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Deep representation features from DreamDIAXMBD

improve the analysis of data-independent
acquisition proteomics
Mingxuan Gao 1,2, Wenxian Yang 3, Chenxin Li1, Yuqing Chang1, Yachen Liu1,2, Qingzu He2,4,

Chuan-Qi Zhong5, Jianwei Shuai2,4, Rongshan Yu 1,2,3✉ & Jiahuai Han 2,5,6✉

We developed DreamDIAXMBD (denoted as DreamDIA), a software suite based on a deep

representation model for data-independent acquisition (DIA) data analysis. DreamDIA

adopts a data-driven strategy to capture comprehensive information from elution patterns of

peptides in DIA data and achieves considerable improvements on both identification and

quantification performance compared with other state-of-the-art methods such as Open-

SWATH, Skyline and DIA-NN. Specifically, in contrast to existing methods which use only 6

to 10 selected fragment ions from spectral libraries, DreamDIA extracts additional features

from hundreds of theoretical elution profiles originated from different ions of each precursor

using a deep representation network. To achieve higher coverage of target peptides without

sacrificing specificity, the extracted features are further processed by nonlinear discriminative

models under the framework of positive-unlabeled learning with decoy peptides as affir-

mative negative controls. DreamDIA is publicly available at https://github.com/xmuyulab/

DreamDIA-XMBD for high coverage and accuracy DIA data analysis.
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Liquid chromatography coupled with tandem mass spectro-
metry has now become one of the most widely used
approaches for high-throughput proteome data acquisition

due to its capability to quantify tens of thousands of peptides per
hour1,2. To meet the growing demand of large-scale quantitative
proteome research, data-independent acquisition (DIA)3–14 mode
was established. Instead of selecting specific precursors with
higher intensities for fragmentation as in data-dependent acqui-
sition (DDA), DIA encapsulates all precursors in a pre-designed
isolation range for MS2 acquisition in an unbiased way15. It has
been proven to outperform DDA and selected reaction mon-
itoring on various important aspects such as coverage, quantifi-
cation accuracy and reproducibility16–19.

Despite various advantages of DIA, the challenge of DIA data
analysis roots in its convoluted spectra originated from signals of
multiple co-fragmented precursor ions. To overcome this pro-
blem, DIA data analysis is usually performed with the peptide-
centric scoring (PCS) strategy5,20, where a spectral library that
contains information of precursor ions of interest is queried
against a series of raw data files to achieve higher sensitivity for
large-scale complex biological samples16,21,22. In general, PCS
software tools extract the elution profiles of the fragment ions in
the library, identify and score them with a series of features and
calculate the final discriminant scores for false-positive
control23–25. Naturally, both the extracted features and the dis-
criminative model used to generate the final scores determine,
jointly, the performance of the software on protein identification
and quantification. For the discriminative model, semi-supervised
linear discriminant analysis24 and semi-supervised support vector
machine26 have been used in DIA data analysis software tools.
Nonlinear discriminative models such as the optional XGBoost
classifier integrated in PyProphet25 were also used. DIA-NN27

further introduced a neural network-based model and achieved
significant performance improvement. For the elution profile
scoring methods, however, almost all the existing software tools
use manually curated features by experts, such as Pearson cor-
relation of the elution profiles, the shape of the elution profiles,
relative intensities of the fragments, etc.27–31, which are heuristic
and may not completely cover the intrinsic characteristics of the
complex elution patterns in DIA data.

Recently, deep representation learning has been extensively
used for feature extraction from unstructured data32–34 and
results show that features thus obtained outperform those from
conventional feature engineering methods, as deep networks are
able to exploit the intrinsic joint distribution of signals in the
high-dimensional feature space35. For DIA data analysis36, deep
learning has also been used in the prediction of fragment inten-
sities, retention time (RT), and ion mobility37–41, and de novo
sequencing42.

In this paper, we present DreamDIAXMBD (denoted as
DreamDIA. XMBD refers to Xiamen Big Data which is a bio-
medical open software initiative in the National Institute for Data
Science in Health and Medicine, Xiamen University, China), a
PCS software suite for DIA data analysis using chromatogram
features extracted by a deep representation network. In contrast
to most existing PCS software tools18,29,30 which only consider 6
to 10 elution profiles for peptide scoring, DreamDIA considers
hundreds of additional elution profiles for each precursor
including all the theoretical fragment ions, potentially unfrag-
mented precursor ions, isotopic peaks and so forth. These elution
profiles are compiled into a set of representative spectral matrices
(RSMs), which are then input to a deep representation network
using the Long Short-Term Memory (LSTM)43 model to capture
more informative precursor features for peptide identification.

To fully utilize the deep representation features for precursor
scoring, we used a nonlinear method, the XGBoost, as the

discriminative model and trained an XGBoost classifier based on
all the precursors in the spectral library. Moreover, to prevent
overfitting, we followed the framework of positive-unlabeled
learning44 by using the decoy precursors as affirmative negative
controls in training to prevent the XGBoost classifier from
picking up false targets25,45 in the spectral library that are not
detectable in a specific sample. For quantification, we calculated
the weighted area under the chromatogram for each fragment
ion, where the weight of each fragment is determined as the sum
of its Pearson correlations with all the other fragments from the
same precursor. The hypothesis behind this is that noise caused
by coeluted peptides should have lower correlations with the true
chromatograms.

We compared the identification and quantification perfor-
mance of DreamDIA with several state-of-the-art open-source
PCS tools including OpenSWATH29, Skyline30 and DIA-NN27.
Our method outperformed the other tools with more target
precursors identified in the two-species library test46 and more
accurate quantification in the LFQbench test47. Compared with
the data-driven curation tool Avant-garde31, DreamDIA pre-
sented higher quantification accuracy in the LFQbench test.
Furthermore, DreamDIA could confidently identify about 1.5-
fold more deamidated peptides compared with DIA-NN, and has
great potential for accurate post-translational modification
(PTM) profiling. DreamDIA provides a deep representation
network-based feature extraction method for DIA data analysis,
in combination with an interface to integrate deep learning
algorithms to achieve better performance in large-scale biological
and medical proteome research. The training data of the deep
representation model can be easily obtained from public datasets.
We also provided a trained model that can be directly applied to
analyze DIA data with high coverage and accuracy, as well as an
application programming interface (API) for customized model
training. Users can choose our default model for data analysis
from widely used data acquisition equipments conveniently
without training, or use our API to train a customized model in
minutes that better fits their own experiments.

Results
DreamDIA substantially improves the identification coverage.
We first compared the identification performance of DreamDIA
with a generic deep representation model trained on about 1
million RSMs from three public datasets with that of Open-
SWATH, Skyline, and DIA-NN using the mouse cerebellum
(MCB) dataset48 (Methods). The workflow of DreamDIA and
the structure of deep representation models used are shown in
Fig. 1. Typically, as for routine analysis of DIA-MS data, the
spectral libraries can be built from DDA master samples con-
taining the same proteins with the corresponding DIA data, or
from the DIA data directly with the aid of spectra deconvolution
algorithms such as DIA-Umpire49 and directDIA50 in Spectro-
naut. In this study, we evaluated the identification performance
with spectral libraries from both sources. As different software
tools use different strategies for false discovery rate (FDR) esti-
mation, it is difficult to compare the identification performance
directly. Herein, we adopted the two-species spectral library
method19,27,46 for benchmarking, where the same number of
Arabidopsis51 precursors were added to the mouse sample-
specific spectral libraries as false-positive controls. Proxy FDR at
precursor level was calculated as the number of Arabidopsis
precursors identified divided by the number of all precursors
identified. Results show that DreamDIA identified more mouse
precursors at different FDRs compared with other software tools
on both DIA-Umpire generated library (Fig. 2a and Supple-
mentary Data 1) and DDA master sample library

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02726-6

2 COMMUNICATIONS BIOLOGY |          (2021) 4:1190 | https://doi.org/10.1038/s42003-021-02726-6 | www.nature.com/commsbio

www.nature.com/commsbio


(Supplementary Fig. 1a). Further evaluation of all 10 runs on the
MCB dataset shows that DreamDIA identified more mouse
precursors, peptides, and proteins at 1% precursor FDR using
both libraries (Fig. 2b, Supplementary Data 2 and Supplementary
Fig. 1b).

To fully understand the mechanism behind this performance
improvement, we extracted the RSMs of the mouse precursors
reported by DreamDIA that were missed by other tools. Manual
inspection on these elution profiles (example shown in

Supplementary Fig. 2) shows that in most of these cases, the
elution profiles of the ions listed in the spectral libraries did not
contain sufficient information for peptide identification. Hence,
traditional approaches that only examined these elution profiles
could not achieve satisfactory results. On the other hand, as
DreamDIA examined significantly more theoretical ions with its
deep representation network, these target peptides can be
successfully recovered based on the confluent elution profiles
from the additionally examined ions.

Fig. 1 Schematic illustration of DreamDIA. a Schematic diagram of DreamDIA. First, chromatograms of each target/decoy precursor and its
corresponding fragment ions are extracted. Then the chromatograms are input to the trained deep representation model to calculate low-dimensional
features. The deep representation features are further combined with other features, such as precursor m/z and charge, to calculate the final discriminant
score. b The deep representation model in DreamDIA. The input RSM consists of six types of XICs, namely, library, self, qt3, ms1, iso, and light XICs. The
model contains two LSTM layers and two full-connected (FC) layers, through which the input RSM was transformed to the 16-dimensional deep
representation features by the first FC layer and to the deep discriminant score (dds) by the second FC layer.

Fig. 2 Identification performance evaluation of DreamDIA on the mouse cerebellum dataset with two-species library method. a Identification
performance on the S1-1 run of the MCB dataset. The numbers of mouse precursors identified at different FDRs were plotted. Each point stands for an
Arabidopsis (false-positive) precursor and its discriminant score as a cut-off value. The x-axis value stands for the estimated FDR, calculated as the number
of Arabidopsis precursor with higher discriminant score than this cut-off value divided by the number of all the precursors with higher discriminant score
than this cut-off value. The y-axis value stands for the number of mouse precursors with higher discriminant score than this cut-off value. b Identification
performance on all 10 samples of the MCB dataset. The numbers of mouse precursors, peptides, and proteins at 1% precursor FDR (the respective
numbers indicated by the dashed line in (a)) were plotted. Each error bar stands for the mean and standard deviation of the results of n= 10 biologically
independent runs.
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Interestingly, in accordance with previous work from Parker
et al.52, which found that libraries from DIA-Umpire have better
data completeness compared with DDA master sample libraries,
DreamDIA identified significantly more precursors when it was
used together with DIA-Umpire library than with DDA master
sample library (Fig. 2 and Supplementary Fig. 1). Of note,
although using the library constructed with DDA run on master
samples is still a preferred approach for DIA data analysis, the
identification performance of such approach may be subject to
the discrepancies in signal characters and RT in-between DDA
and DIA runs31. Thus, this result reveals the potential of using
libraries produced directly from deconvolution of DIA data to not
only remove the dependency on sample-specific complementary
DDA runs, but also improve the identification coverage by using
it together with improved peptide scoring strategies.

To test DreamDIA for analyzing data acquired at different
gradient lengths, we further used the HeLa dataset27,46 for
comparison. As shown in Supplementary Fig. 3, DreamDIA still
achieved the best identification performance compared with the
other software tools for data acquired at all four different gradient
lengths ranging from 0.5 to 4 h.

In addition, we also evaluated whether DreamDIA could
correctly identify the deamidated peptides with extremely small
mass shift of 0.9840 Da on the MCB dataset (see Supplementary
Note 1 and Methods). With FDR calculated by the two-species
method, DreamDIA confidently identified about 1.5-fold more
deamidated peptides compared with DIA-NN (Supplementary
Fig. 4), indicating the improved capability of DreamDIA to
identify PTM peptides with small mass shifts.

DreamDIA produces reliable identification improvements. To
test the reliability of the identification improvement brought by
DreamDIA, we compared the identification consistency between
DreamDIA and the other software tools. Precursors, peptides,
and proteins identified at least once by each software tool at 1%
precursor FDR in all 10 parallel runs on the MCB dataset were
considered. Results show that DreamDIA has highly consistent
precursor, peptide, and protein identifications as well as steadily
more unique identifications compared with OpenSWATH, Sky-
line, and DIA-NN (Fig. 3a–c and Supplementary Data 3). The
results from decoy-based default FDR method (Fig. 3d–f and
Supplementary Data 3) also show comparable consistency with
the ones from two-species FDR method (Fig. 3a–c), which indi-
cates that DreamDIA can produce highly consistent identification
results when decoy-based FDR estimation is used. Furthermore,
the Gaussian-like logarithmic intensity distribution of the iden-
tified precursors (Fig. 3g, h and Supplementary Data 3) indicates
that DreamDIA has no abundance bias for peptide identification.
Finally, the MS1-related subscores calculated by OpenSWATH
further confirmed that the majority of those additionally identi-
fied precursors by DreamDIA indeed had MS1 signals, and the
distributions of these subscores were very similar to those of
consensus precursors identified by all the software tools (Sup-
plementary Fig. 5).

Impact of representative spectral matrix design to identifica-
tion performance. To improve the identification performance,
we expected to involve as many signals a peptide can induce
during mass spectrometry characterization as possible so that the
deep representation model has sufficient information to dis-
criminate between the elution patterns of real peptides and those
of decoys. To this end, in DreamDIA, six different types of
fragment ion XICs were collected and stored in the RSM, which is
then input to the deep representation models for peptide iden-
tification (Fig. 1b, Methods). The library part contains XICs of the

fragment ions in the spectral library at three different resolutions,
more specifically, r, 0.2 ⋅ r, and 0.45 ⋅ r, where r denotes the basic
resolution that can be specified by users according to the acqui-
sition resolution. These XICs reflect elution information of the
most significant fragments at the library building stage. On top of
the library part, we also considered XICs of the (M+ 1)/q isotopic
peaks of the corresponding library fragments as the iso part,
where M and q stand for the mass and charge of the fragment ion
respectively. In addition, XIC at (M− 1)/q of each library frag-
ment is also included as the light part indicating the possibility of
this fragment being actually a heavy isotopologue of a light
fragment. The self part contains XICs of all the theoretical frag-
ment ions with 1 and 2 charge(s) for one precursor. Besides
fragment ions, we put XICs of precursor ion with the same three
resolutions and its (M+ 1)/q to (M+ 4)/q isotopic peaks as well
as the XIC at (M− 1)/q at the basic resolution into the ms1 part.
XICs of unfragmented precursor ion and its (M+ 1)/q to
(M+ 4)/q isotopic peaks were also considered as the qt3 part.
These two parts contain elution information of the precursor ion
in both MS1 and MS2 spectra. Note that except for the XICs of
the library part, most elution profiles above were not considered
in conventional algorithms for peptide identification and
quantification.

To test whether these additional elution profiles contribute to
peptide identification, we trained eight deep representation
models with ablation of different XIC part, and compared their
performance on the MCB dataset with both DIA-Umpire library
and DDA master sample library. All the models had the
same architecture and hyperparameters except for the input
dimension, and were trained on the same training set. As
expected, removing any XIC part from RSM led to a performance
drop in mouse precursors identification results (Fig. 4a, b and
Supplementary Data 4, 5), confirming the contribution of all the
XIC parts included in our design. Top performance drops were
observed when the library XICs with 0.2 ⋅ r and the ms1 XICs
were excluded, indicating the importance of the information
embedded in these XIC parts to the identification tasks. We also
evaluated deep representation models with different hyperpara-
meters, and small variations were observed in a relatively wide
parameter space (Supplementary Table 1).

To further illustrate the contributions of each XIC part to the
deep representation model, we used the SHAP53 deep explainer to
visualize the feature importance distribution of the RSM. SHAP is
a unified framework based on additive feature attribution
methods for interpreting predictions of complex models by
assigning each feature an importance value for a particular result.
Herein, we randomly picked 10,000 RSMs from the training sets,
with 5402 RSMs from real peptide precursors and the rest from
decoys. The heatmaps of the averaged SHAP values of these
RSMs confirm the contribution of each XIC part to the deep
representation model (Supplementary Fig. 6), with the most
significant contributions from library, self and ms1 parts. As
expected, the SHAP values of decoys had an opposite sign to
those from real peptide precursors, and so did the SHAP values of
the light part to those of other parts, indicating their opposite
effects on the peptide identification results. Moreover, the signals
in the middle of the acquisition cycles, where they peak, show
higher feature importance than those at both sides of the
scanning window.

Nonlinear discriminative model improves the classification
performance. The final discriminant score of each precursor in
DreamDIA was calculated by a binary classifier to incorporate
additional features not captured by the deep representation model
(Supplementary Note 2) for better identification results (Fig. 1a).
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Similar to other DIA data analysis tools, the training of the final
discriminative model was performed using a positive-unlabeled
learning framework based on labels provided by the spectral
library, where the decoy precursors produced by in silico decoy
generation methods were taken as confirmed negative control, and
the target precursors were treated as unlabeled class as they may
also include negative precursors. DreamDIA integrated five widely
used decoy generation methods (Supplementary Fig. 7a) and took
the shuffle algorithm as the default option as suggested by Röst
et al.29. We tested seven commonly used classifiers including LDA,
logistic regression, CART decision tree, Adaboost, gradient
boosting decision tree (GBDT), random forest and XGBoost on
the MCB dataset. The deep discriminant score (dds), which is
calculated by the deep representation model to indicate the
probability that each precursor in the spectral library belongs to a

real peptide (Methods), was also included in our comparison.
With the features extracted by the deep representation network, all
the classifiers showed relatively better identification performance
compared with other PCS software tools (Supplementary Fig. 8).
Interestingly, although the identification performance of dds was
inferior to those of other classifiers as it only considers the features
from the elution profile, it still delivered significantly better per-
formance compared with other traditional methods where more
information such as the length and charge of peptides were con-
sidered, signifying the importance of fully utilizing the informa-
tion embedded in elution profiles for peptide identification in
DIA. Among all the tested classifiers, tree-based ensemble models
including GBDT, XGBoost, and random forest obtained better
performance, while linear models such as logistic regression
and LDA performed slightly worse than nonlinear models.

Fig. 3 Identification results evaluation of DreamDIA on the mouse cerebellum dataset. a–f Identification consistency of mouse precursors, peptides, and
proteins at 1% precursor FDR using two-species library method and decoy-based default FDR method. Precursors identified at least once for each software
tool in all 10 runs on the MCB dataset were considered. g Logarithmic intensity distributions of the mouse precursors identified at 1% precursor FDR using
two-species library method. All the precursor identification records in all 10 runs for each software tool were considered. To make the distributions
comparable, the logarithmic intensities were z-normalized by subtracting the mean intensity and then divided by the standard deviation. h Log10-intensities
of the precursors uniquely identified by DreamDIA in all the biologically independent 10 runs on the MCB datasets.
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t-SNE dimension reduction embedding of the 16-dimensional
deep representation features (Supplementary Fig. 9) shows that
although the positive and negative precursors were highly dis-
tinguishable in the feature space, the separation boundaries
between them can be highly nonlinear. Hence, it could be difficult
for linear classifiers to fully discriminate between real peptide
signals and noise.

Finally, we performed a comprehensive validation of all the
compatible decoy generation methods of DreamDIA, DIA-NN,
OpenSWATH, and Skyline on the MCB dataset (Supplementary
Fig. 7b). All the methods presented highly stable performance for
peptide identification except the random mass shift algorithm in
Skyline that induced a substantial drop.

DreamDIA shows better quantification performance. The
library XICs in RSM reflect the elution profiles of the most sig-
nificant fragment ions during library building, and show higher
feature importance in the experiments above. Thus, we used the
areas of these XICs weighted by the sums of their Pearson cor-
relations with all the other XICs for precursor quantification
(Methods). We compared the quantification performance of
DreamDIA, OpenSWATH, and DIA-NN using the LFQbench
software suite47, and evaluated the accuracy of quantification
algorithms by measuring their abilities to recover the groundtruth
abundance ratios on its internal dataset containing proteins from
different species (human, yeast and E. coli) at known ratios. We
tested with the HYE110 and the HYE124 samples with 64-
variational-window setup acquired from TripleTOF 6600 sys-
tems. Each software tool outputs results at 1% precursor FDR
based on its own standard. Overall, DreamDIA achieved more
accurate quantification performance at both peptide and protein
levels as reflected by smaller deviations from its recovered ratios
to the groundtruth compared with the other two tools on both
HYE110 (Supplementary Fig. 10) and HYE124 (Supplementary
Fig. 11) datasets. The global accuracy metric calculated by the
LFQbench package, which reflects the median deviation of the
calculated log-ratios of the quantification results to the expected
values, further confirmed the superior quantification performance
of DreamDIA at both peptide and protein levels compared with
the other two tools on both datasets (Supplementary Tables 2, 3).

We further tested whether the inclusion of more fragments
would affect the quantification accuracy. We modified the
original quantification calculation to include top 3 to 15 self

fragments sorted by their Pearson correlations with the first
library fragment, and their Pearson correlation weighted areas
were added to the final results. Inclusion of these fragments has
relatively small impact on the quantification results, with slight
improvement on yeast peptide and protein quantification but
slight degradation on E. coli peptide and protein quantification in
terms of deviation of the measured ratios to the groundtruth
(Supplementary Figs. 12, 13 and Supplementary Table 4). It is
noteworthy that although the deep representation model can
extract useful information from the RSMs for precursor
identification, many theoretical XICs may contain complex
interference in their elution profile waveforms. Therefore,
inclusion of XICs with poor signal-to-noise ratio without
performing sophisticated denoising may not improve quantifica-
tion results.

Benchmarking of DreamDIA with Avant-garde. Avant-garde31

is a recently published data curation tool integrated in Skyline for
DIA and parallel reaction monitoring (PRM) analysis. After
routine analysis performed by Skyline, it can select the best XICs
using genetic algorithms, adjust peak boundaries and provide
intuitive subscores. With the refinement of Avant-garde, frag-
ments with interference are discarded and a high quantification
precision can be achieved. In this work, we compared DreamDIA
with Avant-garde using the LFQbench HYE110 dataset, which
was also used in the original paper of Avant-garde31. Skyline was
included for comparison since it could be regarded as an unop-
timized version of Avant-garde. As expected, DreamDIA could
identify more peptides than both Skyline and Avant-garde
(Supplementary Fig. 14a). For quantification, DreamDIA also
achieved higher accuracy as indicated by its closer medians of the
calculated log-ratios to the expected values compared with Sky-
line and Avant-garde, while Avant-garde showed lower quanti-
fication variation than DreamDIA due to its relatively aggressive
fragment filtering operation (Supplementary Fig. 14b–d).

Computational performance. The running time of DreamDIA is
proportional to the number of acquisition cycles specified for
each precursor to be analyzed by the deep representation model.
Overall, DreamDIA (v2.0.2) is about two-fold slower than
OpenSWATH when 50 acquisition cycles are specified, and about
seven-fold slower than OpenSWATH for 500 acquisition cycles
(Supplementary Fig. 15). DreamDIA was implemented in Python

Fig. 4 Optimization of the representative spectral matrix compositions in DreamDIA. The deep representation models trained on the RSMs with eight
different compositions as well as DIA-NN were tested on the S1-1 run of mouse cerebellum dataset using a DIA-Umpire library and b DDA master sample
library. Two-species FDR estimation method was used as in Fig. 2. The numbers of mouse precursors identified at different FDRs were plotted. r, the basic
resolution that can be specified by users according to the acquisition resolution.
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which is more suitable for feasibility validation. It is envisioned
that the computational complexity of DreamDIA could be further
reduced by reimplementing with more efficient programming
language such as C++ that was used in DIA-NN and Open-
SWATH, or incorporating algorithmic improvement such as
introducing pre-filtering algorithms to reduce the numbers of
RSMs for analysis in future developments.

Discussion
Feature extraction of elution profiles is crucial for both accurate
identification and quantification of peptides and proteins in DIA
data analysis. During the past decades, researchers have devel-
oped dozens of feature extraction rules to depict the elution
patterns of peptides in DIA data and suggested on selecting the
scoring methods for different projects. However, as the dis-
tributions of the signals and noise from different samples and
equipments can be highly variable, it is difficult for manually
curated scores to capture all such variance. Moreover, the com-
mon approach adopted by most current DIA data analysis soft-
wares, where only fragment ions from the spectral library are
examined, imposes another important limitation to the identifi-
cation performance as shown in our results.

With the fast accumulation of large amounts of DIA data being
generated by consortia around the world in recent years, data-
driven approaches are preferable to produce more accurate and
robust results without interference from subjective opinions. We
developed DreamDIA, a deep neural network-based DIA data
analysis software. By adopting a data-driven approach, the deep
representation network used in DreamDIA learns the distribution
of much broader elution profiles generated by DIA, from which a
more comprehensive representation of elution patterns can be
derived. As a result, DreamDIA prominently improves the
identification and quantification performance at both peptide and
protein levels compared with traditional approaches where only a
small number of ions selected by manually curated rules are
considered. Of note, one important characteristic of data-driven
approaches is that they can solve complex machine learning
problems by simple statistical models supplied with all relevant
data available rather than depending on customized features
derived from domain knowledge54. However, it can be antici-
pated that the performance of such a model will be highly asso-
ciated with the training data size. Indeed, in many data-driven
machine learning tasks such as object recognition and natural
language processing, there is a clear association of increased
benchmark performance with an increasing amount of training
data55. In this perspective, it is anticipated that the performance
of DreamDIA could further improve with the availability of more
high-quality training data in near future.

To make DreamDIA widely available to users of all back-
grounds to process their DIA data, we implemented a complete
DIA data analysis pipeline from raw data to quantification results
as a standalone software package. We anticipate that with the
significantly improved identification coverage, fidelity, and pro-
ducibility, DreamDIA will facilitate the integration of the large
volumes of DIA data currently being generated around the world.

Methods
Deep representation model in DreamDIA. The key step of DreamDIA is to
extract relevant features of the chromatograms with a deep representation model.
The input to the deep representation model is the RSM (Fig. 1b), a matrix con-
sisting of 170 XICs across six types of elution profiles, namely, library, self, qt3, ms1,
iso, and light. The library part contains 60 XICs in total, which include fragment
ions in the spectral library at three different resolutions, r, 0.2 ⋅ r and 0.45 ⋅ r, where
r denotes the basic resolution in ppm or Da. For each resolution, 20 XICs with
highest intensities are kept. Zero-filling is used if <20 fragments are available in the
library. After extraction, the XICs at the basic resolution are sorted by the sum of
their Pearson correlations with all the other library XICs. Once the order of XICs at

the basic resolution is fixed, XICs at the other two resolutions are sorted according
to their corresponding relationships to the XICs at the basic resolution. The iso part
contains 20 XICs at (M+ 1)/q of each library fragment, which corresponds to
potential isotopic peaks of these fragments. In addition, XIC at (M− 1)/q of each
library fragment, which indicates the possibility of this fragment being actually a
heavy isotopologue of a light fragment, is also included as the light part of RSM.
The self part contains XICs of all the theoretical fragment ions from one precursor.
Specifically, for precursors with two charges, fragment ions with one charge are
considered. For precursors with charges greater than two, fragment ions with one
and two charge(s) are considered. Intensity-based filtering or zero filling is used
when more or less than 50 fragments are available. After extraction, the self XICs
are sorted by their Pearson correlations with the first library XIC. Besides fragment
ions, we also include XICs of precursor ion at the three aforementioned resolutions,
its (M+ 1)/q to (M+ 4)/q isotopic peaks and the XIC at (M− 1)/q, both at the
basic resolution into the ms1 part. XICs of unfragmented precursor ion and its
(M+ 1)/q to (M+ 4)/q isotopic peaks are also considered as the qt3 part. The XICs
in these two parts are in a fixed order for all RSMs. The RT width of the RSM is set
to 12 acquisition cycles (around 3 s per cycle for most equipments) by default,
which is long enough for most elution signals as we manually verified on several
DIA datasets.

Our deep representation network consists of two LSTM layers and two full-
connected layers. The first LSTM layer has 128 neurons with an input dropout rate
of 0.4 and a recurrent dropout rate of 0.3. The second LSTM layer with 64 neurons
and the same dropout settings was then stacked on the first layer. Two full-
connected layers with 16 and 1 neuron(s) respectively were added on the top of the
model. The rectified linear unit (ReLU) activation function was used for hidden
layers, while the sigmoid function was used for the final layer to obtain an output
ranging from 0 to 1. The model was trained on the RSMs in the training datasets to
differentiate real precursors from decoys with a cross-entropy loss function. The
output of the final layer of the trained deep representation model, the dds,
represents the likelihood that a certain RSM is from a target peptide present in the
sample and is used for RT normalization and peak picking. In addition, the 16-
dimensional output of the second to last layer of the model is used as the deep
representation features, which is further input to the discriminative model to
generate the final discriminant score for each precursor from the spectral library
(Fig. 1b).

In our experiments, the training data of the default deep representation model
for DreamDIA (v2.0.2) includes three public datasets, the HEK293 dataset56, the
L929 mouse dataset57, and the BiolDS-OT dataset58 (Supplementary Table 5). For
the HEK293 dataset and the L929 mouse dataset, DIA-Umpire libraries were used,
while for the BiolDS-OT dataset, DDA master sample library was used. Decoys
were generated using the DreamDIA decoy generation module. Subsequently, DIA-
NN, OpenSWATH, and Pyprophet25 were used to find RT of each target or decoy
precursor in the spectral libraries across all runs. Results with FDR <1% were
retained. All the necessary XICs were extracted and saved as RSMs. In total, we
obtained around 1 million RSMs from the three datasets, which were split by 7:3 as
training and validation data for the deep representation model. The validation loss
stopped decreasing after 11 epochs. We then retrain the model with all the 1
million RSMs for 11 epochs to obtain the final model. Model training was
performed on a GeForce GTX 1080 GPU.

Building sample-specific spectral libraries. We tested DreamDIA with two types
of sample-specific spectral libraries in our experiments. One is the DDA master
sample library as provided by the original datasets and the other is the library
generated by the spectra deconvolution algorithm DIA-Umpire49. The following
workflow was used to create the DIA-Umpire libraries. First, we transformed the
raw data files to centroided mzXML files by ProteoWizard59 (v3.0.19317) with all
the other arguments unchecked. The resulting mzXML files were then processed by
DIA-Umpire (v2.0) to generate pseudo MS/MS spectra. X!Tandem60 and Comet61

were used to search these pseudo spectra, and the searching results were further
filtered by PeptideProphet62 and ProteinProphet63 in TPP64,65 (v5.2.0). Finally, the
sample-specific spectral libraries were generated by SpectraST66.

DreamDIA workflow. DreamDIA supports centroided mzML or mzXML MS data
files as input. It has also integrated the cross-platform MS file conversion tool
ThermoRawFileParser67 to read raw files directly from Thermo Fisher equipments.
After reading a spectral library, the decoy generation module of DreamDIA gen-
erates a decoy for each precursor ion. Five commonly used decoy generation
methods including shuffle, reverse, pseudo-reverse, mutate and shift are integrated
in DreamDIA as options (Supplementary Fig. 7a). Decoys generated from other
software tools such as OpenSWATH can also be used directly. After acquiring the
inputs file, a set of endogenous precursors in the library was randomly sampled for
RT normalization. The best RSMs were identified based on the dds output from the
deep representation model for each precursor in the sampled set across the whole
RT gradient. Then a regression model was fit for the time points of the best RSMs
against their normalized RT, by which the RTs of the other precursors in the
spectral library can be predicted. Herein, users can choose either a linear or a
nonlinear model in DreamDIA according to the RT distributions of the specific
datasets. For higher robustness, the Random Sample Consensus (RANSAC)
algorithm68 and the locally weighted scatterplot smoothing (LOWESS) algorithm

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02726-6 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1190 | https://doi.org/10.1038/s42003-021-02726-6 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


are used in the linear model and the nonlinear model respectively to detect outliers.
To distinguish between target and decoy precursors, a nonlinear discriminative
model was used in DreamDIA based on the deep representation features in
combination with other features such as peptide length and charges (Supplemen-
tary Note 2). Due to the existence of false targets in a spectral library, this model is
trained based on the principle of positive-unlabeled learning44 with decoy peptides
as affirmative negative controls while treating targets as unlabeled. We adopted the
naive approach that training a binary classifier directly between confirmed decoys
and undetermined target precursors to estimate the probability for an RSM of
belonging to a real peptide. XGBoost was chosen as the default discriminative
model for its superior performance (Results) and high efficiency. The software also
provides an option for users to choose other types of classifiers such as random
forest as the discriminative model. To further reduce the bias of RT dislocation
between spectral libraries and DIA runs, we adopt the test-time augmentation
strategy where all the RSMs within a certain range centered at the predicted RT
with dds higher than a given threshold were included as potential targets for a
precursor in the positive-unlabeled learning process. All the features of candidate
RSMs are used to train a binary classifier with depths of 6 and 12 for XGBoost and
random forest models, respectively, to assign a discriminant score for each RSM.
The number of estimators in the random forest model is set to 200 by default.

Finally, the discriminant score for each RSM was calculated with the trained
model, and the RSM with the highest discriminant score for each precursor is kept
for FDR control. The FDR is estimated by dividing the number of target precursors
by the number of all precursors with discriminant scores exceeding a cut-off score.
For a specific FDR level, DreamDIA searches for a proper cut-off score for valid
identifications. Protein-level FDR is calculated similarly by dividing the number of
target precursors by the number of all precursors exceeding a cut-off score for each
protein, respectively.

Peptide and protein quantification. For peptide quantification, a weighted area
method was used to mitigate the noise brought by other co-eluting ions.

QðPrecursorkÞ ¼ ∑
n

i¼1
∑
n

j¼1
CorrðCk;iðtÞ;Ck;jðtÞÞ �

Z tE

t0

Ck;iðtÞdt ð1Þ

Here C(t) refers to the elution chromatogram of an ion. Corr() denotes the Pearson
correlation of two fragment ions, and the integration calculates the area under the
ion’s chromatogram. This method quantifies a precursor by the areas of the
chromatograms of its fragment ions, and the weight of each fragment is set to the
sum of its Pearson correlations with all the other fragments from the same pre-
cursor. In general, the top six library fragments associated with each precursor
sorted by the sum of their Pearson correlations with all the other library XICs were
used for quantification. For protein-level quantification, the sum of the intensities
of the top three abundant precursors for each protein was calculated.

Benchmarking of precursor identification. We compared DreamDIA (v2.0.2),
OpenSWATH29 (v2.6.0), Skyline-daily30 (v21.0.9.118) and DIA-NN27 (v1.7.11) in
terms of precursor identification. For DreamDIA, default settings were used in all
experiments except that “--n_cycles 50” was specified for the MCB dataset with
DDA master sample library. For DIA-NN, the Linux command-line tool with
default settings was used. OpenSWATH was run with options “-readOptions
cacheWorkingInMemory -batchSize 0 -rt_extraction_window 1200 -threads 20”.
Then the output was processed by PyProphet-cli (v0.0.19)25 with “--lambda=0.4
--statistics-mode=local” options. Suboptimal peak groups were subsequently dis-
carded. For Skyline, the step-by-step settings are described in Supplementary
Note 3. We did not perform extensive parameter optimization for Skyline and
OpenSWATH, as it was shown that DIA-NN outperforms both of them27, which is
also validated by our results.

To build the two-species spectral library for benchmarking, the proteins from
other different species were added to the sample-specific spectral libraries as target
precursors, and were used to evaluate the false-positive identifications. The MCB
dataset48 and the HeLa dataset46 were first processed by DIA-Umpire to produce
the sample-specific libraries. The DDA master sample library of the MCB dataset
provided by the original paper was also used. Peptides that belong to multiple
proteins were discarded. For the second species, we extracted Arabidopsis
precursors from a spectral library built by Zhang et al.51. These precursors were
filtered to discard sequences that exist in the sample-specific libraries. Next, we
spiked them into the sample-specific libraries, where the numbers were exactly the
same as the sample-specific species precursors. Top six fragment ions with the
highest intensities for each precursor were retained.

Subsequently, all the sample files were processed by the software tools with the
resulting two-species libraries. For DreamDIA, centroided mzXML files were used
as input. For Skyline and DIA-NN, centroided mzML files were used. For
OpenSWATH, profile mzXML files were used as recommended69. Each software
tool first outputs all the identification results without default FDR control, so that
the proxy FDR by two-species library method could be calculated. Results at 1%
precursor FDR for each tool were also retained for evaluation (Fig. 3d–f and
Supplementary Data 3).

Evaluation of the contributions for each XIC type in RSM. We evaluated the
contributions for each type of XICs in RSM by stepwise exclusion of the six XIC
parts and the library part at the other two resolutions. RSMs with eight different
compositions containing 20, 40, 60, 110, 120, 130, 150, and 170 XICs, respectively,
were tested. First, eight deep representation models were built with the same
architecture and hyperparameters except for the input dimension. Then the models
were trained and validated on the same training set mentioned above. The best
epoch numbers were selected when the validation loss stopped decreasing after at
least 10 epochs. Finally, the trained models were used to analyze the S1-1 run in the
MCB dataset with both the DIA-Umpire library and DDA master sample library.
The numbers of mouse precursors identified at different FDRs with two-species
library method were compared.

Benchmarking of DreamDIA with Avant-garde. We compared the identification
and quantification performance of DreamDIA with Skyline and Avant-garde on
the LFQbench HYE110 dataset. We followed the evaluation methods as in the
Avant-grade paper31, while the analysis results of Skyline and Avant-garde were
directly obtained from its supplementary materials. For DreamDIA, default settings
were used and results at 1% precursor FDR were retained. The number of iden-
tifications and valid ratios were obtained from the R objects generated by
LFQbench software suite.

Evaluation of deamidated peptide identification performance. We followed the
method proposed in DIA-NN github repository (https://github.com/vdemichev/
DiaNN#ptms) to evaluate the identification confidence of deamidated peptides.
The PCS software should identify more deamidated peptides when the correct
deamidation mass shift 0.9840 Da is given, while as few identifications as possible
when a close pseudo mass shift 1.0227 Da is given.

We first built the sample-specific library using DIA-Umpire as follows. The
raw data files were transformed to centroided mzXML files by ProteoWizard59

(v3.0.19317) with all the other arguments unchecked. The resulting mzXML files
were processed by DIA-Umpire (v2.0) to generate pseudo MS/MS spectra. X!
Tandem60 and Comet61 were used to search these pseudo spectra with
deamidation modifications added in the searching parameters, and the searching
results were further filtered by PeptideProphet62 and ProteinProphet63 in TPP64,65

(v5.2.0). The sample-specific spectral libraries were subsequently generated by
SpectraST66.

Then the mass-to-charge ratios of deamidation-related ions were added with
N × (1.0227− 0.9840)/C to obtain the pseudo-modification library, where N
denotes the number of deamidation modifications and C denotes the ion charge.
Subsequently, equivalent Arabidopsis precursors were spiked into the sample-
specific library and the pseudo-modification library respectively.

Finally, the S1-1 run on the MCB dataset was analyzed twice using these two
libraries respectively for both DreamDIA and DIA-NN and results without default
FDR control were used for comparison. The mass shift of deamidation in
DreamDIA was also modified to 1.0227 Da while analyzing the pseudo-
modification library.

Statistics and reproducibility. No statistical tests were involved in this study. In
addition, all the data used are public datasets and all the codes used are publicly
available at Github to guarantee the reproducibility of all the experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets used in this study are publicly available at the ProteomeXchange
Consortium via the PRIDE70 or iProX71 partner repository. The dataset identifiers are
PXD015098, PXD021390, PXD011691, PXD005573, PXD016647 and PXD002952.
Source data for the graphs and charts in the main figures is available in the
Supplementary Data files and any remaining information can be obtained from the
corresponding author upon reasonable request.

Code availability
DreamDIA is open-source and available at https://github.com/xmuyulab/DreamDIA-
XMBD.
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