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An accurate and automated segmentation of coronary arteries in X-ray angiograms is

essential for cardiologists to diagnose coronary artery disease in clinics. The existing

deep learning-based coronary arteries segmentation models focus on using complex

networks to improve the accuracy of segmentation while ignoring the computational

cost. However, performing such segmentation networks requires a high-performance

device with a powerful GPU and a high bandwidth memory. To address this issue, in this

study, a lightweight deep learning network is developed for a better balance between

computational cost and segmentation accuracy. We have made two efforts in designing

the network. On the one hand, we adopt bottleneck residual blocks to replace the

internal components in the encoder and decoder of the traditional U-Net to make the

network more lightweight. On the other hand, we embed the two attention modules to

model long-range dependencies in spatial and channel dimensions for the accuracy of

segmentation. In addition, we employ Top-hat transforms and contrast-limited adaptive

histogram equalization (CLAHE) as the pre-processing strategy to enhance the coronary

arteries to further improve the accuracy. Experimental evaluations conducted on the

coronary angiograms dataset show that the proposed lightweight network performs well

for accurate coronary artery segmentation, achieving the sensitivity, specificity, accuracy,

and area under the curve (AUC) of 0.8770, 0.9789, 0.9729, and 0.9910, respectively.

It is noteworthy that the proposed network contains only 0.75M of parameters,

which achieves the best performance by the comparative experiments with popular

segmentation networks (such as U-Net with 31.04M of parameters). Experimental results

demonstrate that our network can achieve better performance with an extremely low

number of parameters. Furthermore, the generalization experiments indicate that our

network can accurately segment coronary angiograms from other coronary angiograms’

databases, which demonstrates the strong generalization and robustness of our network.

Keywords: deep learning, lightweight networks, coronary arteries segmentation, image processing, attention

mechanism
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INTRODUCTION

Cardiovascular diseases are the primary cause of death worldwide
(1), representing 32% of all global deaths in 2019 (2),
and coronary artery disease (CAD) is the most common
cardiovascular disease (3). Moreover, more than three-quarters
of deaths due to cardiovascular disease occur in the low-
and middle-income countries (2) since these countries lack
experienced and knowledgeable experts, as well as advanced
diagnostic technologies (4). CAD is caused by too much plaque
buildup inside the arteries that supply oxygen-rich blood to the
heart, thus leading to a narrowing or blockage of the arteries.
A narrowed or blocked coronary artery could result in a heart
attack, stroke, or sudden cardiac death (5). Among the many
existing diagnoses of CAD, coronary angiogram is the most
common in the clinic performed using an X-ray to observe the
morphology of the arteries through the injection of a liquid
contrast agent (6), and the X-ray coronary angiogram is the gold
standard for diagnosing coronary artery disease (7). Accurate
segmentation of the vessel structure of coronary arteries is a vital
step in the correct diagnosis of CAD. An accurate segmentation
of the coronary arteries can reveal the stenosis of the vessel
clearly, which can provide the basis for the quantification and
assessment of vascular stenosis. However, the quality of the X-
ray angiogram is not good due to nonuniform illumination, low
contrast ratios, low signal-to-noise ratios, the presence of other
tissues, and camera motion as shown in Figure 1. The low quality
of the X-ray angiogram makes manual segmentation of vessels
by cardiologists in the diagnosis of CAD a time-consuming and
challenging task. To improve the efficiency of the diagnosis of
CAD, automated and accurate segmentation of coronary arteries
is necessary.

To solve the above challenging issue, many excellent
segmentation approaches have been proposed. These approaches
can commonly be categorized into model-based methods,
pattern-recognition methods, tracking-based methods (8, 9), and
deep-learning methods. Here, we broadly classify the methods
above into traditional methods and deep-learning methods. In
Zhao et al. (10) and Zhao et al. (11), region-based active contours
are proposed to segment vessels. The key to the method is to
detect the boundaries of the vessels by curves or surfaces. In
Mendonca et al. (12), an approach combined with the detection
of centerlines and morphological reconstruction is developed to
extract the retinal blood vessels. In Carrillo et al. (13), recursive
tracking is designed to detect vascular trees in 3Dmedical images.
In Yureidini et al. (14), vasculature tracking is utilized to segment
vessels in 3D rotational angiography. However, these traditional
segmentation methods might be not effective in segmenting
X-ray angiograms with low quality.

Deep learning has been widely used in the field of medical
image processing, which contains image recognition and
segmentation. Moreover, plenty of methods based on deep
learning have been proposed to segment vessels. For instance,
Yan et al. (15) constructed a deep learning model combined
with segment-level and pixel-wise losses for retinal vessel
segmentation. In (16–18), these coronary artery segmentation
methods are all developed based on deep learning. In all the

deep learning methods above, the convolutional neural network
(CNN) is utilized to filter features. To improve the performance
of the network, a general way is to make the networks (19, 20)
deeper and more complicated. In Jiang et al. (18) and Zhu et
al. (21), a multiscale fusion network was conducted to capture
long-range dependencies in coronary artery segmentation tasks.
Dilated convolutions (22) can also help to get more context
information by expanding the receptive field. Recently, more
and more researches (23, 24) have integrated the attention
mechanism into their network to capture contextual information.
All these approaches can improve the performance of the
network significantly. However, employing these methods above
has been achieved at the expense of the scale and efficiency
of the network. For assistant diagnosis of CAD to become
widespread in the regions where there is lack of medical resources
(experienced and knowledgeable experts, as well as advanced
medical equipment), it is necessary to deploy the automatic
segmentation of coronary angiography algorithm on affordable
mobile devices for application in the clinic.

To address the problems above, a novel network architecture
based on bottleneck residual blocks (25) and lightweight
attention mechanisms (26) is proposed in this study for the
segmentation of coronary arteries. In detail, we employed
bottleneck residual blocks to replace the components from
the regular U-Net (27) with some subtle adjustments. The
bottleneck residual block is mainly constituted by depthwise
separable convolutions (28, 29) to reduce the computation. To
further improve the performance of our network, we develop
a patch attention module to aggregate long-range contextual
information, which can model the relations between each
patch of the coronary angiogram. Furthermore, the proposed
the attention module that not only improves the network
performance but also minimizes the computational cost. To
establish more connections between feature maps channels, we
adopted squeeze and excitation (SE) blocks (23) to assign weights
between channels. The SE block is also lightweight and hardly
burdens our network. Therefore, we designed the network with
an optimal trade-off between performance and lightweight.

The main contributions of our work are as follows:

(1) The bottleneck residual blocks are integrated into the regular
U-Net to make our network more lightweight.

(2) A novel attention module, named patch attention module, is
proposed to model the spatial dependencies of the coronary
angiogram with low computational cost.

(3) The SE blocks are embedded into the network to establish
more connections between feature maps channels.

(4) A small database of coronary angiography is established to
promote our scientific research.

The remaining part of this paper is organized as follows:
Section Related Work presents the related work of our method,
Section Methodology specifically introduces the method of
our work, Section Experiments and Results Analysis shows
the ablation studies and the corresponding results, Section
Discussion provides discussions about the proposed method, and
Section Conclusion gives the conclusion of our work.
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FIGURE 1 | These examples of the X-ray angiogram image with nonuniform illumination, low contrast ratios, and low signal-to-noise ratios. The images in the first row

are selected from the clinical coronary angiograms dataset, while the second row of the data is from the Database X-ray Coronary Angiograms.

RELATED WORK

In the following, we review recent advances in three aspects:
Section Lightweight convolutional neural networks, Section
Semantic segmentation in vessels images, and Section Attention
mechanism.

Lightweight Convolutional Neural
Networks
Recently, many small and efficient networks have been proposed
for computer vision tasks. Some of the networks can be
classified as only shrinking the network size, but not caring
about speed. A novel inverted bottleneck structure, which
is primarily constituted by depthwise separable convolutions
(28, 29) and pointwise convolutions, has been developed in
MobileNets (25, 30, 31) to reduce the computation. This
structure can reduce the size while reducing the computation,
thus increasing the inference speed of networks. ShuffleNets
(32, 33) simplify pointwise convolutions to make networks
lightweight by employing the group convolutions and channel’s
shuffle. It is crucial to gain the factorized convolutions using
the small networks in the above methods (30). Distillation
(34) is another approach to train small networks, and a larger
network is employed to teach the small networks. Shuvo et al.
(35) proposed a novel lightweight architecture for multimodal
Biomedical Image Segmentation by modifying the structure of
the standard U-Net. In our work, we mainly utilized the ideas
from MobileNets to make our network more lightweight.

Semantic Segmentation in Vessels Images
As is well known, more and more networks based on deep
convolutional neural networks have been employed to address
medical image semantic segmentation (36) tasks. In the field of
vessels segmentation, deep learning is also widely used. In (37),

an edge-aware flowing into U-Net encoder-decoder architecture
was presented to guide the retinal vessel segmentation. In
(38), an attention–inception-based U-Net was proposed for
retinal vessel segmentation. In (39), a fully convolutional
multichannel network was proposed to segment the coronary
angiograms. In (40), a modified version of U-Net was developed
for retinal blood vessel segmentation. A convolution neural
network with a reinforcement sample learning strategy was
utilized for retinal vessel detection in (41). A complex network
combined a convolutional neural network and conditional
random field layers to segment retinal vessels in (42). All these
approaches above increased the depth and width of the network
to improve its performance. However, the deeper and wider
networks represent more parameters and more computation. In
clinically assisted diagnosis, it is important that more accurate
and fast segmentation networks, as well as more convenient
mobile devices are available to our doctors. To address the
problem above, we replaced almost all components of the
traditional U-Net (27) with bottleneck residual blocks (25). The
bottleneck residual blocks can reduce numerous parameters and
computations for our network.

Attention Mechanism
Attention mechanism originates from the exploration of human
vision, and it has been widely applied in many tasks of computer
vision (23, 43, 44). In recent years, the ability of deep neural
networks to process information is becoming stronger and
stronger, but the computation ability is still the bottleneck of the
development of the neural network. The attention mechanism
can focus on the key regions of the task and suppress irrelevant
information so as to obtain a better information processing
effect with the same amount of computing resources. The
attention mechanism is always employed to model long-range
dependencies in spatial and channel dimensions in image tasks.
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In SENet (23), the attention mechanism in channel-wise is
utilized to promote channels of feature maps that are useful to
the task and suppress channels that are not useful to the task.
DANet (24) introduces two parallel attention modules, a position
attention module and a channel attention module, to capture
feature dependencies in the spatial and channel dimensions,
respectively. Yi et al. (45) presented a semantic segmentation
network with a channel-coordinate attention feature fusion
module to improve the network performance. In this work, we
employed the SE block from SENet (23) to be embedded into the
bottleneck residual block to capture feature dependencies in the
channel-wise. In addition, we alsomodeled the spatial long-range
dependencies in our network by modifying the position attention
module from DANet (24).

METHODOLOGY

In our study, a lightweight segmentation network, named
Bottleneck Residual U-Net (BRU-Net), is proposed for coronary
arteries segmentation in X-ray angiograms. The BRU-Net is a
variant of the U-Net model (27), and we adopted bottleneck
residual blocks (25) to replace the internal components in the
encoder and decoder of traditional U-Net (27) to make the
network more lightweight. Figure 2 shows the architecture of the
proposed network. The details of the proposed framework are
mentioned in the following.

Datasets
Database X-ray coronary angiograms (46) (DCA1), which
originate from the Cardiology Department of the Mexican Social
Security Institute, UMAE T1-León, and the clinical coronary
angiograms (CCA) dataset (from the collaborating hospital) are
utilized in our experiments to evaluate our proposed BRU-Net.

The DCA1 dataset consists of 134 X-ray coronary angiograms
and the corresponding ground-truth images formed by an expert
cardiologist. Each angiogram is 300 × 300 pixels (46) and we
cropped them to 288 × 288 in our work. We randomly selected
104 angiograms as the training set and the rest as the test set.

The CCA dataset contains 150 X-ray coronary angiograms
and the manual ground-truth images were outlined by experts
from the collaborating hospital. The resolution of each
angiogram is 768× 768 and we cropped the angiograms to 576×
576. A total of 130 angiograms are divided into a training set,
and the remaining 20 angiograms are taken into the test set. In
our work, we employed random rotation, random crop, random
vertical flip, and random horizontal flip as the augmentation
strategies to augment the training dataset.

The angiograms are very complex due to the problems such as
nonuniform illumination, low contrast ratios, low signal-to-noise
ratios, the presence of other tissues, and camera motion (16, 47).
Moreover, the angiograms from the CCA dataset are much more
complex than the angiograms from DCA1 dataset. We show
some examples of original angiograms and corresponding labels
from the two datasets in Figure 3.

Image Pre-processing
To improve the problems of nonuniform illumination and low
contrast ratios in angiograms, we adopted some image pre-
processing strategies. We utilized two pre-processing strategies
to enhance the angiograms, namely top-hat transform (48, 49)
and contrast-limited adaptive histogram equalization (CLAHE)
method (50), respectively. We show sample angiograms
preprocessed by the two strategies in Figure 4.

Top-hat transform is amathematical morphological operation
that extracts small elements and details from given images
(48, 49). The white top-hat and the black top-hat are the two
types of top-hat transforms. In the white top-hat, the bright
regions in the image are brighter than their surroundings, while
the dark areas are highlighted in the black top-hat. Inspired
by Nasr-Esfahani et al. (51), we adjusted nonuniform lighting
conditions and enhanced the contrast of the angiograms by the
top-hat transform procedure, which is illustrated in Figure 5.
The procedure contains three main steps: converting the original
angiogram to the gray one F, transforming F to Fwhite and
Fblack by white top-hat transform and black top-hat transform,
respectively, and adding Fwhite to F pixel in pixel and subtracting
Fblack pixel in pixel. After the procedure above, we can gain
Fenhanced with increased contrast.

To further enhance the contrast of the angiogram images,
we employed the CLAHE method. The CLAHE method can
increase the overall region contrast of the angiogram image,
while reducing the problem of noise amplification by limiting the
contrast amplification (50).

Bottleneck Residual Block
A novel convolutional neural network layer has been developed
by MobileNetV2 (25), which achieves high performance
in mobile and embedded vision applications. The essential
component of the novel layer is the bottleneck residual block (25),
which contains inverted residual and linear bottleneck structures.
The bottleneck residual block is portrayed in Figure 6.

The bottleneck residual block has three main following steps
to process an input feature map F ∈ R

H×W×C. First, to expand
the low-dimensional F ∈ R

h×w×k to a higher-dimensional
F ∈ R

h×w×(tk) by using a 1 × 1convolution called pointwise
convolution (25). Next, a 3×3 depthwise separable convolution is
performed as a filter that features an operation to produce a new

representation F ∈ R
h
s ×

w
s ×(tk). Finally, a pointwise convolution

is used to project the spatially filtered feature map to a low-
dimensional subspace. In our work, we modified the bottleneck
block by embedding the SE block into it to capture the feature-
dependencies in the channel-wise. The SE block is illustrated in
the subsection E of this section. Each of the first two steps is
followed by batch normalization (29) and ReLU6 activation (30),
and only the last step is followed by batch normalization. The
formulas of ReLU6 and ReLU (52) are defined as follows:

ReLU6(x) = min(max (0,x) , 6) (1)

ReLU(x) =max (0,x) (2)
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FIGURE 2 | The illustration of the proposed network. We adopt bottleneck residual blocks to replace the internal components of traditional U-Net. The architecture of

the bottleneck residual block is shown in Figure 6. PAM is an attention module and is shown in Figure 7.

FIGURE 3 | The original angiograms and corresponding labels from the two datasets. The images in the first row are the original angiograms, while the corresponding

labels are in the second row. The images in (A) column are from CCA, and the images in (B) and (C) are from DCA1.

ReLU6 is like the well-known ReLU (52), but
it is more robust when used with low-precision
computation (30).

In our work, we utilized the bottleneck residual blocks for
the regular convolutions in U-Net to reduce computational
cost to take place. In the network, we employed the
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FIGURE 4 | The angiograms are pre-processed by the two strategies. The first column (A): original angiograms; the second column (B): angiograms after Top-hat

transform; the third column (C): angiograms after CLAHE.

FIGURE 5 | The procedure of the top-hat transforms. F is the original gray angiogram image, Fwhite and Fblack are obtained by white and black top-hat transform,

respectively. Fenhanced is the enhanced angiogram image.

original bottleneck residual blocks without embedding the
SE blocks.

Patch Attention Module
Most modern methods consider the semantic segmentation task
as a dense prediction task. However, an incorrect prediction
will lead to inaccurate segmentation results, especially the image
with a complex background. The problem above is mainly
due to the lack of remote context information. To model rich
context relationships on local feature representation, Fu et al. (24)
introduced the position attention module. The position attention

module encodes a wider range of context information into local
features to improve their representational capabilities (24).

In this study, we design a novel lightweight attention module
named patch attention module (PAM). PAM is developed to
assist networks to capture remote context information while
taking into account the lightness of the model. The patch
attention module consists of two modules: a patch splitting
module and an attention module. The structure diagram of our
proposed patch attention module is illustrated in Figure 7.

To simultaneously address the problem of modeling spatial
long-range dependencies and make the model lightweight, we
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FIGURE 6 | The bottleneck residual block transforming from k to k′ channels, with stride s, and expansion factor t (default value is 2). The residual connection is only

used when s = 1 and k = k′.

FIGURE 7 | Patch attention module. It consists of two modules: a patch splitting module and an attention module.

utilized the relations between each patch of the feature map to
replace the relations between the positions of each pixel. For an
input feature map F ∈ R

H×W×C, we fed F into the patch-splitting
module where F will be split into non-overlapping patches. Patch
size is denoted by n×n, where n is a multiple of two.We regarded
each patch as a position and formed a feature map with patches
replaced by pixels. After the operation, we got a new feature map

F′ ∈ R
H
n ×

W
n × C.

After completing the above patch splitting operation, we fed
the new feature map to the attention module. Firstly, F′ ∈

R
H
n ×

W
n ×C is fed into a parallel structure with three convolution

layers to generate three new feature maps q(F′), k(F′), and v(F′) ∈

R
H
n ×

W
n ×C. Secondly, we reshaped the three new feature maps to

R
N×C, where N = H

n × W
n is the amount of all the patches. Next,

we transposed q(F′) to R
C×N to perform matrix multiplication

with k(F′) ∈ R
N×C and then we obtained the patch spatial

attention map S ∈ R
N×N by a softmax layer. The interaction

of each patch in the original feature map is defined by the
following formula:

smn =
exp(q(F′)m • k(F′)n)

∑N
n=1 exp(q(F

′)m • k(F′)n)
(3)

where smn reflects the impact between the two patches, and the
more similar the two patches are the larger is the smn. After
the above procedures, we implemented a matrix multiplication
between transformed S and v(F′). After this, we reshaped S
and summed α × S and F′ in an element-wise manner, where
α is a learnable scale parameter. Finally, we up-sampled the
result generated above to R

H×W×C and projected the patch
spatial attention to the original feature map F ∈ R

H×W×C

by implementing a pixel-wise addition between the up-sampled
result and the original feature map F.

In our work, we employed the patch spatial attention instead
of the pixels position spatial attention to save computing
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costs and make our network more lightweight, and the space
complexity is 1

n4
times the pixels’ position spatial attention. The

proposed patch attention module can be embedded into other
networks expediently.

Squeeze and Excitation Block
Recently, many researches (43, 44) have proved that spatial-
wise attention, such as the patch attention module mentioned
above, can improve the performance of the network obviously
in semantic segmentation tasks. Moreover, embedding channel-
wise attention module into the network can also yield positive
results. The research (23) proposed a lightweight channel-wise
attention block, namely the squeeze and excitation (SE) block.
The essential feature of the SE block is to make the network
exploit the beneficial features while suppressing the useless
features in the channel-wise for the tasks (23).

The illustration of the squeeze and excitation block is shown
in Figure 8. The SE block contains two primary components:
squeeze operation and excitation operation. We feed an input
feature map F ∈ R

H×W×C into the SE block, and after the
squeeze operation we got a vector V ∈ R

1×1×C. The squeeze
operation changes the spatial dimensions of the feature map from
H ×W to 1× 1 in every channel by global average pooling. The
calculation of each channel can be written as:

z =
1

H ×W

H
∑

i=1

W
∑

j=1

f (i, j) (4)

where z ∈ R
C and f denotes every pixel of each channel. Next, the

vector enters the excitation step and passes through a bottleneck
structure with two fully connected (FC) layers, and after the
first FC layer is a ReLU activation, which employs the sigmoid
activation after the second FC layer. After the procedures above,
we can get an output s ∈ R

1×1×C, which denotes each channel
weight. Finally, a channel-wisemultiplication between the feature
map F and s is used to zoom the spatial maps for each channel.

In our work, we embedded the SE block here into the
proposed network to boost the capacity of our method with a low
computational cost.

Proposed Network
We employed the plain BRU-Net without any extra component
as the backbone of our work. The bottleneck residual blocks
are employed to perform a convolution operation on each
channel separately to reduce the computation. To improve the
performance of segmentation, we inserted the patch attention
module after the encoder module and inserted the squeeze and
excitation block (23) into the bottleneck residual blocks of plain
BRU-Net as shown in Figure 2. As is known to all, the vessel
regions occupy a very small portion of the overall angiography
image, while most of it is the background. To solve the heavily
unbalanced classes, we utilized a weighted cross-entropy loss (53)
function, while employing dice loss (54) to coordinate with the
cross-entropy loss in the training procedure. These loss functions

can be defined as:

LWCE

(

y, ŷ
)

= −(α∗ w∗ yi log
(

ŷi
)

+(1− w )∗ (1−yi) log
(

1− ŷi
)

)
(5)

w = 1−
y

H ×W
(6)

LDice
(

y, ŷ
)

= 1−
2yŷ

y+ ŷ
(7)

L = LWCE + β∗LDice (8)

where the Equation 5 is weighted cross-entropy loss function, y
and ŷ are the ground truth and the prediction result, respectively.
The hyper-parameter α is a fine-tuning parameter, which we set
to 0.2 empirically. The hyper-parameter w is the weight designed
to alleviate category imbalance, and Equation 6 is the definition.
Equation 7 is the dice loss function, and we finally adopted the
loss function as defined in Equation 8 with a hyper-parameter β ,
setting it as 0.01.

EXPERIMENTS AND RESULTS ANALYSIS

In this section, we first present the implementation details and
the evaluation metrics, then evaluate the effectiveness of the
approach proposed in this study by multiple ablation studies. We
employ BRU-Net without any extra component, mentioned in
SectionMethodology, as the backbone architecture to implement
all the comparative experiments in this section.

Implementation Details
We implement our method based on Pytorch (55) and train it on
one NVIDIA GeForce RTX 3090 GPU. We train the proposed
network by exploiting the adaptive moment estimation (Adam)
(56) optimization method with momentum 0.9, weight decay
0.0001, and batch size 16. Enlightened by the work of Chen
et al. (22), we employed the poly learning rate policy, and the

learning rate can be indicated as baselr × (1− iter
max _iter )

0.9
with

lr 4× 10−3. The augmentation strategies are described in Section
Introduction, and to be fair, we resize the images in the test set to
288× 288 in all experiments.

Evaluation Metrics
In our work, coronary angiograms segmentation is the task
of segmenting the vessels from the background in X-ray
angiograms. The specific process is to classify vessels pixels
and background pixels correctly. We evaluated our approach
on various evaluation metrics to measure the segmentation
performance. Accuracy (ACC) is a crucial evaluation metric to
appraise the classification task. In our work, the accuracy is
the ratio of the sum of correctly classified vessel pixels and
background pixels to all pixels. However, accuracy is not enough
to evaluate the approach because of the unbalanced classes in the
coronary angiographic images, where the number of the vessel
pixels is far less than the number of the background pixels.
Therefore, we also employed the other three metrics: sensitivity
(SE), specificity (SP), and area under curve (AUC). Sensitivity
and specificity can measure the capability of our network to
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FIGURE 8 | Squeeze and excitation block. The blue arrow denotes squeeze operation, while the red rounded rectangle denotes excitation operation.

detect correctly vessel pixels and background pixels, respectively.
The above metrics’ formulas are as follows:

ACC =
TP + TN

TP + TN + FP + FN
(9)

SE =
TP

TP + FN
(10)

SP =
TN

TN + FP
(11)

where TP denotes the number of predicted vessel pixels inside
the correct vessel segmentation of ground-truth and FN denotes
the number of misclassified vessel pixels as background pixels.
In a similar way, TN denotes the count of predicted background
pixels inside the correct vessel segmentation of ground-truth and
FP denotes the count of misclassified the background pixels as
vessel pixels. In addition, the AUC can measure the performance
of our method without being affected by the unbalanced classes.

Ablation Studies
Ablation Study for Pre-processing Strategy
The effect of image pre-processing strategies can be demonstrated
in this subsection. It is crucial for the image pre-processing
to provide the accurate segmentation of the coronary arteries
in X-ray angiograms. We implemented the following ablation
experiments to evaluate the contributions of the pre-processing
on DCA1 dataset, and Tables 1, 2 illustrate the results. We
processed the coronary angiograms images before feeding them
to our network with three pre-processing strategies respectively:
without any pre-processing work, top-hat transforms, and
CLAHE strategies. Figure 3 shows the coronary angiograms after
pre-processing with these different strategies.

As shown in Table 1, we can deduce the conclusion that both
the pre-processing strategies could improve the performance
of segmentation in our work. Moreover, the network achieves
the best performance after using CLAHE strategy to preprocess
DCA1 dataset. The indicators SE, ACC, and AUC are all
improved to varying degrees, while SP only decreases by 0.1%.

TABLE 1 | Ablation study for pre-processing strategy on DCA1 dataset.

Top-hat CLAHE SE SP ACC AUC

0.8436 0.9789 0.9710 0.9860

X 0.8793 0.9772 0.9714 0.9853

X 0.8755 0.9779 0.9719 0.9873

DCA1, Database X-ray coronary angiograms; SE, sensitivity; SP, specificity; ACC,

accuracy; AUC, area under curve.

TABLE 2 | Ablation study for pre-processing strategy on CCA dataset.

Top-hat CLAHE SE SP ACC AUC

0.9089 0.9717 0.9677 0.9890

X 0.9072 0.9727 0.9677 0.9857

X 0.8798 0.9723 0.9664 0.9824

CCA, the clinical coronary angiograms dataset; SE, sensitivity; SP, specificity; ACC,

accuracy; AUC, area under curve.

The results in Table 2 demonstrate the impact of the two pre-
process strategies on the CCA dataset. As can be seen from
Table 2, the top-hat transform strategy is more suitable for the
CCA dataset than the CLAHE strategy. In conclusion, we employ
the CLAHE strategy when we pre-process the DCA1 dataset,
while we use the top-hat transform strategy to preprocess CCA
dataset in the following experiments.

Ablation Study for Expansion Factor t
We employed the bottleneck residual block as the main
component of our network to reduce the parameters and
computation so that our network becomes lightweight. The key
to reducing parameters in the block is the depthwise separable
convolution, which performs convolution on each channel
separately and the channel dimension is constant. However, the
convolution operation cannot extract enough information in low
dimension. Hu et al. (23) addressed this problem by adding an
expansion layer to expand the channels to a high dimension.
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We can tune the expansion factor t to achieve an optimal
balance between accuracy and performance of our network. In
this section, we performed four experiments to obtain a suitable
expansion factor by trade-off.

Table 3 shows the different performances between the four
expansion factors. With the increase in the expansion factor
t, the increase in evaluation indicators is not significant.
However, the number of parameters is greatly increased, thus the
computational cost and running time are also increased. In order
to balance the accuracy and performance, we assigned t to be 2
in the following experiments. From Table 3, we can find that the
number of parameters is only 0.65M when the expansion factor
t = 2.

Ablation Study for Patch Attention Module
We developed the patch attention module (PAM) to model
spatial long-range dependencies and make the model lightweight

TABLE 3 | Ablation study for expansion factor t.

t SE SP ACC AUC Params

2 0.8755 0.9779 0.9719 0.9873 0.65 M

4 0.8904 0.9762 0.9712 0.9906 1.13 M

6 0.8915 0.9767 0.9717 0.9908 1.61 M

8 0.8882 0.9765 0.9713 0.9904 2.09 M

SE, sensitivity; SP, specificity; ACC, accuracy; AUC, area under curve; Params, total

params of our network; t, expansion factor; M, million.

in our work. We performed two experiments to explore the effect
of PAM: without PAM and with PAM embedded in the plain
network (BRU-Net). Moreover, two comparative experiments
are conducted on different patch sizes of PAM to analyze the
impact of patch size on performance. We also used some of the
above conclusions, which contain the combined pre-processing
strategy, with the expansion factor 2. DCA1 dataset is used to
verify the effectiveness of PAM, and the patch size is set to 2 × 2
in default.

As shown in Figure 9, we visualized the output of the last
layer in the encoder module. Obviously, the network with PAM
focuses more attention on the vessel region, while the network
without PAM lacks concentration on the region. As is seen from
the results in Table 4, the network with PAM outperforms the
one without PAM in the first three indicators. Table 5 shows the
results of different patch sizes. A large patch size means fewer
patches and lower computation, but it can be seen from Table 5

that SE indicators have decreased obviously, while the other
three indicators do not change significantly. The SE indicator
represents the condition of the vessel pixels the network correctly
segments. Moreover, the vessel region is a very small part of the
angiogram image. Thus, we set the patch size to 2× 2 by trade-off.

Ablation Study for SE Block
We investigated the effect of the squeeze and excitation (SE)
block combined with the plain network on the performance in
this section. We use BRU-Net as the backbone architecture and
DCA1 dataset with pre-processing strategies. We utilized the
recalibration of the channel-wise feature (23) and the lightweight
of the SE blocks to improve the representational capacity of our

FIGURE 9 | The visualization of PAM of the attention layer our network learned. The images in (A) column are the original angiograms, the images in (B) are the

heatmaps after the encoder module without PAM, and the image in (C) are the attention heatmaps with PAM. The higher the frequency of the vessel regions, the

brighter the color.
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TABLE 4 | Ablation study for patch attention module (PAM).

PAM SE SP ACC AUC

0.8755 0.9779 0.9719 0.9873

X 0.8882 0.9774 0.9722 0.9889

PAM, patch attention module; SE, sensitivity; SP, specificity; ACC, accuracy; AUC, area

under curve.

TABLE 5 | Ablation study for patch size of PAM.

Patch size SE SP ACC AUC

2× 2 0.8882 0.9774 0.9722 0.9889

4× 4 0.8813 0.9778 0.9721 0.9901

6× 6 0.8799 0.9779 0.9722 0.9874

SE, sensitivity; SP, specificity; ACC, accuracy; AUC, area under curve; M, million.

TABLE 6 | Ablation study for squeeze and excitation (SE) block.

SE block SE SP ACC AUC Params

0.8755 0.9779 0.9719 0.9873 0.65 M

X 0.8738 0.9785 0.9723 0.9898 0.67 M

SE block, squeeze and excitation block; SE, sensitivity; SP, specificity; ACC, accuracy;

AUC, area under curve; M, million.

network without adding too many parameters and computation.
In this section, we conducted ablation experiments to verify the
positive contribution of SE blocks to our network.

Table 6 shows the comparison results of the performance
between the backbone network and the network with SE blocks.
Specifically, the evaluation indicators of the network with SE
blocks are more competitive than the backbone network. It can
be concluded that the SE blocks are significant to improve the
performance of our network. Moreover, we can see the fact that
the network with SE blocks does not bring too many parameters.
From Table 6, only 0.02M parameters are brought in extra.

Experiments on the Integration of All Modules Above
In this section, we performed various experiments to verify the
impact of using PAM and SE blocks together on the performance
of our network. The experimental settings are similar to the
above, and we employed the DCA1 dataset with the combined
pre-processing strategy, the patch size was set to 2 × 2, and we
assigned the expansion factor t of the bottleneck residual blocks
to be 2.

To start with, we completed the experiments on the backbone
network. Furthermore, we embedded the PAM into the backbone
network to investigate the positive contribution of PAM, and
then, we observed the capabilities that the SE blocks bring to
the backbone network. Finally, we embedded both PAM and
SE blocks into the backbone network to survey the benefit of
performance while the two modules were used simultaneously.
All the experiments’ results in this section are illustrated in
Table 7, and it is intuitive that both PAM and SE blocks are
helpful for the coronary arteries’ segmentation task. The two

TABLE 7 | Ablation study for PAM and SE block.

PAM SE block SE SP ACC AUC Params

0.8755 0.9779 0.9719 0.9873 0.65 M

X 0.8882 0.9774 0.9722 0.9889 0.73 M

X 0.8738 0.9785 0.9723 0.9898 0.67 M

X X 0.8770 0.9789 0.9729 0.9910 0.75 M

PAM, patch attention module; SE block, squeeze and excitation block; SE, sensitivity; SP,

specificity; ACC, accuracy; AUC, area under curve; M, million.

TABLE 8 | Results of experiments on the generalization ability.

Train data Test data SE SP ACC AUC

DCA1 DCA1 CCA

X X 0.8770 0.9789 0.9729 0.9910

X X 0.7822 0.9828 0.9702 0.9808

DCA1, Database X-ray Coronary Angiograms; CCA, the clinical coronary angiograms

dataset; SE, sensitivity; SP, specificity; ACC, accuracy; AUC, area under curve.

modules model the dependencies between the patches and
channels respectively to enhance the representational capacity
of the network. It has been proved that the performance of the
network has been improved by the addition of PAM and SE
blocks. In the next section, we employed both PAM and SE blocks
in our experiments.

Experiments on the Generalization Ability of Our

Network
In this section, we conducted the experiments on both the DCA1
dataset and the clinical coronary angiograms (CCA) dataset
to investigate the generalization ability (57) of the proposed
network. Firstly, we train our network on DCA1 and test the
network on the DCA1 dataset. In addition, we used the trained
model to predict the test dataset which is from the clinical dataset
(CCA). Both the two test datasets are all unseen by our network
before the test experiments.

As shown in Table 8 the training data are from DCA1
dataset, while the test data are from DCA1 and CCA dataset,
respectively. From the results, we can see that the proposed
network is suitable for the two coronary angiograms datasets,
although the differences between the two datasets are quite
obvious. In addition, we can find that our network performs
equally excellently, even though the training and test data come
from different datasets. The experiments above could be enough
to prove that our network has a strong generalization ability.
The last three rows of Figure 10 illustrate the prediction masks
of each network, reflecting the generalization of each network.
Compared with the prediction results of other networks, our
network can predict the thin vessel regions well.

Comparative Experiments With Popular

Segmentation Networks
As is known to all, plentiful excellent networks have been
developed in the field of semantic segmentation, such as FCN
(58), U-Net (27), SegNet (59), and PSPNet (60). To highlight
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FIGURE 10 | Segmentation results of FCN, U-Net, SegNet, PSPNet, and the proposed network. The images in the first column are the original angiograms, while the

corresponding labels are in the second column. The images in the first three rows are from DCA1, the same dataset as the training set, while the images in the last

three rows are from CCA.

the effectiveness of our network, we compared our method and
its results with the approaches mentioned above. For the sake
of fairness, we conducted these experiments by using the same
preprocess strategies and the same loss function.

As shown in Table 9, the proposed network achieves more
excellent performance in both DCA1 and CCA datasets than
the other networks. Specifically, the proposed network obtains
the best scores of SP, ACC, and AUC indicators, while only
U-Net outperforms our network in SE indicator. It is worth
noting that the number of parameters on our network is only
0.75M, while the quantities of parameters on the other network
are 20–60 times than ours. Figure 11 illustrates the ROC curve
of the proposed network on DCA1 and CCA datasets. The

larger the area under the ROC curve is the more accurate the
inference of the network is. Figure 11 shows that our network
can accurately segment blood vessels on two different datasets,
while the segmentation result on DCA1 datasets is more accurate
because the background of the coronary arteries in DCA1 are
relatively straightforward. In addition, Figure 10 demonstrates
the segmentation examples of all these networks. In the first
three rows of Figure 10, the coronary arteries are from the
same dataset as the training set, while the coronary arteries
in the last three rows are not from the same dataset as the
training set. From these examples, we can find that our network
is better for the segmentation of thin blood vessels and does
not identify the background regions as vessel regions like other
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TABLE 9 | Results of the comparative experiments with popular segmentation networks.

Method Params DCA1 CCA

SE SP ACC AUC SE SP ACC AUC

FCN 15.11M 0.8656 0.9701 0.9640 0.9863 0.8721 0.9557 0.9505 0.9772

U-Net 31.04M 0.8811 0.9762 0.9707 0.9900 0.9170 0.9559 0.9534 0.9850

SegNet 29.44M 0.8513 0.9776 0.9702 0.9878 0.8251 0.9719 0.9627 0.9765

PSPNet 46.58M 0.8500 0.9738 0.9666 0.9865 0.8666 0.9510 0.9457 0.9724

Proposed network 0.75M 0.8770 0.9789 0.9729 0.9910 0.8982 0.9706 0.9660 0.9874

DCA1, database X-ray coronary angiograms; CCA, the clinical coronary angiograms dataset; SE block, squeeze and excitation block; SE, sensitivity; SP, specificity; ACC, accuracy;

AUC, area under curve; M, million.

FIGURE 11 | ROC curves for DCA1 and CCA datasets.

methods, and the last three rows demonstrate that our network is
more generalized.

DISCUSSION

In this study, we propose a lightweight network (BRU-Net) to
automatically segment coronary arteries in X-ray angiograms
that enables the method to be deployed on inexpensive mobile
devices. It can help to realize the assistant diagnosis of CAD
to become widespread in the regions where there is a lack of
medical resources.

To overcome the above challenges, we mainly undertake
the following efforts: accurate segmentation of coronary
arteries on low quality angiographic images and making our
segmentation network as lightweight as possible. Confronting
the key problems, we propose the corresponding approaches.
In addition, we employ the mixed loss function of weighted
cross entropy loss function and dice loss to relieve the heavily
unbalanced classes of coronary angiography images during

the training procedure. Moreover, we have established a small
database of coronary angiography to model and test our network.

For the low quality of coronary arteries, we employ two pre-
processing strategies, Top-hat transform and contrast-limited
adaptive histogram equalization (CLAHE) methods, to enhance
the angiograms. Tables 1, 2 demonstrate that the employed pre-
processing strategies can ease the problem of low quality. To
make our network as lightweight as possible, we adopt bottleneck
residual blocks to replace the internal components in the encoder
and decoder of traditional U-Net to reduce the parameters
and computation. We also compare the size of the expansion
factor t to further optimize the balance between the number
of parameters and network performance. Table 3 shows the
different effects of different expansion factors on segmentation
results. To further improve the segmentation performance of
the lightweight network, we utilize two lightweight attention
modules with a few additional parameters. We develop a novel
attention module, named the patch attention module (PAM),
to model spatial long-range dependencies and make the model
lightweight, while we employ the squeeze and excitation (SE)
block in each bottleneck residual block to capture the correlation
between channels in the feature maps. The inspiration for PAM
comes from the position attention module (24), while PAM is
much lighter than it (24). The space complexity of PAM in
the proposed network is 1

24
than that of the position attention

module (24). From Figure 9, we can find that the network with
PAM focuses more attention on the vessel region, and Table 7

shows that the two addition modules can promote the proposed
network to obtain better segmentation results. As shown in
Table 9, the number of parameters is only 0.75M in the proposed
network, which is just a fraction of those in other networks,
with almost the same segmentation performance. Furthermore,
we prove the generalization and robustness of our network by
using training sets and test sets from different datasets. From
Table 8, we can find that the proposed network is suitable for
the two coronary angiograms datasets, although the differences
between the two datasets are quite obvious. Some examples of
segmentation results between our network and other networks
are characterized in Figure 10. As illustrated in Figure 10, our
network can segment thin and irregular vessels well from low-
quality angiographic images. Also, from the last three rows
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of Figure 10, the proposed network can segment the coronary
angiograms of different datasets well.

From the above discussion, the proposed network can
not only segment the coronary artery accurately but also
be deployed in inexpensive mobile devices due to its
characteristic lightweight to popularize assistant diagnosis
of CAD and to provide convenience for experts. An accurate
and readily available coronary artery segmentation can be
frugal with specialists’ time and provide a more effective
diagnostic basis.

Our lightweight network achieves good results in coronary
artery segmentation with a few parameters. However, the
network sometimes segments the background of coronary
angiography into vessels regions, while some tiny vessels are
treated as the background. In addition, in the process of data
annotation, some thin blood vessels are not marked, but they are
segmented by our network, which also affected various indicators
of the final segmentation results. The same situation occurs in the
DCA1 dataset. We advocate establishing some larger and better
coronary angiography databases to contribute to the auxiliary
diagnosis of coronary artery disease.

CONCLUSION

This study presents a novel and lightweight network for coronary
arteries segmentation in X-ray angiograms. We adopt bottleneck
residual blocks to replace the internal components in the
traditional U-Net to make the network more lightweight. To
make the segmentation of coronary arteries more accurate,
we embedded the two attention modules to model long-range
dependencies in spatial and channel dimensions. Comprehensive
experimental analysis and ablation study on two X-ray coronary
angiograms datasets demonstrate that our method is effective,
robust, and lightweight enough. In the future, we will devote

more energy to the research of more lightweight coronary artery
segmentation networks with better segmentation performance
to assist clinical diagnosis to help more patients with coronary
artery disease.
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