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I.; Gryszkin, A.; Styczyńska, M.;
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D.; Babić, J. Physical Properties of

Starches Modified by

Phosphorylation and High-Voltage

Electrical Discharge (HVED).

Polymers 2022, 14, 3359. https://

doi.org/10.3390/polym14163359

Academic Editors: Aleksandra
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Abstract: High-voltage electrical discharge (HVED) is considered as a novel, non-thermal process
and is currently being researched regarding its effect on microorganisms (decontamination of food),
waste water treatment, and modification of different compounds and food components. In this paper,
four native starches (maize, wheat, potato, and tapioca) were treated with HVED, phosphorylated
with Na2HPO4 and Na5P3O10, and modified by a combination of HVED with each phosphorylation
reaction both prior and after chemical modification. Pasting properties, swelling power, solubility, gel
texture, and particle size were analyzed. Although HVED induced lower contents of P in modified
starches, it had an effect on analyzed properties. The results revealed that HVED treatment alone had
a limited effect on pasting properties of starches, but it had an effect on properties of phosphorylated
starches, both when it was conducted prior and after the chemical modification, reducing the influence
of Na5P3O10 and Na2HPO4 on the decrease of pasting temperature. With minor exceptions, the
gel strength of starches increased, and the rupture strength decreased by all modifications. HVED
treatment resulted in a decrease of the particle size after the modification of maize and wheat starches,
while potato and tapioca starches were not significantly influenced by the treatment.

Keywords: starch; HVED; phosphorylation; pasting properties; swelling power; gel texture

1. Introduction

Starch is an abundant raw material extensively used in the food industry, pharmacy,
paper industry, etc. It has gelling, thickening, and binding properties, and is cost-effective,
and these are the major reasons for its broad use. However, a native starch, regardless of
the origin, does not have ideal properties desired for specific uses. Therefore, it is often
modified by chemical, enzyme, and/or physical procedures. The most commonly used
techniques are esterification (such as acetylation) and cross-linking (with epichlorohydrin,
adipate or phosphate). It is well established that esterification of starch results in decreased
gelatinization temperatures, higher paste clarity, starches are less prone to retrogradation.
Cross-linking will bring about thicker pastes that are more resistant to shearing at high
temperatures. Although starches with properties suitable for food- or pharmaceutical
industry are obtained, these processes are time-consuming, require special attention due to
chemical disposal, and often require heating. Therefore, nowadays, more environmentally
friendly and energy-efficient methods are being explored. Fan and Picchioni [1] gave
the review of more recent methods used in modification of starch, such as use of green
solvents, regioselective derivatization, and transfer radical polymerization. Although
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the number of research on these subjects is limited, they are promising, with respect to
lower environmental impact and the potential to produce tailor-made starches for specific
application. However, the authors of the review conclude that there is still a lot to be done
in these fields of research. Along with methods listed by Fan and Picchioni [1], high-voltage
electrical discharge could be a promising technique.

High-voltage electrical discharge (HVED) is an emerging technology in food pro-
cessing. It is already well explored for an application in extraction processes and de-
contamination of food [2–4], but it could have a potential in the starch modification as
well [5].

Namely, a high-voltage discharge between two electrodes submerged in the water
causes a high-energy release, an ionization of water molecules, a formation of free radicals
and bubbles. It affects compounds by both the physical damaging and chemically induced
changes. This makes it applicable in the starch modification.

Phosphorylation is the only naturally occurring covalent modification of starch [6]. In
cereal starch, starch-bound phosphate is usually present in traces, and amounts of 0.2–4.4%
w/w in potato starch have been reported. Phosphate groups in native starch are bound
to C-6 and C-3 positions of glucose units of amylopectin in the form of monoester [6,7].
Hydration capacity after gelatinization is increased by the presence of phosphate groups [6],
they enable ion-exchange, gel forming and complexing actions [7], and influence digestibil-
ity of starch [6,7], which is a ground for chemical modification of starch by phosphorylation
for industrial purposes [6].

Phosphorylated starches may be mono- or distarch phosphates. Monoesters are usually
prepared using sodium tripolyphophate or mixtures of sodium dihydrogen phosphate
dihydrate and disodium hydrogen phosphate dehydrate, whereas cross-linked starches
(distarch phophates) are commonly prepared using phosphorous oxychloride or sodium
trimetaphosphate. Cross-linked starches contain lower contents of P in relation to esterified
starches (0.04% in relation to 0.1–0.4%) [7]. Mechanisms of starch phosphorylation by
different chemical reagents are given in the review by Ramadan and Sitohy [7]. In addition,
reaction mechanism of phosphorylation by Na5P3O10 on C-6 is proposed by Li et al. [8]
and by Na2HPO4 is proposed by Ramdan and Sitohy [8], whereas molecular models of
phosphorylated starch at C-3 and C-6 are proposed by Blennow et al. [6].

In our previous paper [9], we explored the influence of HVED and its combination
with phosphorylation on gelatinization properties, the starch damage, and the content of
resistant starch. This paper focuses on pasting properties, swelling power and solubility,
gel texture and particle size, which are important properties for the starch application in
the food production.

2. Materials and Methods

Maize, potato, and tapioca native starches were supplied by Cargill, USA, and the
wheat starch was isolated at the Faculty of Food Technology Osijek, as previously de-
scribed [10]. All starches are food-grade. Na2HPO4 (p.a.) and Na5P3O10 (p.a.) were
products of Acros Organics (Geel, Belgium).

2.1. Modification of Starch

Starches were modified as described in the previous paper [9]. Briefly, for the high-
voltage electrical treatment (HVED), 200 mL of 1 g/mL (d. m. b.) of a starch suspension
was prepared and treated with the custom-made HVED device (30 kV, 70 Hz, 30 min), with
stirring at magnetic stirrer. The HVED device is described in more detail in Barišić et al. [11].
The modification of starches with Na5P3O10 was done according to the procedure described
by Lim and Seib [12], and with Na2HPO4 according to Choi et al. [13] and Prasanthi and
Rama Rao [14] with slight modifications. Briefly, starch (100 g of d.m.) and Na2HPO4
were suspended in 200 mL of demineralized water with stirring at magnetic stirrer for
30 min. The suspension was centrifuged and starch was air-dried overnight, and then
treated in the oven at 130 ◦C, washed three times with water, and dried until moisture
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<85% was achieved. Combined treatments were done both by first treatment with HVED
and subsequently with one of the chemical modifications and vice versa [9].

2.2. Phosphorus Content

The sample was prepared as described in PN-EN ISO 3946: 2000 [15], and phosphorus
was determined by inductively coupled plasma–optical emission spectrometry (ICP–OES).

In brief, the samples were digested “wet” in a closed microwave system with 5 cm3 of
concentrated nitric acid (V) p.a. and 1 cm3 of concentrated hydrogen peroxide p.a., then the
samples were mineralized in the microwave MARS 5 (CEM, Matthews NC, USA) sample
preparation system. The minerals were quantitatively transferred to 10 cm3 measuring
vessels with re-distilled water. An appropriate amount was taken for the determination
of phosphorus.

Phosphorus was determined by induced plasma atomic emission spectrometry-ICP-
OES using the ICP-AES iCAP 7400 atomic emission spectrometer (Thermo Scientific,
Waltham, MA, USA). The results were confirmed using the certified reference material NCS
ZC 73012-Cabbage, and the measurement uncertainty was estimated at 5%.

2.3. Pasting Properties

The pasting properties of starches were determined by the Brabender micro visco-
amylograph (Brabender GmbH., Duisburg, Germany). A starch was suspended in distilled
water (7% d.w.) and subjected to the following temperature program: heating to 92 ◦C
(7.5 ◦C/min), holding at 92 ◦C for 15 min, cooling to 50 ◦C (7.5 ◦C/min), and holding at
50 ◦C for 15 min. The measuring was done at 250 rpm.

2.4. Swelling Power and Solubility

The swelling power (SP) and the solubility (SOL) were determined by heating 1% (d. m.)
starch suspension at a pre-set temperature (65, 75, 85, or 95 ◦C) for 15 min in the shaking water
bath (Julabo SW22, Julabo GmbH, Seelbach, Germany) with subsequent cooling and centrifuging
(IEC Centra MP4R; 3000 rpm, 10 min). The supernatant was decanted and used to determine the
dry matter content (105 ◦C until reaching constant mass) and the gel was weighed.

The swelling power (SP) was calculated according to Equation (1), and the solubility
(SOL) according to Equation (2):

SP = WG/Wd.m.G (1)

where: SP (g/g) is the swelling power; WG (g) is the mass of gel; Wd.m.G (g) is the mass of
the dry matter in gel.

SOL = (Ws/W0) × 100 (2)

where: SOL (%) is solubility; Ws is the dry matter content in the supernatant; W0 is the dry
matter content in the suspension (1%).

2.5. Texture Properties

Starch suspensions (11% d.w.) were gelatinized in the shaking water bath (Julabo
SW22) at 95 ◦C for 30 min and allowed to gel. The gel formed in cups (35 g of suspension
poured in cups with 35 mm diameter, 50 mm height) and was compressed with the flat
cylindrical probe (20 mm diameter) in the TA.XT Plus (Stable Mycrosystems, Surrey, UK) at
the speed of 2.0 mm/s to the distance of 20 mm. The peak height at 20 mm compression
was termed hardness, and the negative area of the curve during retraction of the probe was
termed adhesiveness. The distance at break was termed brittleness and the force, expressed
in grams, was necessary to depress the surface gel strength by 4mm.

2.6. Particle Size

The particle size was determined by the Masterizer 2000 (Malvern Instruments LTD,
Malvern, UK) with Hydro 2000 MU adapter at 20 ◦C, and the obscuration between 15 and



Polymers 2022, 14, 3359 4 of 12

20%. Before each measurement, starch agglomerates were disintegrated by the ultrasound
with a frequency of 10 Hz for a period of 10 s.

2.7. Statistical Analysis

All analyses were done in triplicates and the obtained results were statistically ana-
lyzed by analysis of variance and Fischer LSD test in Statistica® 13 (p < 0.05). Results are
expressed as a mean value ± standard deviation.

3. Results and Discussion

In order to explore applicability of the high-voltage electrical treatment (HVED) in the
starch phosphorylation, four starches—maize, wheat, potato, and tapioca—were treated
with the HVED alone, phosphorylated alone with Na5P3O10 or Na2HPO4, and modified by
the combination of HVED with phosphorylation. Phosphorus content, pasting properties,
swelling power, solubility, gel texture, and particle size were determined in order to
evaluate the influence of the afore mentioned modifications on the starch properties.

The contents of phosphorus in analyzed samples are shown in Figure 1. It is well
established that starch naturally contains low content of phosphorus, linked to C-2 and
C-3, and in form of phospholipids [16]. In the present research, contents of 20.82–92.86 mg
P/100 g starch was determined, depending on type of starch. HVED treatment resulted
in elevated values of P contents in maize and tapioca starch, and lower values were
determined in wheat and potato starch. Due to the complexity of a HVED process, different
reactions may have occurred in investigated samples: extraction in the water, formation of
complexes in which P could be “masked” and available during determination. Namely,
Du et al. [17] reported that OH and O2 formed by HVED reacted with aromatic ring,
resulting in ring-cleavage products, and Grinevich et al. [18] reported a decrease of Pb, Cd,
and Mn in wastewater after HVED treatment, showing the influence of the treatment both
on organic and inorganic compounds and different mechanisms of reactions.
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discharge (HVED) and phosphorylation.

Both phosphorylation agents increased contents of P in starches, an indication that
the reactions of phosphorylation were successful. In all cases, except the wheat starch,
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higher contents of P were determined in starches modified with Na2HPO4. Lower contents
of P in starches modified by combination of HVED with phosphorylating agents showed
that HVED treatment slightly reduced the efficiency of reaction, regardless the agent used.
However, HVED induced changes of starch properties when combined with chemical
modification, as shown both in our previous [9] and present research.

Pasting properties of native and modified starches are shown in Table 1. While the
HVED treatment did not significantly influence the pasting temperature of wheat and
tapioca starches, it resulted in the decrease of the pasting temperature of maize starch
and its increase for potato starch. Starches with higher crystalline order paste at higher
temperatures [19,20] and this shows that the HVED treatment disrupted the crystalline
order of the maize starch, while in the potato starch it caused the opposite effect. Potato
starch granules are very large and characterized by a B-type of granules, which contain
much more water than an A-type granules typical for maize starch [21]. Water molecules
inside granules could have also been excited by the HVED and could have initiated
reactions of cross-linking in the potato starch [22,23]. On the other hand, HVED has been
shown to induce the formation of fissures and cavities [24], the enlargement of channels,
and the partial fracture of granules [22]. This may have caused disordering of the high
crystalline order of the maize starch, which is supported by the increase of its maximum
viscosity and viscosities at 92 and 50 ◦C (Table 1).

Wheat starch has both A- and B-type granules and opposite effects may have nullified
each other, whereas C-type granules of tapioca starch, although not well studied yet,
probably have amorphous region in the inner part of granule [25], which may be the reason
for its resistance to HVED. Interestingly, the breakdown value was significantly influenced
by the HVED only in the maize starch, showing that it became more susceptible to the
shearing at high temperatures. This is consistent with the rise of peak viscosity, which is
often followed by a rapid loss of viscosity [26]. Increase of viscosity after treatment with
a low pressure radio frequency plasma was observed by Banura et al. [27] for corn and
tapioca starches, while Wu et al. [28] reported a decrease of viscosities of banana starch
after the treatment with corona electrical discharge.

The phosphorylation with Na5P3O10 reduced pasting temperatures of all investigated
starches, whereas Na2HPO4 induced the increase of the pasting temperature of the tapioca
starch. Na5P3O10 resulted in the significant increase of peak and viscosities at 92 ◦C and
50 ◦C. All these indicate a larger absorption of water and swelling of granules, supported
by the results for swelling power shown in Figure 2. Introduction of large substituents
causes spacing between starch chains and eases a penetration of water between them. The
same effect was reported by Ascheri et al. [29] for phosphorylated wolf’s fruit starch and
by Nathania et al. [30] for phosphorylated mung bean starch.

The HVED treatment reduced an effect of Na5P3O10 and Na2HPO4 on the decrease
of pasting temperature in all samples, except for the wheat starch in combination with
Na5P3O10, where it additionally reduced pasting temperature. Generally, it may be ob-
served that the HVED treatment combined with Na5P3O10 increased the viscosity compared
to native starches, while in the combination with Na2HPO4 it caused the increase of hot
and cold viscosities for maize and the decrease of viscosities for potato, tapioca, and wheat
starches. With the exception of the maize starch, a marked effect on the breakdown and
setback values was observed for starches treated with the combination of HVED and
Na2HPO4, showing that viscosities of these samples are more stable, during both shearing
at high temperatures and cooling.

A marked influence on the swelling power (SP) of starches is observed only at higher
temperatures (85 and 95 ◦C) for phosphorylated starches, both with and without combi-
nation with the HVED (Figure 2). While Na5P3O10 increased the SP, Na2HPO4 generally
decreased it. Some deviations were observed for potato and tapioca starches, but this was
probably caused primarily due to their high solubility and a difficult separation of the gel
from the supernatant during the analysis. Nathania et al. [30] also reported the increase of
swelling power and solubility after treatment of mung bean starch with Na5P3O10.
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Table 1. Pasting properties of native and modified starches.

St
ar

ch

Treatment Pasting
Temperature (◦C)

Maximum
Viscosity (BU)

Gelatinisation
Maximum (◦C)

Viscosity at 92
◦C (BU)

Viscosity after
15 min at 92 ◦C

(BU)

Viscosity at
50 ◦C (BU)

Viscosity after
15 min at 50 ◦C

(BU)
Breakdown Setback

M
ai

ze

Native 73.35 ± 0.07 d 258.50 ± 3.54 a 88.40 ± 0.14 f 247.00 ± 2.83 a 167.00 ± 1.41 a 327.50 ± 4.95 a.b 300.50 ± 3.54 c 91.50 ± 2.12 a 160.50 ± 0.54 b

HVED 72.00 ± 0.14 c 317.00 ± 9.90 b 83.50 ± 0.42 e 295.50 ± 7.78 b 183.00 ± 5.66 a.b 387.50 ± 0.71 b 349.50 ± 9.19 e 134.00 ± 4.24 b 204.50 ± 4.95 c

Na5P3O10 68.25 ± 0.21 a 562.00 ± 1.41 e 71.05 ± 0.49 a 429.00 ± 1.41 d.e 263.50 ± 0.71 c 525.50 ± 0.71 c 448.50 ± 3.54 f 298.50 ± 0.71 e 262.00 ± 1.41 d

HVED + Na5P3O10 70.10 ± 0.00 b 507.00 ± 1.41 d 78.10 ± 0.00 c 410.50 ± 2.12 d 252.00 ± 1.41 b.c 514.50 ± 0.71 c 441.00 ± 2.83 f 254.00 ± 2.83 d 262.50 ± 2.12 d

Na5P3O10 + HVED 68.65 ± 0.07 a 559.50 ± 0.71 e 74.45 ± 0.07 b 445.00 ± 11.31 e 270.00 ± 1.41 a 539.00 ± 4.24 c 459.50 ± 2.12 f 289.50 ± 0.71 e 269.00 ± 2.83 d

Na2HPO4 72.30 ± 0.14 c 389.00 ± 7.07 c 80.30 ± 0.99 d 329.00 ± 11.31 c 172.00 ± 1.41 a 504.00 ± 212.13 c 326.50 ± 4.95 d 217.00 ± 8.49 c 182.00 ± 1.41 b

HVED + Na2HPO4 73.50 ± 0.14 d 323.50 ± 3.54 b 83.30 ± 0.57 e 277.00 ± 4.24 b 132.00 ± 7.07 a 250.50 ± 4.95 a 237.50 ± 4.95 a 191.50 ± 10.61 c 118.50 ± 2.12 a

Na2HPO4 + HVED 73.30 ± 0.42 d 330.00 ± 7.07 b 83.65 ± 0.35 e 291.50 ± 0.71 b 143.50 ± 7.78 a 280.00 ± 9.90 a 264.00 ± 8.49 b 186.00 ± 14.14 c 136.50 ± 2.12 a

W
he

at

Native 67.55 ± 0.49 B 328.00 ± 2.83 B 93.30 ± 0.85 A 324.00 ± 1.41 C 234.50 ± 2.12 B 541.50 ± 6.36 C 428.00 ± 7.07 C 93.50 ± 0.71 A 307.00 ± 4.24 c

HVED 68.25 ± 0.07 B 321.00 ± 4.24 B 92.05 ± 0.78 A 320.00 ± 2.83 C 236.50 ± 2.12 B 549.00 ± 1.41 C 447.00 ± 12.73 C 84.50 ± 6.36 A 312.50 ± 3.54 c.d

Na5P3O10 63.45 ± 0.49 A 523.50 ± 2.12 C 92.60 ± 0.42 A 500.00 ± 21.21 D 344.50 ± 10.61 C 655.00 ± 18.38 D 524.50 ± 13.44 D 178.50 ± 7.78 B 310.50 ± 7.78 c

HVED + Na5P3O10 62.50 ± 0.71 A 521.00 ± 2.83 C 92.75 ± 0.49 B 510.00 ± 5.66 D.E 348.00 ± 2.83 C 680.50 ± 3.54 D 553.50 ± 0.71 E 173.00 ± 0.00 B 332.50 ± 0.71 d

Na5P3O10 + HVED 62.80 ± 0.57A 540.50 ± 3.54 C 93.10 ± 0.14 A 527.50 ± 6.36 E 352.50 ± 7.78 C 669.00 ± 8.49 D 540.00 ± 5.66 D.E 186.50 ± 12.02 B 316.50 ± 0.71 c.d

Na2HPO4 68.05 ± 0.35 B 240.00 ± 12.73 A 94.25 ± 1.48 A 236.00 ± 7.07 B 168.50 ± 4.95 A.B 319.00 ± 7.07 B 306.50 ± 9.19 B 70.50 ± 7.78 A 150.50 ± 2.12 b

HVED + Na2HPO4 70.80 ± 0.99 C 209.50 ± 2.12 A 93.35 ± 0.07 A 194.00 ± 1.41 A 125.00 ± 1.41 A 229.50 ± 4.95 A 220.50 ± 4.95 A 85.00 ± 0.00 A 104.50 ± 3.54 a

Na2HPO4 + HVED 70.65 ± 0.07 C 219.00 ± 2.83 A 93.15 ± 0.07 A 205.50 ± 4.95 A 142.00 ± 1.41 A 251.00 ± 4.24 A.B 240.00 ± 2.83 A 76.50 ± 3.54 A 109.00 ± 5.66 a

Po
ta

to

Native 58.55 ± 0.21 b.c.d 1640.00 ± 73.54 e 65.05 ± 0.35 b 698.50 ± 10.61 c 514.50 ± 2.12 b 1143.50 ± 10.61 c 1011.00 ± 7.07 d 1125.00 ± 76.37 d 629.00 ± 8.49 e

HVED 60.40 ± 0.00 e 1677.00 ± 29.70 f 63.65 ± 1.34 b 688.00 ± 7.07 c 525.00 ± 1.41 b 1149.00 ± 7.07 c 1000.00 ± 15.56 d 1151.50 ± 27.58 d 624.00 ± 5.66 e

Na5P3O10 56.25 ± 0.21 a 1509.00 ± 32.53 d 67.35 ± 0.78 c 862.50 ± 3.54 e 496.00 ± 5.66 b 885.50 ± 38.89 b 731.50 ± 30.41 c 1012.50 ± 26.16 c 389.50 ± 33.23 d

HVED + Na5P3O10 58.50 ± 0.99 b.c 1893.00 ± 11.31 h 61.00 ± 0.00 a 860.00 ± 43.84 e 480.00 ± 19.80 b 835.00 ± 15.56 b 728.00 ± 16.97 c 1413.00 ± 8.49 f 355.00 ± 35.36 c

Na5P3O10 + HVED 55.90 ± 0.57 a 1755.00 ± 26.87 g 60.80 ± 0.28 a 824.00 ± 0.00 d 490.50 ± 0.71 b 855.00 ± 22.63 b 716.50 ± 17.68 c 1262.00 ± 25.46 e 364.50 ± 21.92 c

Na2HPO4 57.65 ± 0.35 b 705.00 ± 16.97 c 72.25 ± 2.62 d 567.50 ± 12.02 b 278.50 ± 4.95 a 529.00 ± 7.07 a 409.00 ± 4.24 b 426.50 ± 12.02 b 250.50 ± 2.12 b

HVED + Na2HPO4 58.90 ± 0.14 c.d 579.00 ± 1.41 a 74.90 ± 2.26 e 513.50 ± 7.78 b 243.00 ± 11.31 a 454.00 ± 22.63 a 371.50 ± 20.51 a 335.00 ± 9.90 a 211.00 ± 11.31 a

Na2HPO4 + HVED 59.50 ± 0.28 d.e 617.00 ± 16.97 b 81.05 ± 0.64 f 555.00 ± 5.66 a 274.00 ± 0.00 a 517.00 ± 12.73 a 419.50 ± 0.71 b 342.00 ± 16.97 a 243.00 ± 12.73 b
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Table 1. Cont.

St
ar

ch

Treatment Pasting
Temperature (◦C)

Maximum
Viscosity (BU)

Gelatinisation
Maximum (◦C)

Viscosity at 92
◦C (BU)

Viscosity after
15 min at 92 ◦C

(BU)

Viscosity at
50 ◦C (BU)

Viscosity after
15 min at 50 ◦C

(BU)
Breakdown Setback

Ta
pi

oc
a

Native 66.30 ± 0.57 B 644.00 ± 0.00 C 74.65 ± 0.92 B.C 382.00 ± 2.83 B 205.50 ± 0.71 A 444.50 ± 6.36 C 411.50 ± 3.54 C 438.50 ± 0.71 C 239.00 ± 5.66 c

HVED 66.10 ± 0.14 B 648.00 ± 15.56 C 74.45 ± 0.21 B.C 387.50 ± 2.12 B 205.00 ± 7.07 A 422.50 ± 6.36 B.C 409.50 ± 2.12 C 442.50 ± 9.19 C 217.50 ± 0.71 c

Na5P3O10 64.15 ± 0.07 A 882.00 ± 1.41 D 73.65 ± 0.07 A.B 546.00 ± 7.07 D 343.00 ± 0.00 B 568.50 ± 9.19 D 507.00 ± 2.83 E 537.00 ± 1.41 E 225.50 ± 9.19 c

HVED + Na5P3O10 65.05 ± 1.06 A 805.50 ± 10.61 E 73.60 ± 1.27 A.B 482.00 ± 5.66 C 317.50 ± 2.12 B 584.50 ± 6.36 D 481.50 ± 4.95 D 488.00 ± 9.90 D 267.00 ± 4.24 d

Na5P3O10 + HVED 64.40 ± 0.85 A 920.50 ± 7.78 F 72.45 ± 0.21 A 556.00 ± 4.24 D 492.50 ± 195.87 C 619.00 ± 4.24 D 527.50 ± 12.02 E 562.00 ± 12.73 E 261.50 ± 0.71 d

Na2HPO4 67.85 ± 0.64 C 525.00 ± 2.83 B 76.70 ± 0.28 D 378.50 ± 4.95 B 188.00 ± 1.41 A 361.00 ± 1.41 A.B 296.00 ± 4.24 B 337.50 ± 0.71 B 173.00 ± 0.00 b

HVED + Na2HPO4 69.35 ± 0.21 D 428.00 ± 1.41 A 76.95 ± 0.21 D 314.50 ± 0.71 A 151.50 ± 2.12 A 295.50 ± 4.95 A 238.50 ± 4.95 A 275.50 ± 0.71 A 144.00 ± 2.83 a

Na2HPO4 + HVED 69.25 ± 0.07 D 445.00 ± 5.66 A 76.15 ± 1.20 C.D 325.50 ± 2.12 A 157.00 ± 1.41 A 308.50 ± 4.95 A 250.00 ± 1.41 A 288.50 ± 6.36 A 151.50 ± 3.54 a.b

BU, Brabender Units; Values with different superscripts in the same column are different for the same starch type (p < 0.05).
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A marked influence on the swelling power (SP) of starches is observed only at higher
temperatures (85 and 95 ◦C) for phosphorylated starches, both with and without combi-
nation with the HVED (Figure 2). While Na5P3O10 increased the SP, Na2HPO4 generally
decreased it. Some deviations were observed for potato and tapioca starches, but this was
probably caused primarily due to their high solubility and a difficult separation of the gel
from the supernatant during the analysis. Nathania et al. [30] also reported the increase of
swelling power and solubility after treatment of mung bean starch with Na5P3O10.

The solubility (SOL) of maize and wheat starches was not affected significantly by
any modification, while at higher temperatures, solubility of the potato starch modified
with Na2HPO4 both with and without combination with the HVED markedly decreased
(Figure 3). A decreased solubility of phosphorylated tapioca starches, both with and
without combination with HVED, was observed at 95 ◦C.

Wongsagonsup et al. [31] stated that swelling power and solubility depend on the
extent of cross-linking induced by phosphorylation—at a lower level of cross-linking water
penetration is easier and more starch granules leach into the solution, while at higher levels
of cross-linking water penetration is hindered and leaching of polymers is reduced.

Gel texture is another property of starch relevant for its practical use. Adhesiveness
and brittleness of potato and tapioca starches were not significantly influenced by modifica-
tions (Figure 4). The HVED treatment and the modification with Na5P3O10 both with and
without combination with HVED reduced the adhesiveness of maize and wheat starches.
With minor exceptions, the gel strength of maize, wheat, and tapioca starches increased,
and the rupture strength decreased by all modifications. The increase of gel strength was
observed for the wheat starch modified with succinic acid/acetanhydride mixture, and the
decrease of adhesiveness was observed for the acetylated tapioca starch in our previous
research [32,33].
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The results of the particle size analysis are shown in the Figure 5. Svihus et al. [34]
stated that the particle size determines enthalpy of gelatinization, and Singh et al. [35]
linked this property to the paste clarity. The starches in this research indeed show a



Polymers 2022, 14, 3359 10 of 12

positive correlation of the particle size with gelatinization enthalpy (shown in the previous
paper [9]). The decrease of the particle size after modifications of maize and wheat starches
is visible from the presented results, while potato and tapioca starches were not significantly
influenced regarding this property. The reduction of the particle size of the maize starch
supports findings for the decrease of pasting temperature after the HVED treatment,
proving the physical damaging of the granules by the HVED.
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Namely, Okyere et al. [36], reviewing the influence of cold plasma treatment on
starches of different origin, concluded that volatilization of starch surface (plasma etching)
occurred due to surface bombarding by highly energetic species produced by plasma
generation. Cracks, cavities, and fissures may also be formed, along with the decrease of
crystallinity, and even starch depolymerization [36].

4. Conclusions

In the conditions applied in this research, high-voltage electrical treatment (HVED)
induced lower contents of P in modified starches, but also had an effect on analyzed
properties, both when it was conducted prior and after the chemical modification, reducing
the influence of Na5P3O10 and Na2HPO4 on the decrease of pasting temperature. With
minor exceptions, the gel strength of starches increased, and the rupture strength decreased
by all modifications. HVED treatment resulted in a decrease of the particle size after the
modification of maize and wheat starches, while potato and tapioca starches were not
significantly influenced by the treatment.

The HVED treatment may be used as a tool in phosphorylation of starch, but care
must be taken in adjusting the process to the starch type and a possible combination with
chemical modifications. Although this research showed a limited influence of the HVED on
the selected properties of starch (pasting, swelling power, solubility, texture), an application
of different frequencies, times, and concentrations of starches during treatment could
result in a more pronounced effect. In addition, when combining the HVED with chemical
modifications, one has to bear in mind that the HVED may reduce the effect of a chemical
modification on some starch properties.
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