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Legionella pneumophila is a facultative intracellular path-
ogen that uses the Dot/Icm Type IV secretion system (T4SS) to
translocate many effectors into its host and establish a safe,
replicative lifestyle. The bacteria, once phagocytosed, reside in
a vacuolar structure known as the Legionella-containing vac-
uole (LCV) within the host cells and rapidly subvert organelle
trafficking events, block inflammatory responses, hijack the
host ubiquitination system, and abolish apoptotic signaling.
This arsenal of translocated effectors can manipulate the host
factors in a multitude of different ways. These proteins also
contribute to bacterial virulence by positively or negatively
regulating the activity of one another. Such effector–effector
interactions, direct and indirect, provide the delicate balance
required to maintain cellular homeostasis while establishing
itself within the host. This review summarizes the recent
progress in our knowledge of the structure–function relation-
ship and biochemical mechanisms of select effector pairs from
Legionella that work in opposition to one another, while
highlighting the diversity of biochemical means adopted by this
intracellular pathogen to establish a replicative niche within
host cells.

Bacterial secretion systems are complex cellular machines
used to translocate toxins and virulence factors into host cells.
Nine major secretion systems (Types I–IX) have been
described in Gram-negative and Gram-positive bacteria.
Specialized systems, such as type III and type IV secretion
apparatus, have been central to the evolution of many intra-
cellular pathogenic Gram-negative bacteria (1–3). These
pathogens produce many proteins called effectors that differ
from bacterial toxins in that they do not irreversibly disrupt
the cellular equilibrium of their host (4). Instead, they help
create a facultative niche for the pathogen’s survival by func-
tioning in concert with each other and subtly manipulating
critical cellular pathways of the infected eukaryote (5, 6).
Pathogenic bacteria such as Legionella pneumophila exploit
eukaryotic cell functions and influence multiple signaling
events by translocating over 330 effectors via its Type IV
secretion system, also known as the Icm/Dot transporter
(7–11). These effectors, collectively termed Icm/Dot
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translocated substrates (IDTS), remain cytosolic, localize to
the LCV, or traffic to different organelles.

Bacterial effectors are commonly known to mimic the ac-
tivities of eukaryotic proteins despite lacking significant simi-
larity in amino acid sequence with the host proteins (12). For
example, the bacterial effector SopE from Salmonella typhi-
murium functions as a guanine-nucleotide exchange factor
(GEF) targeting the Rho-family of GTPases (13) while sharing
little sequence homology with eukaryotic enzymes of the same
function. Another common theme seen among bacterial ef-
fectors is redundancy, which extends beyond gene duplication.
The most well-recognized form is functional redundancy,
whereby two effectors may catalyze the same reaction and have
similar substrate specificities, thus allowing one to compensate
the absence of the other, as exemplified by the SidE family
proteins from L. pneumophila that catalyze ubiquitination of
host proteins associated with the endoplasmic reticulum.
Redundancy can also exist between unrelated bacterial pro-
teins. For example, Legionella effectors such as SidM, AnkX,
and SidE proteins are all known to target Rab1; however, the
mechanisms by which each of these effectors modulates the
Rab protein are entirely different, resulting in different modi-
fications on the GTPase.

Among the diverse ways of interaction with their host,
pathogens have evolved a variety of means of manipulating host
pathways by targeting their posttranslational modifications
(PTMs) (14, 15). PTMs can range from addition of relatively
small chemical groups, such as acetyl, hydroxyl, phosphate,
AMP, ADP-ribose, or phospholipids, to more complex forms
involving conjugation of small proteins, such as ubiquitin (Ub)
or ubiquitin-like proteins (Ubls), to other proteins. Modifica-
tion of host targets via effector-mediated enzymatic activities
allows intracellular bacteria to remodel cellular processes
relatively quickly and reversibly, if needed. While most effector
activities are usually directed against host proteins, it is
becoming increasingly evident that pathogens have developed
another layer of complexity by regulating effector–effector in-
teractions. Such modulation occurs when the translocated
bacterial proteins either indirectly counterbalance their activity
in a shared host pathway or directly interact with one another to
suppress or enhance the associated function.

Legionella represents one of the most elaborate cases of
cross talk between host cellular processes and the effectors it
translocates. This pathogen has become a popular model for
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understanding both the role of the effectors in infection and
the affected host signaling mechanisms, examples of which
have been covered extensively in several past reviews (16–20).
In this review we focus on functionally antithetic effectors
from L. pneumophila with well-established biological function.
This review intends to provide structural and mechanistic
insights into specific examples (Table 1) that best illustrate the
existence of effectors carrying out opposing functions in this
organism. These effectors seem to work in concert to help the
bacteria establish a balanced lifestyle within the host while
avoiding catastrophic effects on the host environment.

MavC and MvcA in atypical ubiquitination

Ubiquitination is one of the most widespread PTMs
involved in almost every fundamental cellular process within
eukaryotic cells (21). Ubiquitin is covalently attached to
Table 1
A list of all effector-effector pairs discussed in this review
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The table provides the biochemical function carried out by each effector along with the a
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protein substrates via an isopeptide bond linking the last
carboxylate of Ub (on Gly76) to the ε-amino group of lysine
residues of substrates through the sequential actions of a trio
of enzymes, an ATP-dependent Ub-activating E1 enzyme, a
Ub-conjugating E2 enzyme, and an E3 Ub ligase (Fig. 1). This
covalent attachment can be reversed when desired by deubi-
quitinases (DUBs) which catalyze the hydrolysis of the iso-
peptide bond. In addition to the vast array of other functions
regulated by ubiquitination, it serves as the first line of defense
against invading pathogens by mediating signaling events
leading to innate immune response and xenophagy (22–25).
Accordingly, prokaryotic pathogens are often found to block
(26, 27) and even manipulate the ubiquitination machinery to
serve their purpose, sometimes using means outside the
eukaryotic repertoire. In two recent examples, L. pneumophila
was shown to ubiquitinate host targets by employing
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Figure 1. Different modes of ubiquitination.
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mechanisms independent of the classical three-enzyme system
of eukaryotes: the SidE effectors use nicotinamide adenine
dinucleotide (NAD+) to ubiquitinate serine residues of host
targets via a phospho-ribose (PR) linker connecting the hy-
droxyl group with Arg42 of Ub (28, 29) (Fig. 1), whereas the
MavC effector uses transglutaminase mechanism to cross-link
Gln40 of Ub with a critical lysine residue (Lys92) of Ube2N
(30), a reaction that does not even require a nucleotide
cofactor (Fig. 1). These orthogonal modes of ubiquitination
cannot be reversed by host DUBs, allowing the bacteria to
remodel specific cellular pathways at will. However, aggressive
manipulation of the Ub system and associated cellular pro-
cesses can be detrimental to the pathogen. It could result in
the host succumbing to the offense, ultimately limiting bac-
terial replication. Accordingly, L. pneumophila has evolved
distinct strategies for a balanced control: in some cases, one
effector switching off another to block its ubiquitinating ac-
tivity, or, in other examples, one effector reversing the ubiq-
uitin modification installed by another through a
deubiquitinase-like reaction. In addition to these atypical
ubiquitinating and deubiquitinating enzymes, L. pneumophila
also possesses several effectors that mimic components of the
host ubiquitination machinery, including the classical DUBs
and E3 ligases, to co-opt the Ub system and interfere with Ub
signals used in cellular defense (11, 31–36).

MavC and its paralog MvcA are two effectors in
L. pneumophila present on the same locus adjacent to each
other with a 76-base pair intergenic space (Fig. 2A). These
effectors were first described as cysteine-dependent deami-
dases based on their structural similarity to a group of bacterial
deamidases of the Cif family, such as CHBP. They catalyze the
conversion of Gln40 of Ub or the Ubl modifier NEDD8 to
Glu40 (37–39). Subsequently, Gan et al. showed that MavC
could catalyze monoubiquitination of Ube2N, a Ub-
conjugating E2 enzyme essential for the synthesis of Lys63-
linked polyubiquitin chains in the NFκB activation pathway
(30, 40). Of the 40 different E2 enzymes encoded by eukary-
otes, MavC specifically targets Ube2N through trans-
glutaminase activity (Fig. 2B), ubiquitinating it (30) via an
isopeptide crosslink between Gln40Ub and Lys92Ube2N. This
atypical ubiquitination at Lys92 renders the active site of the
E2 enzyme inaccessible for its catalytic function of mediating
Ub transfer from the E1 enzyme to the next recipient in the
ubiquitination transfer cascade, resulting in blockade of Lys63-
linked polyubiquitin chain synthesis (40).

MavC and MvcA share 52% sequence identity and are
structurally very similar to one another (38, 39, 41). But unlike
the Cif deamidases, MavC seems to have evolved to target
Ube2N through the acquisition of a novel insertion domain
(INS domain) that is absent in the deamidases. It is this
insertion (INS) domain that enables MavC to carry out atypical
ubiquitination of Ube2N (30, 41–43). The transglutaminase
activity of MavC proceeds with, first, the formation of an acyl-
enzyme thioester intermediate with Ub in which the carbonyl
group of Gln40Ub is linked to the S-atom of the catalytic thiol
(Cys74MavC) (Fig. 2B). Formation of this intermediate is
accompanied by release of ammonia, aided by His231MavC

acting as a proton donor to the leaving group. This interme-
diate is subsequently attacked by the ε−amino group of
Lys92Ube2N resulting in an isopeptide cross-link between Ub
and the E2 target. The same intermediate is also prone to a
nucleophilic attack by water, especially in the absence of the
amine nucleophile, resulting in the deamidation of the gluta-
mine side chain (41). However, the deamidase activity of MavC
was not detected under infection conditions, suggesting that
the transglutaminase activity could be its primary physiological
function (30). Recently, four different groups have elucidated
the three-dimensional structures of MavC in complex with its
substrates and product (41, 44–47). The structures revealed
important insights into the role played by the INS domain in
recruiting Ube2N and its conformational dynamics in pro-
moting ubiquitination reaction over deamidation.

Cellular Ube2N exists as a heterodimer with Uev1a (48)
while thioester linked to Ub through the catalytic cysteine (49,
50), a complex often referred to as the charged E2 complex.
The charging of E2 (denoted by Ube2N�Ub) occurs when Ub
is transferred from E1 in the context of the E1-E2-E3 transfer
cascade. Since the dimerization interface does not overlap with
MavC binding, the Ub-charged heterodimer could be the
actual physiological target of the effector. In that case, the
J. Biol. Chem. (2021) 297(6) 101340 3



Figure 2. MavC and MvcA in atypical ubiquitination. A, Orientation of the genes is indicated by the direction of the arrows they represent. Domains are
labeled with the length of the proteins. Residues of the catalytic triad are shown. Also highlighted is the insertion (INS) domain in both MavC and MvcA. B,
proposed mechanism of ubiquitination by MavC. In the first step, a thioester-linked acyl-enzyme intermediate is formed between the catalytic Cys74MavC

and Gln40Ub. In the second step, Lys92Ube2N attacks the thioester intermediate resulting in an isopeptide linkage between Gln40Ub and Lys92UbE2N.
Arrangement of the catalytic residues in the active site is shown in a boxed panel. PDB codes: 5TSC, 6UMP, 6ULH, 6UMS, 6P5B, 6P5H, 6KL4, 6KFP, 7BXG,
6KG6. C, proposed mechanism of deubiquitination by MvcA. In the first step, the catalytic Cys83MvcA attacks the isopeptide bond between Gln40Ub and
Lys92UbE2N releasing Ube2N and forms a thioester-linked intermediate of MvcA with Ub. This is followed by deamidation of Ub (UbQ40E). Arrangement of
the catalytic residues in the active site is shown in a boxed panel. PDB codes: 5SUJ, 6K11, 6JKY. D, structures of MavC and MvcA in complex with Ub-Ube2N
and lpg2149. Overlay of the ribbon representations of the Ub-Ube2N (gray) and Lpg2149 (orange) complexes of MavC (raspberry) and MvcA (blue). The INS
domains in both MavC and MvcA are highlighted by coloring them lighter shades. PDB codes: 5DPO, 7BXH, 7BXF, 6K3B.
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transglutamination reaction likely occurs in an intramolecular
fashion between Ub and Ube2N while being covalently teth-
ered via the active-site thioester linkage in Ube2N�Ub (41).
The intramolecular reaction improves the probability of the
transamidation reaction over the futile hydrolysis of the thio-
ester intermediate that would otherwise result in Ub
4 J. Biol. Chem. (2021) 297(6) 101340
deamidation, which may cause a broader cellular impact, since
the deamidated Ub derivative is substantially less useful in
cellular ubiquitination events of the host (37). Specificity in
recognition of Ube2N by MavC arises from interactions at the
same interface on the E2 enzyme that is generally recognized
by its cognate E3 ligases (51, 52). However, the MavC-Ube2N
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interaction is tighter than the interaction of Ube2N with its
host E3-binding partners, such as TRAF6 (41, 53), allowing
MavC to effectively engage its target amidst the host protein
partners of Ube2N.

Remarkably, despite striking structural similarity with
MavC, including identical catalytic residues and a similar INS
domain (Fig. 2, A and C), MvcA catalyzes the removal of Ub
from the ubiquitinated Ube2N (Ub-Ube2N), the product of the
MavC-catalyzed modification. Cleavage of the isopeptide
cross-link by MvcA leads to regeneration of native Ube2N in a
reaction akin to cysteine-dependent deubiquitinase activity of
eukaryotic DUBs (39, 47, 54). The thiol group of the catalytic
cysteine of MvcA attacks the scissile isopeptide bond, forming
a thioester intermediate with Ub as Ube2N leaves as the amine
fragment (Fig. 2C). Hydrolysis of this intermediate releases Ub
as the Q40E derivative. Thus, MvcA and MavC function
similarly during the first step of their catalysis, forming the
thioester intermediate with Ub accompanied by the departure
of an amine group (ammonia in the case of MavC and Ube2N
in the case of MvcA). The difference lies in the second step,
wherein the MvcA catalysis involves water as the nucleophile
in contrast to the Lys92Ube2N amine nucleophile in the MavC
reaction (Fig. 2, B and C). In addition to the same catalytic
triad, contact regions between MvcA and its substrates also
mimic those in the MavC-substrate complexes (Fig. 2D),
pointing to an evolutionary adaptation that enables two en-
zymes sharing a common fold and mechanistic features to
catalyze opposite reactions.

The MavC/MvcA pair provides a remarkable example of
temporal regulation by Legionella necessitated by a specific
requirement for Ub attachment and removal. In the initial
stages of infection, MavC ubiquitinates Ube2N and dampens
NF-κB signaling (55). However, the regular catalytic activity of
Ube2N leading to NF-κB activation is beneficial to long-term
intracellular growth of L. pneumophila even though its inhi-
bition is necessary for blocking immune response in the early
phase of infection (56). MvcA, on the other hand, is expressed
�3 h postinfection (44), giving MavC ample time to blunt the
immune response of the host while the bacteria are trying to
establish a replicative niche within the host cell. The MavC-
MvcA pair of effectors illustrate an important example of the
subtle and precise interplay of bacterial effectors with specific
host posttranslational pathways while avoiding systemic effects
on a broad array of cellular processes.

Another gene sharing the same locus with mavC and mvcA
is lpg2149 (Fig. 2A) (37), separated from mvcA by an 88-base-
pair intergenic space, suggesting that this separation might
allow its independent expression and regulation (44, 57).
Surprisingly, lpg2149 can inhibit both MavC and MvcA.
Recently, the crystal structures of MavC and MvcA in complex
with lpg2149 were elucidated (45, 46). The structures show
that lpg2149 inhibits the enzymes by binding to a conserved
structural element called the helical extension, thereby pre-
venting Ub from binding (Fig. 2D). Thus, unlike MavC and
MvcA, which have evolved to specifically inhibit Ube2N and
restore it, respectively, at different time points during Legion-
ella infection (30, 44), lpg2149 appears to possess a broader
inhibitory activity toward both effectors through direct
protein–protein interaction (37, 45). Gan et al. have shown
that in a laboratory setting, lpg2149 expresses only in the early
exponential phase and not in the early stages of Legionella
infection, suggesting that lpg2149 exerts its inhibitory effects
only when the bacteria have started to replicate (44). The
significance of inhibition by lpg2149 remains unclear and re-
quires further studies to understand the biological relevance of
this multilayered regulation.
SidM, SidD, and LepB: modulators of the Rab1 GTPase

The Rab family of small GTPases are critical mediators of
eukaryotic endocytic and secretory vesicular trafficking events
(58–60). Functioning as molecular switches, they cycle
through two different nucleotide bound states to regulate
protein–protein interactions necessary for vesicular trafficking
events and other membrane-associated functions. The largely
cytosolic, GDP-bound inactive Rab is activated by a guanine
nucleotide exchange factor (GEF), which catalyzes the ex-
change of GDP for GTP to turn the protein to its active,
membrane attached form. The GTP-bound Rab recruits spe-
cific protein partners to control docking and tethering steps
between membrane compartments and cytoskeleton during
vesicular trafficking events. The activated state of Rabs is
temporally regulated by GTP-hydrolysis-activating proteins
(GAPs), which promote GTP hydrolysis and return the Rab to
its GDP-bound inactive form, which is subsequently extracted
from the membrane by a guanine dissociation inhibitor (GDI)
protein (61). Rab GTPases are targeted by intracellular bac-
teria, especially to bypass endocytic-lysosomal maturation of
their phagosomes and subvert membrane trafficking from the
endoplasmic reticulum (ER) (1, 59, 62–64).

Rab GTPases exploit their similar overall fold and conserved
residues for nucleotide binding and catalysis while using in-
dividual structural differences in key variable regions to
interact with specific binding partners, such as the GEFs and
GAPs (59, 65). There are three essential recognition motifs in
Rab variable regions: The P-loop (contacts the α and β-phos-
phates of the guanine nucleotide); Switch I (involved in Mg2+

coordination), and Switch II (consists of the DXXG motif that
links binding of Mg2+ and the γ-phosphate of GTP). The
inactive and active states of these GTPases are distinguished by
the conformation of the switch loops (65), which along with
the interswitch region, form interactions with almost all
binding partners, including GEFs and GAPs. In the GTP-
bound form, both Switch I and Switch II are held in place by
interactions with the γ-phosphate group of GTP. Upon GTP
hydrolysis, loss of these interactions and the release of the γ-
phosphate group allow both switch regions to settle into their
GDP-bound conformations.

One of the characteristic features of Legionella infection is
the acquisition of an ER-like membrane coat on the LCV as the
plasma-membrane-derived organelle matures into a phag-
osomal compartment supportive of bacterial replication
(64, 66, 67). Among the several host proteins sequestered to
the LCV is Rab1, a critical player during the initial stages of
J. Biol. Chem. (2021) 297(6) 101340 5
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secretory pathways by promoting the transport and fusion of
vesicles exiting the ER to the Golgi apparatus (68, 69), while
also known to regulate membrane tethering events in auto-
phagy (70). The recruitment of Rab1 is essential for further
maturation of the LCV to a more ER-like organelle. SidM,
SidD, and LepB are a unique trio of L. pneumophila effectors
known to modulate Rab1 function to recruit membranes from
the ER and the pre-Golgi intermediate compartment to the
LCV (71–73). SidM is a multifaceted effector with functionally
diverse domains (71, 74, 75). LepB neutralizes the different
activities mediated by SidM (73, 76) and SidD (76–78)
(Fig. 3A). Neunuebel et al. showed that translocation of SidM,
SidD, and LepB is temporally regulated. Levels of SidM are
high immediately following infection, commensurate with the
recruitment of Rab1 to the LCV. Two hours postinfection, the
levels of SidM start to decline as the levels of SidD and LepB
rise, both of which are required to release Rab1 from the
maturing LCV back to the host cytosol (79).

SidM, also known as DrrA (defects in Rab1 recruitment
protein A), features three distinct functional domains (Fig. 3A):
an N-terminal adenylyl-transferase domain (ATase), a C-ter-
minal lipid phosphatidylinositol-4-phosphate binding domain
of SidM (P4M), and a central GEF domain (80). Once trans-
located into the host, SidM localizes to the LCV through
membrane association mediated by its P4M domain (81),
where it can act as both a GEF and a GDF (GDI-displacement
factor) for Rab1 (80, 82, 83). It initiates Rab1 activation and
subsequent LCV localization by first displacing Rab1 from the
Rab1-GDI complex, followed by catalyzing the GDP to GTP
exchange (Fig. 3B; Step 1). As far as GEF activity is concerned,
Rab1 substrate specificity for SidM stems from interactions
with residues in the Switch I loop (Asp34 to Ile41). Crystal
structures show substantial conformational reorganization in
the Rab1 switch regions upon SidM binding (Fig. 4, A and B).
Although the mode of Rab1 activation is similar to that
observed in eukaryotic GEFs, the GEF domain of SidM is
structurally distinct from the eukaryotic GEFs (84) (Fig. 3C).
Conformational changes during eukaryotic GEF-catalyzed
nucleotide exchange involve structural rearrangements
within the switch regions, with a more pronounced change in
Switch I (Fig. 4A). When a GEF binds to the Switch I loop of
the Rab GTPase, it destabilizes the interaction of the GTPase
with the phosphate and the Mg2+ ion, pulling Switch I into an
open conformation (Fig. 4, A and B). This destabilization also
displaces the conserved Tyr36 (or Phe in some GTPases) from
its interaction with the guanine nucleobase while causing the
P-loop to lose its interactions with the phosphate groups of the
nucleotide, thus lowering the affinity for GDP even further
(59, 85–88). Interestingly, the Switch I region in the SidM-
Rab1 complex also disengages from the main body of Rab1
and rotates to face the opposite direction compared with its
conformation in the Rab1-GDP and Ypt1-GDI complex
(80, 84, 86). This rearrangement causes the guanosine binding
site in Rab1 to distort, displacing Tyr36 and pushing Ser25 in
the P-loop into the nucleotide-binding pocket, which induces
Rab1 to adopt a more open conformation comparable to the
other known GEF-Rab1 complexes, facilitating GDP release
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(Fig. 4, A and B). SidM binding also affects the Switch II re-
gion, stabilizing it in a conformation reminiscent of a GTP-
bound Rab1 (89).

The N-terminal ATase domain of SidM further modulates
the active state of Rab1 (Fig. 3B; Step 2) through the covalent
attachment of an AMP moiety onto Tyr77 of Switch II
(Fig. 4C) (75, 90), consequently locking Rab1 in its GTP-bound
state. This AMPylation activity of SidM toward the GTP-
bound Rab1 is nearly 270-fold higher than the GDP-bound
form of Rab1, which implies that SidM preferentially targets
active Rab1 (75) and AMPylation is preceded by the GEF
function. SidM uses the classic GX11DXD motif in this reac-
tion, where the aspartates coordinate the catalytic Mg2+ as
seen in the E. coli glutamine synthetase-adenylyltransferase
enzyme (GS-ATase) that catalyzes AMPylation of glutamine
synthetase for regulating its activity (75, 91) (Fig. 4C). Two
additional aspartates (Asp150SidM and Asp249SidM) contribute
to the binding of the Mg2+ ion, with Asp112SidM serving as a
general base to promote nucleophilic attack by the phenolic
OH group of Tyr77Rab1 (75, 92) (Fig. 4C). Although the
attachment makes little difference to the conformation of Rab1
and hence its GTP affinity, the modification of Tyr77 does
prevent the Legionella GAP, LepB, or possibly host GAPs from
binding to Rab1 prematurely (75, 90), thereby prolonging the
lifetime of its activated state (90). Thus, the GEF and ATase
domains of SidM appear to function collaboratively to extend
retention of active Rab1 on the LCV membrane, at the same
time thwarting the access of host GAPs to the GTPase.

Overactivation and prolonged LCV retention of Rab1 may
cause a drastic effect on host vesicular traffic events that rely
on this critical ER-associated GTPase. SidD counteracts SidM-
catalyzed AMPylation via its N-terminal enzymatic domain
through deAMPylation activity (Fig. 3B; Step 3) while a pu-
tative membrane targeting segment in the C-terminal region
may assist in the LCV localization (Fig. 3A) (76, 78, 93). The
deAMPylase domain shares a distinct structural resemblance
with a family of metal-dependent protein phosphatases
(PPMs), such as human PP2Cα and bacterial PstP (94, 95). The
catalytic pocket of SidD features a negatively charged region
with two Mg2+ binding sites such as the binuclear metal-
binding sites in PPMs (Fig. 5A). Five catalytic aspartates
(Asp91, Asp92, Asp110, Asp112, and Asp326) and a binuclear
bridging water, that acts as the nucleophile, coordinate the two
metal ions. Hydrolysis of the adenylyl-O-tyrosyl linkage
(AMP-Tyr77) releases AMP and restores Tyr77Rab1 to its un-
modified form (Fig. 5A).

This deAMPylation frees up Rab1 from its continuous state
of activation, thus allowing LepB to trigger GTP hydrolysis
through its GAP activity (Fig. 3B; Step 4), leading to inacti-
vation of Rab1 and their subsequent removal from the LCV.
LepB is mechanistically homologous to the eukaryotic Rho/
Ras-GAP rather than a Rab-GAP. Traditional Rab-GAPs (the
so-called TBC GAPs) and some bacterial GAPs (of the VirA/
EspG family) feature a catalytic glutamine finger in addition to
the canonical arginine finger (Arg finger) (96, 97). LepB,
however, features a glutamate residue (Glu449LepB) instead of
the glutamine finger. Glu449LepB occupies a structural position



Figure 3. SidM, SidD, and LepB: modulators of the Rab1 GTPase. A, Orientation of the genes, shown in blue, is indicated by the direction of the arrows
they represent. The direction of sidM is opposite to sidD and lepB in the locus. Domains are labeled with the length of the proteins. SidM: ATase, N-terminal
adenylyltransferase domain (cyangreen); GEF, guanine-nucleotide exchange factor (orange); P4M, phosphatidylinositol-4-phosphate binding domain (sky
blue); SidD: DeAMPylase, N-terminal deAMPylation domain (green) and a C-terminal domain of unknown function (purple); LepB: GAP, an N-terminal GTP-
activating protein domain (orange) and a C-terminal domain of unknown function (yellow). Functionally important residues are shown. B, GDP-GTP ex-
change cycle for Rab1 involving SidM, SidD, and LepB. The GEF domain of SidM (orange) catalyzes the exchange of GDP to GTP (Step 1). The GTP-bound
Rab1 (active state) is AMPylated (indicated by an asterisk) by the ATase domain of SidM (cyangreen) (Step 2). SidD (green) removes the AMP moiety from
AMPylated-Rab1 (Step 3). The GAP domain of LepB (orange) inactivates Rab1 by hydrolyzing GTP to GDP (Step 4). C, crystal structures of SidM, SidD, and
LepB. The structures are colored as per the scheme adopted for their domain architecture in Figure 3A.
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in apo-LepB equivalent to the canonical glutamine in the
traditional Rab-GAPs (98–100). The catalytic Arg444 finger of
LepB mediates a two-pronged polar interaction with the β-and
γ-phosphates of the GTP (Fig. 5B). Upon binding to Rab1,
Glu449LepB undergoes a pronounced movement that triggers
the side chain of Gln70Rab1 to flip toward the γ-phosphate of
GTP. As a result, Gln70Rab1 adopts a similar position with
respect to the γ-phosphate and a water molecule to what has
previously been observed with the catalytic in-trans Gln finger
(contributed by the substrate GTPase) in Ras-GAPs (Fig. 5B).
The side chain of Gln70Rab1 would orient the water molecule
for nucleophilic attack on the γ-phosphate center of GTP to
facilitate its hydrolysis much like the catalytic in-cis Gln finger
(contributed by the GAP) of TBC-like Rab GAPs (98–100)
(Fig. 5C). Thus, LepB seems to employ the same sort of
substrate-assisted catalysis commonly observed in Ras GAP-
like catalytic mechanisms (98–100). Perhaps, a Ras GAP-like
mechanism confers certain advantages for better kinetic con-
trol of Rab1 dynamics over the host GAP.
AnkX and Lem3: parallel modulators of Rab1 function

The AnkX and Lem3 effector pair represents a sophisticated
example of functional redundancy used by Legionella to sub-
vert the function of Rab GTPases and facilitate LCV matura-
tion (Fig. 6A). A time-resolved analysis of Legionella effectors
that modulate Rab1 function showed that these effectors differ
in the specific timing of increase in their levels, which agrees
with the role played by them in recruiting Rab1. Allombert
et al. demonstrated that AnkX levels begin to rise only after
SidM has been translocated and has had a chance to release
Rab1 from the Rab1-GDI complex (101). AnkX subverts Rab1
(and Rab35) by functional (102) and structural (103, 104)
mimicry of the Fic (filamentation induced by cAMP) domain, a
J. Biol. Chem. (2021) 297(6) 101340 7



Figure 4. Proposed catalytic mechanism of SidM. A, SidM interaction with Rab1 leads to Switch I (dark green) of Rab1 to swing out. This causes Switch II
(maroon) to interact with the P-loop (dark blue), pulling it inward. The resulting distortion of Switch I and II leads to the release of GDP. B, overlay of GDP-
bound and GTP-bound Rab1. Ribbon representations of both the nucleotide-bound forms of Rab1 are shown in gray. Important residues at the binding
interface are shown in stick representation. GDP-Rab1 residues from Switch I are shown in dark green, Switch II residues are shown in maroon and P-loop
residues are shown in dark blue. Identical residues from the GTP-Rab1 structure are shown in light green, pink, and light blue, respectively. PDB codes: 3L0I,
2WWX, 3JZA, 5O74. C, proposed catalytic mechanism of Rab1 AMPylation by SidM. The catalytic aspartates (Asp110 and Asp112) attack the α−phosphate of
ATP to attach the AMP group onto Tyr77Rab1 via a phosphodiester bond. Also shown is a sequence alignment (BOXSHADE) of the GX11DXD motif from SidM
and the GS-ATase (GlnE) from E. coli to highlight the sequence conservation of the active site residues.
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domain known to catalyze AMPylation (105, 106). Proteins
containing either a single or multiple Fic domains have been
identified in all domains of life (107), most commonly in
bacterial proteins, especially those involved in targeting host
GTPases. The only known human protein containing this
domain is the HypE protein, known to regulate protein stress
response (105, 108, 109). The characteristic structural ele-
ments defining the Fic family of proteins are the presence of a
bundle of six α-helices and a loop region with a highly
conserved motif, HXFX(D/E)(A/G)N(G/K)R, the so-called Fic
motif. The Fic domain of AnkX (Fig. 6A) catalyzes phos-
phocholination of Rab1 using CDP-choline, a modification
that is ultimately reversed by Lem3 (110, 111). It resides within
the CMP (cytidine monophosphate)-binding domain of AnkX
and is unique because, unlike other Fic-domain-containing
effectors, the Fic domain of AnkX transfers the phosphocho-
line moiety and not the nucleotide monophosphate. The C-
terminal region of AnkX also contains ankyrin repeat domains
(ARDs) and a PI3/4P-binding domain (Fig. 6A) (112). Akin to
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their role in eukaryotes, the ARDs in AnkX facilitate protein–
protein interaction as observed between the ankyrin repeats 10
to 13 with the C-terminal of Rab1b in a crystal structure of the
AnkX-Rab1b complex (104).

The different crystal structures of AnkX (in apo and Rab1-
bound form) (Fig. 6B) revealed that the Fic domain plays a
crucial role in binding the Switch I, II, and C-terminal regions
of Rab1 (104, 113). This domain is divided into two sub-
domains separated by a unique 70-residue-long insert that
masks the traditional binding site for GTPases on the Fic
domain (Fig. 6, A and B). Phe107, Ile109, and Asp265 in the
active site of AnkX sterically occlude the base of the CMP
substrate from binding in the same orientation as seen with
nucleotide substrates in other Fic enzymes. Instead, the choline
group nestles in this region while the cytidine group stacks
against Tyr41 of the CMP-binding domain, forcing a flipped
orientation of the bound CMP moiety compared with the
nucleotide-binding in AMPylating Fics. Thus, AnkX behaves as
a phosphocholine transferase instead of a nucleotide



Figure 5. Proposed catalytic mechanism of Rab1 inactivation by SidD and LepB. A, De-AMPylation of Rab1 by SidD. The binuclear bridging water
molecule acts as the nucleophile to cleave the adenylyl-O-tyrosyl linkage, thus freeing up Tyr77Rab1. PDB codes: 4IIP, 4IIK, 6RRE, 6RP4. B, proposed catalytic
mechanism of Rab1 inactivation by LepB. The carbonyl of Gln70Rab1 (from the Switch II region) orients the catalytic water in the active site, causing it to
attack the γ-phosphate of the GTP and convert it to GDP, thus inactivating Rab1. C, stick representation of the residues at the LepB-Rab1 binding interface.
LepB residues are shown in orange. Rab1 residues from Switch I are shown in green, Switch II residues are shown in maroon and P-loop residues are shown
in blue. PDB codes: 4I1O, 4IRU, 4JVS.
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transferase. Upon binding to AnkX, Switch II of Rab1b un-
dergoes a significant structural rearrangement when
Phe143AnkX sticks into a hydrophobic pocket formed between
Switch II and helix-3 of Rab1b. This encroachment by
Phe143AnkX displaces Tyr78Rab1b from its highly conserved
position in this hydrophobic cavity (Fig. 6C) (114). The
displacement of Tyr78Rab1b causes local unfolding of the
Switch II region and the residues adjacent to it (Fig. 6C). As a
result, the otherwise structurally restricted Ser76Rab1 of Switch
II can now reach into the active site of AnkX for phos-
phocholination. The catalytic His229AnkX of the Fic motif acts
as a general base in deprotonating the OH group of Ser76Rab1,
promoting a nucleophilic attack on the β-P center of the
nucleotide (Fig. 6D). The Asp233 residue of the Fic motif
positions the catalytic Mg2+, while the Asn235 and Arg237 play
a critical role in interactions with the phosphocholine moiety.
The Legionella effector Lem3 (Fig. 6A), a phosphodiesterase
whose structure is yet to be determined, can reverse the ef-
fects of AnkX by removing the phosphocholine group from
Ser76 of Rab1 (110), making the GTPase accessible to other
Legionella effectors such as LepB. Although phosphocholi-
nation on Ser76Rab1 does not affect the GEF activity of SidM,
it does profoundly affect the adenylation of Tyr77Rab1, indi-
cating that these modifications can be mutually exclusive.
Ser76Rab1 modification by AnkX also negatively impacts the
interactions of the modified Rab1 with its GDI, which are
restored upon Lem3-catalyzed dephosphocholination of Rab1
(111). Surprisingly, Lem3 cannot hydrolyze AnkX-catalyzed
phosphocholination of Rab35 on residue Thr76 (115) point-
ing to the existence of yet-to-be identified effector selective
for the Rab35 modification. The importance of the AnkX/
Lem3 pair in the hijacking of Rab1 is not as well understood as
J. Biol. Chem. (2021) 297(6) 101340 9



Figure 6. Parallel modulators of Rab1 GTPase. A, Orientation of the genes, shown in blue, is indicated by the direction of the arrows they represent. The
direction of both the genes is opposite to each other in the locus. Domains are labeled with the length of the proteins and colored individually. AnkX: CMP,
N-terminal (cytidine monophosphate) binding domain (red); Fica/b, filamentation induced by cAMP domain (pale blue), Ankyrins (green); PIBD, Phosphoi-
nositide binding domain (dark blue). A unique 70-residue long insert (yellow) in the Fic domain is also shown. Functionally important residues from the Fic
domain are shown. Lem3: PDE; phosphodiesterase domain (purple). B, crystal structure of AnkX-Rab1b complex (PDB code 6SKU). The different domains of
AnkX are colored as per the domain diagram shown in Figure 6A. Rab1b is shown in orange. C, displacement of Switch II of Rab1b by AnkX. AnkX and Rab1b
from the complex (PDB 6SKU) are colored as before. Superposed on Rab1b of this complex is the structure of unbound-Rab1b (PDB 3NKV) shown in slate-
blue. The binding of AnkX to Rab1b displaces Switch II and locally unfolds the region adjacent to Ser76Rab1b, as can be seen when comparing the two
structures. D, proposed catalytic mechanism of Rab1 phosphocholination mediated by AnkX. Asp233AnkX (bound to the catalytic Mg2+) deprotonates
His229AnkX, causing it to attack the scissile Oαβ-Pβ bond in CDP-choline and attach phosphocholine onto Ser76Rab1.
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the role of the SidM/SidD pair. Nevertheless, given the
importance of phosphocholination in the modulation of the
eukaryotic immune system and the opposing activities of
AnkX and Lem3, they are essential for the bacteria during
infection.

The eight different activities mediated by seven Legionella
effectors, SidM, AnkX, SidD, LepB, Lem3, SetA, and LidA
(SetA and LidA have not been discussed here), known so far
to modulate Rab1 function, point to the importance of the
GTPase in the intracellular lifecycle of the bacteria. Upon
activation, Rab1 interacts with other proteins, such as p115 or
GM130, in order to guide ER-derived vesicles to fuse with the
Golgi apparatus (116–118). Rab1 seems to play a similar role
of docking ER-derived vesicles with the LCV during Legion-
ella infection. Recruitment of Rab1 may also contribute to
bypassing the default maturation of such organelles along the
endocytic pathway for lysosomal degradation. SidM is
10 J. Biol. Chem. (2021) 297(6) 101340
translocated to the host cell within minutes of Legionella
infection coinciding with Rab1 recruitment to the LCV (73,
101). It seems that once the GDP to GTP exchange occurs,
mediated by SidM GEF domain, other effectors such as SetA,
AnkX as well as the ATase domain of SidM are able to carry
out specific PTMs targeting the Switch II residues Thr75,
Ser76, and Tyr77, respectively (75, 110, 119). These mutually
exclusive modifications might trap the activated Rab1 on the
LCV membrane by preventing deactivation or dissociation by
the eukaryotic GAPs and GDIs. On the other hand, detection
of effectors such as SidD, LepB, and Lem3 in the later stages
of infection suggests that these effectors temporarily control
the recovery of Rab1 from the membrane by removing the
modifications and deactivating the GTPase. Further studies
are needed to reveal whether these effectors are specific for
Rab1 alone or if they are responsible for modulating the
broader landscape of GTPases, as indicated by their
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promiscuity toward several Rab proteins observed in vitro
(75, 102).
SidE proteins, SidJ and SdeD: atypical ubiquitination of
Rab-GTPases

SidE family members, comprising SidE, SdeA, SdeB, and
SdeC (8, 120), belong to yet another unique group of bacterial
effectors that target several host proteins associated with the
ER, including ER-Rabs (Rab1, for example) and reticulon,
through phosphoribosyl-linked (PR-Ub) ubiquitination, a type
of PTM for which there are no parallels in eukaryotes so far
(28, 29, 49, 121–123). In contrast to the archetypical E1-E2-E3
three-enzyme system of eukaryotes, the SidE effectors use an
all-in-one ubiquitinating machinery that utilizes NAD+,
instead of ATP, to target serine residues of host proteins
through PR-linked ubiquitination via Arg42 of Ub. This
orthogonal mode of ubiquitination bypasses the eukaryotic
machinery and produces a linker resistant to host DUBs (124).

SidE family members are large, functionally redundant
proteins that share more than 40% sequence identity. These
modular proteins function via the concerted action of four
domains (Fig. 7A): a deubiquitinase domain (DUB), a phos-
phodiesterase domain (PDE), a mono-ADP-ribosyltransferase
domain (mART), and a C-terminal coiled-coil domain (CC).
Biochemical studies have shown that the DUB domain is not
essential for the ubiquitinating activity of these proteins (125).
SdeA likely uses its DUB domain to produce free Ub at the
LCV to make it readily available for its ligase machinery. Dong
et al. have shown that the CC domain interacts with parts of
the Dot/Icm translocation machinery and may thus be
required to inject the SidE ligases into the host cytosol (126).
The core enzymatic machinery for ubiquitination comprises
the PDE and the mART domains (126–129). The mART
domain, which features a characteristic RSE motif typically
found in arginine-targeting mART enzymes, activates Ub by
transferring the ADP-ribose group from NAD+ on to Arg42Ub,
forming ADP-ribosylated Ub (Ub-ADPR) as an intermediate.
Subsequently, the PDE domain catalyzes a phospho-
transferase-like reaction where the PR-Ub of Ub-ADPR is
transferred to the hydroxyl group of a serine residue of the
host protein, accompanied by the release of AMP. Several
structures of different constructs of these proteins (126–129)
(Table 1), along with biochemical studies, have allowed
elucidation of some critical aspects of the various catalytic
steps involved in recognition of Ub by the mART domain and
those involved in recognition of Ub-ADPR by the PDE
domain. The initial discovery of the five substrates: Rtn4
(reticulon 4) Rab1a, Rab6a, Rab30, and Rab33b (29, 122), was
quickly followed by the understanding that the SidE proteins
are tolerant of any serine that is a part of an unstructured/
flexible region, provided it can be accommodated in the PDE
active site (127, 130, 131). Since SidE proteins are known to
colocalize with the LCV, it seems likely that the SidE enzymes
target their substrates by proximity-based selection rather than
by sequence specificity.
The mART domain of SdeA, like certain bacterial mART
toxins, consists of a helical lobe and a main lobe, together
forming the NAD+-binding pocket (132) at their interface. The
nucleotide cofactor binds at this pocket in a strained confor-
mation (Fig. 7B), which facilitates the departure of nicotin-
amide (Nic) prior to the attack of the Arg side chain on the
resulting oxocarbenium center of the Nic-bearing ribose of
NAD+ (126, 127). This reaction is similar to the one performed
by bacterial mono-ADP-ribosyltransferase toxins, such as the
Iota toxin from Clostridium perfringens, which utilizes the
characteristic RSE active-site motif to ADP-ribosylate Arg177
of actin via the so-called SN1 strain alleviation mechanism of
ADP-ribosylation (132). The conserved Arg and the Ser resi-
dues of SdeA help position and stabilize the strained confor-
mation of the nucleotide in the active site, while the first Glu
residue (Glu860 in SdeA) of the EXE dyad promotes the
nucleophilic attack by the substrate Arg (Fig. 7B) and the
second Glu stabilizes the oxocarbenium ion. The conforma-
tion of NAD+ observed in SidE mART crystal structures and
the placement of critical residues of the RSE motif are
consistent with the strain alleviation model of ADP-
ribosylation in this enzyme.

The PDE domain of SdeA bears distinct sequence homol-
ogy with other bacterial phosphodiesterases, such as the PDE
domain of the well-known cyclic di-30,50-GMP phosphodi-
esterase PA4781 from Pseudomonas aeruginosa (133), with
which it shares 23% sequence similarity. The PDE domain of
SdeA has the same three catalytic residues, His277, Glu340,
and His407, conserved in bacterial PDEs. Mechanistically, the
reaction proceeds through covalent catalysis via the forma-
tion of a phospho-His-like intermediate (Fig. 7C) (28). His277
acts as a nucleophile to attack the β-phosphorous center of
the ADPR moiety in Ub-ADPR, aided by Glu340 deproto-
nating the imidazole side chain to its neutral form (127). This
attack results in the formation of a transient His277-PR-Ub
intermediate and AMP release, enabled by proton donation
by His407 to the leaving group. The His277-PR-Ub inter-
mediate then reacts with the serine OH group of the substrate
leading ultimately to the transfer of phosphoribosylated-
ubiquitin (PR-Ub) onto the host protein (128, 130). From
the position of His407 relative to the APDR moiety, it appears
to be the most likely candidate for serving the role of the
general base in activating the OH group of the target serine
(Fig. 7C). Thus, despite the similarity of the PDE domain of
SdeA with the bacterial phosphodiesterases, the catalytic
motif in the SdeA PDE domain catalyzes a (substituted)
phospho-transfer to a serine residue in the ubiquitination
reaction instead of water, which would result in hydrolysis of
the phosphodiester bond. Incidentally, the PDE domain of the
SdeA can also catalyze phospho-transfer to water, ensuing
from water attacking the phospho-His intermediate, resulting
in the PR-Ub hydrolysis product (130). The biological sig-
nificance of this side reaction in the context of
L. pneumophila infection remains to be determined, as PR-
Ub can be toxic to host cells when the SidE members are
ectopically expressed in mammalian cells.
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Figure 7. SidE family members and atypical ubiquitination. A, Orientation of the genes, shown in blue, is indicated by the direction of the arrows they
represent. While sdeA, sdeC, sdeB, and sidJ belong to the same genetic locus, sidE and sdeD belong different loci. The domains of all the members are labeled
with the length of the proteins. Different functional domains are colored individually: DUB, deubiquitinase domain (orange); PDE, phosphodiesterase
(purple); mART, mono ADP-ribosyl transferase (yellow), and CCD, coiled-coil domain (blue). The functional domains in SidJ are NRD, N-terminal regulatory
domain (blue), pseudokinase domain (red), and CTD, C-terminal domain (pale green). The IQ-motif where the eukaryotic protein, calmodulin, interacts with
SidJ is colored dark green. Functionally important residues from each domain are shown for SdeA (the SidE family member discussed at length in this
review). B, proposed catalytic mechanism of the mART domain. The catalytic Glu860SedA facilitates ADP-ribosylation of Ub to generate an ADPR-Ub in-
termediate. This reaction utilizes NAD+ and releases nicotinamide. The boxed panel shows the SdeA-mART catalytic site in stick representation. Also shown
are Arg72 and Arg42 (shown as Ala) from Ub. PDB codes: 5YSI, 5YIK. C, proposed catalytic mechanism of the PDE domain. The catalytic residues of the PDE
domain cleave and transfer PR-Ub to a serine residue of a substrate protein. Reaction arrows are depicted in red. The SdeA-PDE catalytic site is shown in the
boxed panel. PDB codes: 5YSI, 5YIK (127, 129).
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Even though the SidE proteins are essential for Legionella
replication in eukaryotes, unchecked activity of these proteins
may result in the accumulation of free PR-Ub that would
inhibit the host ubiquitination machinery (28). This contami-
nation of the cellular Ub pool leads to impairment of crucial
12 J. Biol. Chem. (2021) 297(6) 101340
Ub-dependent cellular processes (28). Ubiquitination of sub-
strates such as Rab1 by members of the SidE family may also
affect the activity of other effectors such as SidM and AnkX
that need Rab1. The PR-ubiquitination of host proteins trig-
gered by the SidE family members is regulated by two
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effectors: SidJ and SdeD. sidJ resides in the same genetic locus
as sdeC, sdeB, and sdeA, whereas sdeD is located much further
down in a distinct genomic locus (Fig. 7A) (134, 135). Studies
have shown that SidJ can inactivate SidE proteins by directly
inhibiting the mART activity, thereby shutting off the ubiq-
uitination reaction, whereas SdeD, also known as DupB
(deubiquitinase of phosphor-ribosyl linked ubiquitination),
and its paralog DupA, can counterbalance the activity of the
SidE members by acting on the phosphoribosylated host
proteins (125, 128, 136, 137).

SidJ is an 873 amino-acid protein expressed in the later
stages of Legionella infection. Inhibition of SidE proteins by
SidJ is both temporally regulated and spatially restricted as it
requires the host calmodulin (CaM) for its activity (138, 139).
Compartmentalization of SidJ’s activity in the host cytosol
prevents premature inactivation of SidE effectors before being
Figure 8. Regulation of the activity of SidE members by SidJ and SdeD. A, p
presence of ATP and Mg2+, the kinase-like domain of SidJ transfers the AMP gro
A free glutamate then attacks this intermediate to covalently attach the glutam
that form the two putative active sites in SidJ. B, proposed catalytic mechan
termediate linking H67SdeD to the phosphate of PR-Ub. H189SdeD then abstrac
phosphate, resulting in the formation of Ub-PR and free substrate.
injected into the host cell. Biochemical studies have revealed
that the association of SidJ with CaM stabilizes the active
conformation of the effector (138–142). Structure–function
studies (138–141) revealed SidJ to be a pseudokinase that
utilizes ATP to catalyze the polyglutamylation of SdeA (and
other SidE members). CaM binding via the IQ motif located at
its C-terminal end of SidJ presumably opens the kinase-like
active site of SidJ for ATP. In the first step of catalysis, SidJ
uses ATP to acyl-adenylate the carboxylate group of SdeA
Glu860 with the release of pyrophosphate (Fig. 8A), a reaction
akin to the acyl-adenylation step of the reaction catalyzed by
aminoacyl-tRNA synthetases or activation of Ub by E1. The
activated carbonyl of this unstable intermediate is then
attacked by the amino group of a free glutamate residue,
leading to glutamylation of the SdeA catalytic residue via an
isopeptide linkage and the release of AMP (Fig. 8A). This
roposed catalytic mechanism of SdeA glutamylation catalyzed by SidJ. In the
up onto the catalytic Glu860SdeA, forming an adenylated-SdeA intermediate.
ate residue onto Glu860SdeA. Also shown in the boxed panels are the residues
ism of SdeD. H67SdeD cleaves the β-phosphate of the ADPR to form an in-
ts a proton from the incoming water molecule to facilitate its attack on the
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second step likely involves another essential region in SidJ,
named the “migrated” nucleotide-binding site (139), which
may help in the optimal positioning of the acyl-adenylated
SdeA and the free glutamate to take the reaction to comple-
tion. A recent cryo-EM reconstruction of the SidJ:CaM:SdeA
intermediate complex revealed that while the pseudokinase
active site is responsible for the acyl-adenylation reaction, it is
the migrated nucleotide binding pocket that carries out the
glutamylation reaction, with Arg522SidJ playing the crucial role
of positioning the donor Glu to attack the acyl-adenylate in-
termediate and subsequent formation of the Glu-Glu isopep-
tide bond on SdeA (143).

SdeD (DupB) shares overall structural similarity with the
PDE domain of the SidE proteins (127, 130) along with a highly
conserved catalytic core made up of His67, Glu126, and
His189 (His277, Glu340, and His407 in SdeA-PDE domain)
(Fig. 7A). SdeD acts as a hydrolase to catalyze the hydrolysis of
PR-ubiquitinated substrates, presumably proceeding via the
formation of a histidine-based phosphoramidate intermediate
such as the SdeA-PDE mechanism (136) (Fig. 8B). SdeD can
remove the AMP moiety from Ub-ADPR, like the hydrolysis
reaction catalyzed by the PDE domain of SidE members.
However, it cannot transfer the PR-Ub onto target proteins,
likely due to the structural differences that alter the confor-
mation and accessibility to the catalytic center in the two ef-
fectors. The SdeD loop comprising residues 26 to 48 is missing
in SdeA, and conversely, the SdeA loop comprising residues
465 to 513 does not exist in SdeD. It is possible that because of
this structural difference, in SdeD, only water can act as the
ubiquitin acceptor instead of the hydroxyl group of a serine
residue (Fig. 8B) (137). The SdeA-PDE domain and SdeD pair
is another example, much like the MavC-MvcA pair discussed
above, of Legionella adopting the same catalytic machinery to
mediate opposite reactions.

The ligase activity of SidE members results in serine ubiq-
uitination of several structurally diverse substrates, the con-
sequences of which affect a variety of cellular processes,
ranging from autophagy and vesicular trafficking to tubular ER
dynamics and inhibition of protein synthesis. It appears that
the seemingly indiscriminate nature of the SidE proteins
contributes to the virulence of the pathogen and enables the
establishment of the LCV. For example, by PR-ubiquitinating
Rab6a and Rab33b, these effectors modulate the Golgi-to-ER
retrograde trafficking and prevent the formation of autopha-
gosomes ((144) and all the references therein), an essential first
step in autophagy. Similarly, by ubiquitinating Rag GTPases,
the SidE effectors inactivate mammalian target of rapamycin
complex 1 (mTORC1) to inhibit host protein synthesis (145),
effectively allowing the pathogen to consume the host amino
acids as nutrients for its survival. It is believed that PR-
ubiquitination by the SidE members is most likely regulated
at the early stages of infection by SdeD to prevent unchecked
accumulation of Ub-ADPR and depletion of cellular Ub (137).
In contrast, SidJ regulates the removal of SidE proteins from
the LCV at later stages of infection (125, 135). However,
despite understanding the biochemistry of the reactions
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mediated by these effectors, it is not yet clear whether these
activities are exerted simultaneously or if they are a cascading
consequence of one another. Further studies are required to
fully appreciate the spatiotemporal regulation of cellular pro-
cesses modulated by them.

Other examples of effector–effector pairs
Identification of effector–effector interactions is often the

consequence of studying the function of an individual effector.
However, recently, studies have systematically explored the
interactions between effector pairs by combining a gain-of-
function genetic screen in yeast with cellular and biochem-
ical approaches. Urbanus et al. (146) successfully identified
novel, direct pairwise effector–effector interactions by carrying
out a comprehensive analysis of all possible pairwise in-
teractions between the 330 effectors secreted by
L. pneumophila. Pairwise interactions that merit a mention
even though there is not enough structural information
available at present to describe their mechanism of action in
detail are (1) inactivation of RavJ by LegL1 (2), poly-
ubiquitination of SidH by LubX, and (3) inhibition of MavQ by
SidP.

RavJ, a small Legionella effector, rearranges the actin cyto-
skeleton leading to the accumulation of more F-actin on the
plasma membrane (147). It consists of two domains: An
N-terminal papain-like cysteine protease domain and a C-ter-
minal domain that interacts with various cytoskeleton-
associated components of the eukaryotic septin and elongator
complexes (146). Many pathogenic bacteria have evolved
virulence factors that specifically target Rho GTPases, which
control the reorganization of the actin cytoskeleton (148). For
example, YopT, an effector protein from Yersinia, functions as a
cysteine protease to cleave Rho GTPases and inhibits phago-
cytosis by disrupting the actin cytoskeleton. The N-terminal
domain of RavJ has the requisite active-site elements that can
potentially disrupt the actin cytoskeleton such as YopT,
although the specific catalytic activity remains to be demon-
strated. LegL1 is a leucine-rich repeat (LRR)-containing
Legionella effector that binds RavJ (146) and inhibits its activity
by blocking the putative active site. It is unclear at which point,
postinfection, RavJ and LegL1 are employed during the intra-
cellular life cycle of L. pneumophila and temporal regulation
mediated by the effector–effector interaction.

Historically, it is the discovery of the SidH-LubX effector
pair that first brought to light that Legionella effectors can
regulate the activity of each other. LubX is a U-box containing
bacterial E3 ligase (149) that can polyubiquitinate SidH (150),
thereby targeting it to the proteasome for degradation. Initial
pull-down experiments revealed that of the U-box motifs
present in LubX U-box2 (150) mediates the physical interac-
tion between the two effectors, while in vitro ubiquitination
assays and structural studies showed that the U-box1 is
responsible for the polyubiquitination property of the effector
via recruitment of the host Ub-conjugating E2 enzyme,
Ube2d3 (150, 151). The function of SidH within the host is yet
unclear. However, it is believed that it may contribute to the
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maintenance of the integrity of the LCV like its paralog SdhA
(150, 152). Pfam analysis of the SidH sequence identifies two
potential functional motifs: the I_LWEQ motif that signifies
binding to F-actin and a polysaccharide deacetylase motif
(KEGG database; (57)). The presence of these motifs in SidH
and its appearance in the early stages of Legionella infection
indicate that perhaps SidH functions to regulate cell surface
dynamics via these motifs. Further structure–function studies
are required to understand the functional importance of SidH
and its inhibition by LubX.

The partnering between a phosphatase (SidP) and a kinase
(MavQ) is involved in phosphatidylinositol polyphosphate (PIP)
modulation. The amino acid sequence of SidP bears no ho-
mology to any known phosphatidylinositol phosphatase (PI
phosphatase), while the MavQ sequence is an atypical kinase.
Biochemically, SidP is similar to the CX5R-based PI phospha-
tases that belong to the myotubularin family (153, 154) in that it
Figure 9. Coordinated regulation of different host cellular pathways by L
effectors of the pathogen interfere with the vesicular trafficking between the
proteins PR-ubiquitinate several host proteins, including Rab33, SdeD remov
activity of the SidE proteins. The bacterial DUBs act to reduce ubiquitination on
infection, the bacteria target the ER-associated GTPase, Rab1. SidM recruits R
phosphocholination (by AnkX) lock Rab1 in its active conformation (Rab1GTP).
Rab1, allowing it to be inactivated by LepB. Rab1GDP is then removed from th
Ubiquitination of Ube2N by MavC interferes with Lys63-linked polyubiquitinati
the ubiquitinating activity of MavC at later stages of infection.
cannot hydrolyze PI species with two adjacent phosphate
groups such as PI(3,4) (155) but is able to hydrolyze PI(3)P and
PI(3,5)P2. SidP inhibits MavQ by binding to its C-terminal
domain, indicating that the PI phosphatase activity, which re-
sides in the N-terminal domain of SidP, is distinct from its role
of MavQ inhibition. A recent study by Hsieh et al. (156) showed
that MavQ and SidP work alongside each other, the former
adding a phosphate to PI(3)P moieties and the latter removing
phosphates from higher-order phospholipids or even convert-
ing PI(3)P to simple PI entities and altering the lipid composi-
tion of the host membrane, in the context of infection.

Legionella effectors and cellular homeostasis

L. pneumophila allocates about 10% of its protein-coding
ability toward functions that require direct interactions with
host cellular processes. One of the most remarkable features of
Legionella is its capacity to both temporally and spatially
egionella pneumophila effectors. Upon bacterial infection, Ub-modulating
ER and the Golgi to establish the Legionella-containing vacuole (LCV). SidE
es this modification from the substrates, and SidJ negatively regulates the
the LCV. SidE proteins can also serve to remove Ub from the LCV. Soon after
ab1 to the LCV and activates it. PTMs such as AMPylation (by SidM) and
At later stages of infection, SidD and Lem3 remove these modifications from
e LCV by GDIs. Legionella infection also affects the host immune response.
on, dampening the NF-κB signaling pathway. MvcA and lpg2149 counteract
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regulate the dynamics of its effectors during infection. Three
regulatory systems (the PmrAB two-component system, the
CpxRA two-component system, and the LetAS-RsmYZ-CsrA
regulatory cascade) directly or indirectly regulate the expres-
sion of several effector-encoding genes (157–161). These
regulatory systems work cohesively to allow the pathogen to
enter the host cell, adapt to the new environment, and regulate
host mechanisms that promote multiplication and survival
within the cell. For example, Legionella triggers the nuclear
localization of NF-κB in macrophages to positively upregulate
antiapoptotic genes in a Dot/Icm-dependent manner to sup-
port intracellular bacterial growth (56). Another essential
cellular machinery targeted by L. pneumophila is the host
amino acid metabolism regulated by mTORC1. As alluded to
before, the pathogen frees up host amino acids for its con-
sumption via a concerted albeit temporally regulated action of
SidE and Lgt family of effectors (145). Another well-studied
example is the co-option of the host ubiquitin network by
Legionella. On the one hand, the translocated effectors such as
MavC and SidE proteins ligate Ub onto host proteins, inacti-
vating or altering their function in the process (Fig. 9). On the
other hand, ubiquitination is also used as a targeting signal for
other effectors, as exemplified by the negative regulation of
PR-ubiquitination by SidJ.

Conclusions

It is not surprising that there is a constant battle between
pathogens and their hosts to develop means to adapt and
counter-adapt during evolution. In contrast to the high
conservation of the secretion system itself among different
Legionella species, the effector arsenal is quite varied, sug-
gesting that Legionella’s genomic flexibility is because of its
coevolution with numerous protists species that belong to
the phyla Amoebozoa and Percolozoa (162). Legionella ef-
fectors can regulate a myriad of cellular functions (Fig. 9)
because the bacteria may have acquired numerous genes
from a range of primitive eukaryotes through horizontal gene
transfer during evolution (162). This unique eukaryotic-like
repository of effectors results from the exogenous acquisi-
tion of numerous eukaryotic domains that function as
fundamental building blocks (163). These building blocks can
be rearranged to generate new domain/motif combinations,
contributing to the evolution of this unexpectedly large
arsenal of functionally diverse and seemingly redundant ef-
fectors. Despite a high rate of evolution over long periods, the
amino acids involved in protein–protein interaction have
undergone positive selection pressure (164, 165). This sug-
gests that sometimes despite low overall sequence homology
between bacterial proteins and their eukaryotic counterparts,
the residues at protein interfaces are well conserved, pointing
to an essential role for bacterial effectors in interfering with
host pathways (Fig. 9).

Many L. pneumophila effectors have been identified using
various genetic and biochemical techniques. However, it is still
unclear why the pathogen requires so many effectors for its
survival within its hosts. Perhaps it is to ensure sustained intra-
cellular replication and is simply an indication of the numerous
16 J. Biol. Chem. (2021) 297(6) 101340
eukaryotic pathways regulatedby thebacteria (Fig. 9),making the
study of these effectors quite complex, albeit exciting. Our un-
derstanding of bacterial virulence and its impact on host
signaling is hampered by the built-in functional redundancy
exhibited by many of these effectors. The recent discovery of
functional interplay between bacterial proteins tomodulate each
other has given rise to the concept of effector–effector synergism
that adds another intriguing dimension to the various modes of
survival adopted by Legionella. Despite the diverse nature of the
different eukaryotic functions targeted by these effectors, one
emerging theme is the existence of a yin and yang type of
mechanism. It would not be unreasonable to assume that these
principles are co-opted by pathogens in general and not just by
bacteria. Future structure–function studies will not only help in
evaluating the role of pathogenic effectors but will also aid us in
understanding how essential eukaryotic cellular homeostasis is
maintained.
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