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Abstract

RNA-sequencing (RNA-seq) has rapidly become the method of choice in many

genome-wide transcriptomic studies. To meet the high expectations posed by this

technology, powerful computational techniques are needed to translate the

measurements into biological and biomedical understanding. A number of

statistical procedures have already been developed to identify differentially

expressed genes between distinct sample groups. With these methods statistical

testing is typically performed after the data has been summarized at the gene level.

As an alternative strategy, developed with the aim to improve the results, we

demonstrate a method in which statistical testing at the exon level is performed

prior to the summary of the results at the gene level. Using publicly available RNA-

seq datasets as case studies, we illustrate how this exon-based strategy can

improve the performance of the widely used differential expression software

packages as compared to the conventional gene-based strategy. In particular, we

show how it enables robust detection of moderate but systematic changes that are

missed when relying on single gene-level summary counts only.

Introduction

Deep sequencing of RNA (RNA-seq) has rapidly become a widely used technique

to characterize transcriptomes. Whilst facilitating detailed mapping of the

transcriptome over different cell types, perturbations and states, and providing

superior sensitivity over expression microarrays, the method has generated high

expectations [1–3]. To fully realize its potential, effective computational methods

are needed in the analysis of the RNA-seq datasets [1, 4].
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A fundamental research aim in RNA-seq studies is the identification of

differentially expressed genes between distinct sample groups (e.g., healthy and

disease). Accordingly, a number of statistical tools have already been developed

for this task, including methods based on negative binomial models [5–8], non-

parametric approaches [9, 10], and transformations of the read counts for linear

modelling [11, 12]. Currently, however, there is no clear consensus on the best

practices to detect differential expression from RNA-seq data [13, 14] whilst the

field continues to develop.

Currently, the most common strategy for statistical analysis of RNA-seq data is

based on the use of gene-level read counts [1, 13, 15, 16], which can be obtained,

for instance, by mapping the sequenced reads to defined genes in Ensembl [17] or

RefSeq [18]. Other approaches have also been developed for assembling the gene

and transcript models from the data and calculating abundance estimates based

on these models but this still remains a challenging task [8, 19]. In addition to

detecting differential expression at the gene or transcript level, RNA-seq data can

also be analysed for differential expression of isoforms based on exon-level

expression signals [19–22]. While isoform analysis is not the goal of our approach,

we present a method of gene-level differential expression analysis based on the

direct analysis of the exon expression signals. Here, instead of summarizing the

read counts across the exons prior to statistical testing, as is commonly done

(typically using the total read count), we demonstrate the utility of an alternative

strategy where the gene-level statistic is based on the statistical testing of the exon-

level read counts. This is motivated by previous observations with Affymetrix gene

expression microarrays indicating that statistical testing of probe-level expression

signals, rather than gene-level summary values, can markedly improve the

detection of differential gene expression, especially with small sample sizes [23–

26].

Fig. 1 illustrates the benefit of the proposed exon-based strategy over the

conventional gene-based strategy when detecting differential gene-level expres-

sion; a systematic significant change across most exons of the DCUN1D5 gene is

lost with the gene-based approach mainly due to single exons, while the exon-

based strategy identifies the gene as differentially expressed. This is because the

gene-based approach is sensitive to extreme outliers, which makes the fold-change

to shift to the direction of the extremely behaving exons. Due to the important

role of alternative splicing in creating complexity, it is beneficial for a testing

approach to be robust against single extreme values.

To systematically investigate the benefits of the proposed exon-based strategy in

detecting differentially expressed genes, we consider two widely-used software

packages that are conventionally applied to gene-level read counts, edgeR [7] and

limma [11] and were also found to perform highly competitively in recent

comparison studies [12, 14, 16]. However, our testing approach can be combined

with any method working on gene- or transcript-level read count values. For the

analyses presented, we have used two publicly available RNA-seq datasets as case

studies. In the first case study, we demonstrate how our exon-based strategy can

improve the sensitivity and specificity of the detections as compared to the
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Fig. 1. Schematic illustration of two alternative strategies (gene-based and exon-based) for detecting differential expression between two sample
groups. The RNA-seq data are from the MAQC dataset, containing two types of biological samples: human brain reference (brain) and human universal
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traditional gene-based strategy in the MicroArray Quality Control (MAQC)

benchmark data [27, 28]. In the second example study, we demonstrate the utility

of the exon-based strategy in a more challenging real dataset involving substantial

heterogeneity between individuals [29].

Methods

Exon-based strategy

A schematic illustration of the exon-based strategy is shown in Fig. 1. The

underlying idea is to perform statistical testing (with e.g., limma or edgeR or any

statistical testing approach suitable for RNA-seq data) separately for each exon

and then aggregate the results at the gene level. In the present study, we defined

the gene-level score as the median of its exon-level significance p-values, taking

into account the directions of the changes. More specifically, if we denote by xi the

estimated log2 fold change of an exon i and by pi the corresponding p-value

obtained from the statistical testing, we determined the median over the signed

log-transformed p-values yi~{sgn(xi) log pi, i~1,:::,n, where n is the number of

exons in the particular gene and sgn is the sign function. The log transformation

forces the least significant p-value to zero. Alternatively to median, the method

can, in principle, be used with any mean descriptor preferred.

For determining the exon-level p-values, we considered two popular R/

Bioconductor packages for detecting differential expression in RNA-seq data,

limma [11] and edgeR [7], and applied them to both gene- and exon-level count

data using the default settings and following the instructions described in the

package manuals. Statistical significance of a median p-value score was assessed by

comparing the observed value to the null distribution obtained under the

assumption that the exon-level p-values were uniformly distributed, taking into

account the number of exons per gene. False discovery rates (FDR) were

determined using the Benjamini-Hochberg multiple testing adjustment method

[30]. With the exon-based strategy, we additionally ensured that the median p-

value was below the corresponding FDR level by considering the maximum of

these two values when ranking the genes or calling them differentially expressed.

Prior to the analysis, we filtered out very lowly expressed exons on the basis of

their overall average count across the biological conditions as recommended for

example in [31]. For a gene to be included in the analysis, we required that at least

two of its exons had an overall average above one. Single exon genes were omitted

here, as their result would not differ from that of the gene-based approach.

reference RNA (uhr). (A) Exon structure of the gene DCUN1D5 (B) Separate read counts for the eight exons of the gene. (C) Normalized total read counts
across all the exons for the gene. (D) Logarithmic (base 2) fold change between the sample groups separately for each exon. The number of stars above a
bar indicates whether one or both of the two software packages (limma, edgeR) identify the particular exon as significant at p,0.05. (E) Gene-level log fold
change between the sample groups obtained using directly the gene-level read counts (gene-based strategy; left bar) or by taking the median over the exon-
level changes (exon-based strategy; right bar). The exon-based strategy supports differential expression (median p53.69e–06 and 1.64e–09 with limma
and edgeR, respectively), whereas the conventional gene-based strategy suggests that the gene is equally expressed in both groups (p50.91 with both
limma and edgeR). The fold changes were determined here using the limma software package.

doi:10.1371/journal.pone.0115964.g001
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Datasets

MAQC benchmark data

The MAQC RNA-seq data were downloaded from the Sequence Read Archive

(SRA accession SRA010153). The data contain two types of biological samples:

human brain reference (brain) and human universal reference RNA (uhr), both of

which have been assayed using seven lanes on the Illumina Genome Analyzer II

sequencing platform [27]. The reads were aligned to the human genome (hg19)

using Tophat (version 2.0.4), splitting the reads into at least 17 bp segments and

allowing up to one mismatch per segment. Gene- and exon-level read counts were

determined based on RefSeq annotations using the python scripts incorporated in

the DEXSeq (version 1.4.0) R/Bioconductor package. The corresponding qRT-

PCR data were downloaded from the Gene Expression Omnibus (GEO accession

GSE5350) and processed similarly to Bullard et al. [27]. Briefly, genes were

required to be classified as present in at least three out of the four replicate qRT-

PCR measurements in at least one of the sample groups (brain or uhr). Genes

with an absolute log fold change above a cutoff value in the qRT-PCR data were

then considered as differentially expressed (gold-standard positives). Various

cutoff values were used at increasing stringency between 0.5 and 5 with

increments of 0.1, yielding 601 to 88 gold standard positive genes, respectively.

The 101 genes with absolute log fold change below 0.2 were considered as equally

expressed (gold-standard negatives).

RNA-seq data on unrelated Nigerian individuals

The RNA-seq data were downloaded from the European Nucleotide Archive

under the accession number SRP001540. The samples have been assayed using the

Illumina Genome Analyzer II platform at two different centres using different read

lengths (46 bp or 35 bp). The reads were aligned to the human genome (hg19)

using Tophat (version 1.4.0) and default settings. Gene- and exon-level read

counts were determined based on RefSeq annotations using the python scripts

incorporated in the DEXSeq R/Bioconductor package.

Results and Discussion

Case study 1: MAQC benchmark data

We first assessed the performance of the gene- and exon-based strategies in the

MAQC RNA-seq data, generated for benchmarking purposes [27, 28]. A major

benefit of the MAQC data is that there are quantitative real-time polymerase

chain reaction (qRT-PCR) data available on hundreds of genes that can be used

for the evaluation of the different approaches.

Using the qRT-PCR data as a gold standard, we constructed receiver operating

characteristic (ROC) curves for the different gene- and exon-based differential

expression statistics. To summarize the performance in single values, we

determined the partial area under the curves (pAUC) at a specificity of 0.8,

standardized to have a maximal value of 1.0 (Fig. 2A). The pAUC was selected as
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the main evaluation criterion, since only identifications at low false positive rates

are typically selected for further investigations in RNA-seq studies. Across the

different cutoff values for the gold standard positives, the exon-based strategy

systematically produced a higher pAUC-value than the corresponding gene-based

strategy with both edgeR and limma. This demonstrated the improved sensitivity

and specificity of the exon-based strategy compared to the conventional gene-

based strategy. Not unexpectedly, increasing the fold change cutoff for the gold

standard positives increased the ROC performance of both gene- and exon-based

methods.

The qRT-PCR validations also enabled us to calculate the empirical false

discovery rates of the detections (Fig. 2B). Across the different RNA-seq statistical

testing FDR cutoffs, the exon-based strategy provided systematically lower

empirical FDR values than the gene-based strategy for both limma and edgeR.

This indicates that the FDR control of the exon-based strategy compares

favourably to that of the gene-based strategy.

Fig. 2. Comparison of the gene- and exon-based strategies in terms of qRT-PCR-derived gold standard in the MAQC data. Following the approach in
[27], we considered a gene as a gold standard negative if its absolute log fold change in the qRT-PCR data was less than 0.2 and as a gold standard positive
if its absolute log fold change in the qRT-PCR data was above a predefined cutoff value. (A) Partial area under the ROC curve (pAUC, y-axis) at various
qRT-PCR cutoff values with increasing stringency were considered between 0.5 and 5 with increments of 0.1 (x-axis). At each cutoff, the performance of
each method was assessed in terms of their receiver operating characteristic (ROC) curves and the corresponding partial areas under the curves (pAUC) at
specificity of 0.8 (y-axis). (B) The empirical false discovery rate (empirical FDR, y-axis) as a function of different FDR cutoffs for the RNA-seq data (x-axis),
using the qRT-PCR gold standard log fold change cutoff of 2 to determine the qRT-PCR gold standard positives. Genes with log fold change below 0.2 in the
RNA-seq data (x-axis) were filtered out prior to determining the empirical FDR. To calculate the random curve, for each method and cutoff an equal number
of genes was randomly selected to the result list and compared against the gold standard positive and gold standard negative gene lists. The results were
then averaged across the randomizations.

doi:10.1371/journal.pone.0115964.g002
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In order to take yet a closer look at the differences between the gene- and exon-

based strategies, we examined the largest discrepancies between the detections in

the MAQC data (Fig. 3). This suggested that the largest differences typically

corresponded to genes for which only a single or relatively few exons behaved

differently from the majority of exons, causing the gene-based estimate to deviate

markedly from the median of the exon-level changes (see Fig. 1 for an example).

Fig. 3. Robustness against single exons. Exon-wise and gene-based log fold changes for 31 genes in the MAQC data that showed largest differences
between the gene- and exon-based strategies. The black dots and error bars show the median and standard deviation of the exon-level values, respectively;
the red open circles are the corresponding gene-based values. We selected here genes with more than three exons, a fold change above 2 and p-value (or
median p-value) below 0.05 with either of the strategies and fold change to the opposite direction or p-value difference above 0.1 with the other strategy,
according to the values calculated with the limma software package. Among these genes, only MASP2 contained measurements also in the qRT-PCR data
and they supported well the exon-based result (log2 fold-change of 1.85 in the qRT-PCR data), further confirming the utility of the exon-based strategy.

doi:10.1371/journal.pone.0115964.g003
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This illustrated the robustness of the exon-based strategy against single deviant

values, which can be expected to occur, for instance, due to alternative splicing

events.

Case study 2: RNA-seq data on unrelated Nigerian individuals

To assess the performance of the exon-based strategy in more complex real

datasets involving substantial biological variation between replicates, we

considered RNA-seq data on lymphoblastoid cell lines derived from unrelated

Nigerian individuals as part of the International HapMap project [29]. For the

present study, we compared the expression levels between 29 males and 29

females.

Focusing only on the most promising genes identified at FDR,0.05 and

showing at least a 1.5-fold change between the male and female groups across at

least five exons, we identified 16 and 67 genes using limma with the gene- and

exon-based strategies, respectively (Fig. 4A and B). All of the gene-based

detections were among the exon-based detections (highlighted in grey in Fig. 4B).

In general, the genes missed by the gene-based strategy included genes with

moderate but systematic changes across majority of their exons as well as some

relatively low-abundance genes showing systematic changes across all exons. It is

possible to detect the latter by the exon-level strategy due to the increased

statistical power derived from having several measurements per gene. Fig. 4C

illustrates two such example genes from the X chromosome that have previously

been reported as sex-specific [32, 33] but were detected here only with the exon-

based strategy. Finally, investigation of the differentially expressed genes identified

by the exon-based limma analysis revealed their significant overlap with both Y

and X chromosomes (p-values 3.29e–7 and 0.002, respectively; David tool [34]). A

systematic comparison of the detections to the previously reported sex-specific

genes on the X chromosome [32, 33] and genes on the Y chromosome also

revealed a high overlap as shown in Fig. 4B (left panel). Of the common

detections between the gene- and exon-based strategies, nearly 90% were among

the genes listed in these publications. Four of the exon-based detections that were

missed by the gene-based strategy were also among these previously reported sex-

specific genes (DDX3X, KDM6A, PRKX and STS). The other genes detected by

the exon-based strategy outside the X and Y chromosomes included, for instance,

an enriched number of targets of the sex determining region Y (SRY) protein and

the SRY-box 9 (SOX9) (p-values 0.004 and 0.002 respectively, David tool [34]).

These observations illustrate the ability of the exon-based strategy to identify

biologically relevant candidates, missed by the gene-based strategy, also in

complex settings, which supports the high potential of the proposed strategy.
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Fig. 4. Differentially expressed genes between males and females in a population of Nigerian individuals. (A) Significant detections identified with
gene-based or exon-based limma at FDR,0.05, an absolute fold change of at least 1.5 and at least 5 exons. With the exon-based strategy, we additionally
required that the median p-value was below 0.05. Notably, all the gene-based detections were also found using the exon-based strategy, while the list of
exon-based detections missed by the gene-based strategy contains 51 genes (B) The 67 genes detected using the exon-based approach with limma; genes
reported as sex-specific in earlier studies or belonging to chromosome Y are shown on the left side. Genes detected also with the gene-based approach are
highlighted with grey background. Red background in the chromosome column denotes higher expression in male than in female, blue vice versa. (C) Two
examples of genes on the X chromosome that have previously been reported as sex-specific [32, 33] but were detected here only with the exon-based
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Conclusions

Taken together, we demonstrated in this study how an exon-based strategy can

significantly increase the sensitivity and specificity of the widely used differential

expression methods for RNA-seq data over the conventional gene-based strategy.

In particular, we observed that taking advantage of the exon-level signals enabled

detection of such moderate but systematic gene expression changes that were

missed by the gene-based strategy relying on single gene-level summary counts

only. Additionally, our results showed how the gene-based approaches are prone

to effects of single exons, while the exon-based strategy is robust against them.

Although we focused here on the most basic design of comparing two groups of

samples, the exon-based strategy extends naturally to more complex study designs

and to basically any current or future test statistic for detecting differential

expression. It is not limited to a specific gene or transcript model either but can be

applied to any user-defined feature model, such as windows across de novo

assembled gene contigs.
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