, the human census population.

Simulation of malaria incidence. The malaria vector exhibits strong and complex rela-

tionships with the meteorology and hydrology of its local environment, which influence its

entomology and ability to transmit the malaria parasite. Laboratory and field experiments

have elucidated and quantified several of these relationships mathematically. Combining the
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EIR, which allows for a simplified expression of mosquito entomology and malaria transmis-

sion, with data-assimilation and mathematical modeling approaches has the potential to

improve simulation of malaria incidence and representation of the biophysical relationships

underlying climate modulation of malaria transmission in implicit models.

In this study, we use the environmentally-driven EIR model framework to simulate local

malaria transmission among populations in Rwanda. A parsimonious model of malaria trans-

mission, driven by temperature and rainfall, is coupled with Bayesian inference. This com-

bined model-inference system is then used to estimate local transmission parameters, malaria

epidemiology, and to simulate malaria incidence, by tracking the number of newly infected

individuals as the environmentally-driven transmission model evolves over time. Our analyses

indicate that the climate-malaria model can accurately simulate malaria incidence across

Rwanda’s diverse climate landscape, while estimating ento-epidemiological parameters sup-

porting local malaria transmission.

Study region. The study region is Rwanda–a small, landlocked country in eastern sub-

Saharan Africa. Rwanda has diverse terrain, with elevations up to 4200m above sea level in the

north and west and as low as 900m above seas level in the east and south [144]. The large dif-

ference in geography is associated with distinct climate regimes across the country. The high-

lands are temperate and experience year-round temperatures that hover around 17.5˚–19˚C,

which are slightly less suitable to mosquito and parasite activity [8,9,27], compared to the

warmer tropical temperatures (20˚–24˚C) found across the lowlands. Two rainy seasons exist

in the country, primarily because of the seasonal progression of the Inter-Tropical Conver-

gence Zone (ITCZ)–a longer season lasting from February–June and peaking in April and a

shorter one between September–December, peaking in November. Additionally, across the

country rainfall varies distinctly, increasing from the east and southeast (~900mm annual aver-

age) to the west and northwest (~1500mm annual average) [52,144].

Table 2. Description of the parameters of the malaria transmission model.

Parameter Description Prior ranges Unit Reference

μBS† Birth rate (57�365)-1 day-1 Census

δ† Death rate (53�365)-1 day-1 Census

μEI‡ Duration of parasite incubation 7–14 day Lit[45]

μTS† Duration of treatment + prophylaxis 30 day Lit[78–83]

μIR† Duration of untreated infection 5 day Lit[84–87]

fT
† Proportion of infected receiving full treatment 0.5 - Lit[74]

μRS‡ Duration of patent/sub-patent period 120–365 day Lit[43,49,88–90]

PMH
† Probability of transmission from mosquito to human 0.5 - Lit[50,91]

PHM
† Probability of transmission from human to mosquito 0.125 - Lit[76,92,93]

qR
‡ Infectivity of non-clinical cases relative to clinical cases 0–0.5 � (PHM) - Lit[46–48]

ε† Number of eggs laid per gonotrophic cycle 50 - Lit[94–96]

μM† Daily adult mortality rate -ln 0.98 - -

a.R‡ Egg-adult sensitivity to surface moisture 0–1 - See supplement

b.R‡ Mean anomaly of accumulated rainfall -5–5 - See supplement

D‡ Length of accumulated rainfall contributing to mosquito breeding 7–200 day Lit[20, 72, 97, 98]

s‡ Population scaling factor 0–1 - -

† Indicates model parameter values that are fixed based on literature or demographic data, whereas
‡ indicates parameter values that are inferred from model fitting of observed data.

https://doi.org/10.1371/journal.pcbi.1010161.t002
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Malaria transmission in Rwanda occurs year-round, and has two seasons, one peaking

around April–May and the other during November–December. These peaks in transmission

correspond to the two peaks in the bimodal rainy season. Although the entire population is at

risk of transmission, malaria varies geographically across the country. In the highlands in the

west and north, the burden of malaria is lower compared to the lowlands in the south and east

[36]. In Rwanda, as is in most of sub-Saharan Africa, Plasmodium falciparum is the prevalent

cause of malaria disease [145–147]; and Anopheles gambiae sensu lato (s.l.), a highly efficient

vector of the parasite [148,149] is the most common malaria vector across the country

[55,150,151]. Anopheles funestus and other Anopheles species are also found throughout the

region but in fewer numbers.

Malaria and climate data. Malaria data used in this study were acquired from the

Rwanda, Ministry of Health (MoH) and are publicly available via the Rwanda Biomedical Cen-

ter (RBC) web portal [152]. In an effort to improve control of malaria transmission and lower

the burden of malaria, Rwanda established improved reporting and laboratory testing practices

for suspected malaria and other infectious diseases beginning in 2011, as well as greater Insec-

ticide-treated bed net (ITN) coverage, Indoor Residual Spraying (IRS), and community-level

case management [36,52,56]. We obtained weekly reports of parasitologically-confirmed

malaria incidence during 2016 to 2019 for 42 public health catchment areas. These datasets

were used to train the climate-malaria model in conjunction with data assimilation approaches

for each catchment site.

Weekly rainfall (2005–2019) and temperature (2006–2016) data were obtained from the

publicly available [153] University of California, Santa Barbara Climate Hazards Group Infra-

Red Precipitation and Temperature with Station dataset (CHIRPS and CHIRTS) products

[154,155]. These data were then re-gridded to match each catchment site. Due to a lack of up-

to-date data, weekly temperature averages derived from the 2006–2016 CHIRTS data were

used to drive the climate-malaria model in conjunction with contemporaneous weekly

CHIRPS rainfall estimates. Potential bias introduced from historical averages were assessed by

comparing malaria incidence from final model conditions forced by available weekly tempera-

ture data versus historical averages (see supplement).

Model inference system. To simulate malaria transmission and infer model parameters,

we pair the climate-malaria model with malaria incidence data using a data assimilation

method for state-space models–the Ensemble Adjustment Kalman Filter (EAKF). Using Bayes’

Rule, the EAKF optimizes current model parameters and state variables, so that the first and

second moments of the currently observed model state (i.e. incidence, μEI�E) align with those

of the observed incidence data [156,157].

We initialize the model-EAKF system with an ensemble of 300 simulations with parameter

values (D, μRS, μEI, a.R, b.R, qR and s) and initial state estimates (S0, E0, I0, T0, R0) randomly

drawn from uniform distributions, U (a, b), in which a and b indicate lower and upper bound-

ary values (Table 2). We applied the EAKF using iterated filtering, which repeatedly assimilates

the same time series [158] in a stepwise approach in order to improve convergence to more

probable parameter and state variable solutions. Starting from time t = 1, the EAKF uses obser-

vation at t = 1 to update prior ensemble members into posteriors. To assimilate the next obser-

vation, the EAKF system is re-initialized from t = 1 using these same posteriors parameters as

priors, filtering observations again from t = 1 to t = 2 and generating new posteriors. The

model-EAKF system continues this recursive filtering and assimilation of observed data in a

growing, stepwise fashion, until the final observation, t = 208, is assimilated, producing the fil-

ter estimates for the first iteration. A total of 10 iterations were performed using the observed

time series, with subsequent iterations initialized with ensembles drawn from N (u, sigma) of

the previous iteration. The annealing factor αi used in computing sigma for each iteration i, is
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defined as follows:

ai ¼ 1þ
0:5

ð1þ iÞ0:75

 !

ð18Þ

During data assimilation, divergence of the EAKF system from observed data can occur. To

limit this, we inflate the variance (3%) and randomly re-probe (5%) the prior ensemble before

each filter update [157]. Also, we observed that assimilation of periods of anomalously low

malaria activity typically in the later years of the study resulted in massive failure of the EAKF

during preliminary analysis. One explanation considered for these failures was the absence of

data on intensified malaria control deployed across Rwanda, particularly in the last years of

the study [36–38]. To ensure that the model-EAKF system is properly constrained by the data

at hand, we evaluated the loglikelihood (llt) of the full timeseries following each update to track

filter failure (Eq 19). Filter failure was heuristically defined as a 5% departure from the current

maximum loglikelihood. If this condition is violated, assimilation of an observation that results

in massive failure is skipped and the prior is integrated forward to the next observation.

llt ¼ �
n
2
ln 2p �

n
2
ln s2 �

1

2s2

Pn
j¼1
ðxj � mÞ

2
ð19Þ

Where x is the reported malaria incidence at week j; μ is the ensemble mean and σ the

ensemble standard deviation of malaria incidence simulations for week j, generated from pos-

teriors following updates at time t.
For each local site, model fitting of malaria incidence is conducted inter-annually for four

continuous years (2016–2019) and separately for each study year. Parameters for temperature-

dependent vector and parasite biology were taken from literature, while the parameters for

rainfall-dependent vector dynamics were estimated using data from field studies and fitting of

the malaria transmission model. Inferred parameter values and uncertainty are reported as the

mean and 95% credible interval (CI) of the posterior ensemble from the final iteration. Using

these mean and 95% CI values, together with rainfall and temperature data, the transmission

model was integrated forward to estimate the true state of observed malaria incidence and the

uncertainty of that estimate. Model inference is not performed at the province level but aggre-

gates of modeled incidence from local sites comprising the five provinces of Rwanda (East,

Kigali City, South, West and North) are reported. We compared malaria incidence simulated

by the model-EAKF system to observed local and regional data using Coefficient of Determi-

nation (R2) and Mean Absolute Relative Error (MARE). We also compare model inferred

parameters to previous estimates from other studies.

To validate the model-inference system, we used synthetic malaria data generated with the

model in free simulation. Parameter estimates inferred by the model-EAKF system using the

synthetic data were then compared to the parameter values used to generate the synthetic data

(see supplement). All simulations and analyses were conducted in R statistical software [159].
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