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A B S T R A C T   

Introduction: Esophageal cancer is increasingly recognized as a significant global malignancy. The 
main pathological subtype of this cancer is esophageal squamous cell carcinoma (ESCC), which 
displays a higher degree of malignancy and a poorer prognosis. Reactive oxygen species (ROS) 
play a critical role in modulating the immune response to tumors, and understanding the regu
lation of ROS in ESCC could lead to novel and improved therapeutic strategies for ESCC patients. 
Methods: A consensus matrix derived from genes involved in the ROS pathway revealed two 
subtypes of ROS. These subtypes were categorized as ROS-active or ROS-suppressive based on 
their level of ROS activity. The heterogeneity among the different ROS subtypes was then 
explored from various perspectives, including gene function, immune response, genomic stability, 
and immunotherapy. In order to assess the prognosis and the potential benefits of immuno
therapy, a ROS activity score (RAS) was developed using the identified ROS subtypes. In vitro 
experiments were performed to confirm the impact of core RAS genes on the proliferative activity 
of esophageal cancer cell lines. 
Results: Two distinctive subtypes of ROS were identified. The first subtype, referred to as ROS- 
active, exhibited elevated ROS activity, enhanced involvement in cancer-associated immune 
pathways, and increased infiltration of effector immune cells. The second subtype, named ROS- 
suppressive, demonstrated weaker ROS activity but displayed more pronounced dysregulation 
in the cell cycle and a denser extracellular matrix, indicating malignant characteristics. Genomic 
stability, particularly in terms of copy number variation (CNV) events, differed between the two 
ROS subtypes. By developing a RAS model, reliable risk assessment for overall survival (OS) in 
patients with ESCC was achieved, and the model demonstrated strong predictive capabilities in 
real-world immunotherapy cohorts. Moreover, the core gene LDLRAD1 within the RAS model was 
found to enhance proliferative activity in esophageal cancer cell lines. 
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Conclusion: Based on the ROS pathway, we successfully identified two distinct subtypes in ESCC: 
the ROS-active subtype and the ROS-suppressive subtype. These subtypes were utilized to eval
uate prognosis and the sensitivity to immunotherapy.   

1. Introduction 

Esophageal cancer is one of the prevalent malignancies in the digestive system. Recent statistics show that the incidence of 
esophageal cancer has risen to the seventh highest rate globally [1]. In China, the majority of esophageal cancer patients (about 90 %) 
have the histological subtype of esophageal squamous cell carcinoma (ESCC) [2]. ESCC has a high degree of malignancy and poor 
prognosis, with a 5-year overall survival rate of less than 20 % for advanced ESCC [3,4]. For patients with unresectable advanced ESCC, 
chemotherapy and radiotherapy are the main treatment options [5]. In recent years, immunotherapy has emerged as a very promising 
direction in cancer treatment, showing surprising therapeutic effects in a variety of solid tumors (e.g., non-small cell lung cancer, 
melanoma) [6,7]. We can expect to combine the development of immunotherapy with conventional treatments to improve the clinical 
outcome of ESCC patients [5]. Regrettably, because of the variability in treatment response across patients, novel biomarkers are 
needed to assist in risk stratification and to determine the optimal immunotherapy protocols. 

Reactive oxygen species (ROS) refer to a class of highly reactive chemicals derived from oxygen molecules, including superoxide 
ions, hydroxyl radicals, and hydrogen peroxide [8]. Reactive oxygen species (ROS) have complex and multiple roles in cancer. On the 
one hand, ROS can induce DNA damage and apoptosis, which help to inhibit tumor proliferation and expansion [9]. On the other hand, 
ROS can also promote tumor development by stimulating cell proliferation and angiogenesis [6]. Recent findings also suggest that 
different ROS levels can influence the immune response to cancer cells, thus affecting antitumor immune activity and immunother
apeutic efficacy [10,11]. Dendritic cells and T cells act as effector cells of antitumor immunity, infiltrating into specific sites through 
antigen stimulation in the tumor microenvironment, thereby exerting antitumor effects [12,13]. The excessive amount of ROS can act 
as a stimulatory source for the immune system to generate potential antigen stimulation to enhance this convening process [14]. In 
addition, specific concentrations of ROS levels can inhibit the activity of tumor cells in secreting suppressive cytokines as well as 
reduce the infiltration and activity of suppressive immune cells, ultimately leading to a reduction in immune escape and thus 
enhancing the tumor response to immunotherapy [10,15]. Therefore, it is a challenging question to regulate the appropriate ROS levels 
in cancer therapy to take advantage of the anti-tumor effects promoted by ROS. However, the mechanisms by which ROS levels 
promote effective tumor treatment remain elusive. Studying ROS regulation in ESCC is expected to be a promising direction for 
improving the clinical management of patients. 

In this study, we focused on the potential crosstalk of ROS-related genes (RRGs) in ESCC. We identified and confirmed two het
erogeneous subtypes (ROS-active and ROS-suppressive) in ESCC based on RRGs. They were heterogeneous in immune activity, bio
logical function, genomic stability, and immunotherapeutic response. Based on these two heterogeneous ROS subtypes we developed a 
validated tool to assess ROS levels, called Ros active score (RAS), which can effectively predict the prognosis of ESCC patients and 
evaluate the effect of immunotherapy. 

2. Methods 

2.1. Data acquisition and preprocessing 

We obtained transcriptomic RNA-seq data, genomic mutation data based on Muctect 2 platforms, and copy number variation (CNV) 
profiles processed by gistic2.0 for the TCGA-ESCA cohort in the UCSC Xena database (https://xena.ucsc.edu/) and collected corre
sponding clinical follow-up information. We screened out patients with clear pathological subtypes of ESCC and excluded those with 
incomplete follow-up information, and finally obtained a TCGA-ESCC cohort containing 80 ESCC patients as a training cohort. The 
Count matrix of the raw RNA-Seq data was normalized to obtain the Transcripts Per Kilobase Million (TPM) matrix. In addition, a 
large-scale ESCC cohort (GSE53625) was selected from the GEO database for external validation, and a total of 179 patients with 
esophageal cancer were included for use as the GEO-ESCC cohort and analyzed after excluding patients with incomplete follow-up 
information. Patient follow-up information was obtained from the original supplemental material. The raw RNA-Seq data were 
log2-processed. Data for the TCGA pan-cancer cohort were also collected from the UCSC Xena database, and the integrated TPM 
sequencing matrix as well as the response clinical information were downloaded. 

2.2. Consensus clustering to identify heterogeneous ROS subgroups 

The ROS-related genes (RRGs) were collected from the GO-biological process gene set of the MSigDB database (http://www.gsea- 
msigdb.org/gsea/index.jsp) [16]. A total of 1426 RRGs were included, and the detailed gene list has been uploaded as Table S1. First, 
RRGs with independent predictive effects on the overall survival (OS) of ESCC patients were recognized by one-way Cox regression 
analysis. Subsequently, candidate RRGs were collected based on a threshold of P < 0.05 and input into the consensus clustering 
pipeline. Consensus clustering based on the transcriptional profiles of candidate RRGs using the “ConsensusClusterPlus” software 
package has been applied to identify isoforms with different ROS heterogeneity [17]. The analysis performs clustering in discovery and 
validation cohorts with a core Pam unsupervised clustering algorithm that assesses the neighborhood of samples based on Spearman 
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correlation. Randomly selected 80 % of the samples were subjected to 1000 iterations to finally determine the best consensus matrix 
with clustering numbers of 2–5, respectively. The spearman adjacency consensus matrix and cumulative distribution function (CDF) 
were jointly used to determine the optimal number of clusters to generate ROS subtypes. 

2.3. Dissecting biological function and immune heterogeneity 

We used the "limma" algorithm to identify differentially expressed genes (DEGs) of different ROS subtypes. Significant DEGs were 
identified based on the Fold change>2 and adjusted P-value <0.05 threshold. DEGs were uploaded to the Metascape (www.metascape. 
org/) online platform for functional annotation. We then conducted GSEA analysis to assess relative activity of the KEGG pathway gene 
set across different ROS subtypes utilizing GSEA software (Version 4.1.0), and significantly enriched KEGG pathways were identified 
based on a P < 0.05 threshold. 

To assess the immune heterogeneity of different ROS subtypes, we first assessed the relative immune activity scores of individual 
samples based on immune and matrix markers by the "ESTIMATE" algorithm [18]. Subsequently, the distribution of typical immune 
checkpoints was examined for differences between subtypes. We also assessed the relative infiltration abundance of 22 different 
immune cells based on their transcriptional characteristics by the "CIBERSORT" algorithm [19]. We also assessed the relative activity 
of immune-related pathways of interest based on published gene sets by the ssGSEA algorithm. Finally, we convened Homologous 
Recombination Deficiency (HRD), microsatellite instability (MSI) score, and SNV neoantigens in TCGA-ESCC patients from the pre
vious literature [20]. 

2.4. Dissecting the heterogeneity of genomic stability 

We used the "maftools" R package for Maf file processing and visualization of somatic mutations [21]. After excluding nonsig
nificant mutant fragments, we counted the total mutation burdens (TMB) of individual patients and collected genes with minimum 
mutation number >5 for analysis. Then, the differences in mutation frequencies of high-frequency mutated genes between the two 
subgroups were compared using chi-square tests and visualized using forestplot. After merging all the mutation information to be 
presented, the mutation maps of different ROS subtypes were drawn using maftools. When processing CNV data, we used Gistic 2.0 
software and set a threshold of 0.2. With this threshold, we identified significantly amplified and missing chromosomal segments and 
assessed CNV differences on chromosomal arms. Finally, we visualized the CNV status by the R package ggpubr. In this way, we were 
able to compare the CNV profiles of different subgroups more visually. 

2.5. Construction of ROS activity scores 

We selected the previous-identified ROS-related DEGs between the two ROS subtypes that were common to all cohorts for further 
analysis by integrating the results of univariate Cox regression and log-rank tests to reveal the prognostic value of DEGs for OS. DEGs 
with statistical significance were entered into the ROS activity score generation pipeline. Specifically, we used iterative LASSO 
regression to retrieve the most stable predictive model. A 5-fold cross-validation and "maxit = 1000″ were set to prevent model 
overfitting. Using the minimum lambda value as a penalty factor and generating risk coefficients for the model genes, ROS activity 
scores (RAS) were generated according to the following formula: 

RAS=
∑

iCoefficient(mRNAi) × Expression(mRNAi)

The median RAS-based score was used to distinguish between high-risk and low-risk ESCC patients. The C-index was generated 
from the "pec" package to assess the predictive power of the RAS, with a higher C-index indicating better prediction [22]. The 
prognostic efficacy of RAS was then evaluated by KM survival curves, univariate and multifactorial Cox regression, ROC curves, and 
COX subgroup regression analysis. 

2.6. Assessment of ROS-related immunotherapy response 

To exam the benefit rates of ESCC patients to respond to immunotherapy, we calculated the Immunophenoscore (IPS) of individual 
patients by analyzing the number and type of immune-related cells in the patients’ tumor tissues [23]. Higher IPS values indicate that 
the patients’ immune system is more capable of attacking the tumor and therefore may respond better to immunotherapy. In addition, 
we used the TIDE algorithm (http://tide.dfci.harvard.edu) to predict response rates to anti-PD-1 and anti-CTLA-4 treatments of ESCC 
patients by assessing the interaction between tumor cells and immune cells and the degree of T-cell exhaustion [24–27]. Finally, we 
generated RAS by the same formula in two established immunotherapy cohorts (Imvigor210 and nature-SKCM) to validate the pre
dictive effect of immunotherapy [28,29]. 

2.7. Cell culture and transfection 

We purchased two esophageal cancer cell lines (ECA-109 and TE1) from EK-bioscience (China) and cultured them in DMEM 
medium (Bological, Israel) supplemented with 10 % heat-inactivated FBS, 1 % penicillin and streptomycin, placed in a constant 
temperature 37 ◦C incubator containing 5 % CO2. Lipofectamine 8000 reagent (Invitrogen, USA) was used to transiently transfect 
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siRNA to silence the expression of specific genes according to the manufacturer’s instructions. We used the following siRNAs and their 
blank transfer controls: si-LDLRAD1: AGAGAATGGCTACACTGCTGCTGAA; siNC: AGAGTATCGACAGTCGTCTCGAGAA. 

2.8. Cell counting Kit-8 assay 

The proliferation viability of ESCC cells was measured using Cell Counting Kit-8 (CCK-8, Bioss, China) according to the instructions 
of the kit. The absorbance at 450 nm was measured using an enzyme-linked immunoassay (BioTek, USA) for cell growth until 12 h, 24 
h, 36 h, 48 h and 72 h, respectively. 

2.9. Pan-cancer analysis 

Using data from the TCGA pan-cancer cohort, we performed a systematic analysis of the RAS. We analyzed the mutations of ROS 
genes in the pan-cancer cohort using the maftools package. We analyzed the prognostic efficacy of RAS in the pan-cancer cohort by 
one-way Cox regression and log-rank test. Finally, we evaluated RAS-related biological pathways using the ssGSEA algorithm. 

2.10. Statistical analysis 

The t-test or Wilcoxon rank test was selected appropriately according to the characteristics of the variables to compare continuous 
variables between two groups, and the KM survival curves were plotted using the "survminer" packages. We then used the R packages 
"rms" and "survival" to perform univariate and multivariate cox regression analysis and to complete the nomogram visualization, and 
the R package "survROC" was used to implement the time-dependent ROC (tROC) analysis. Two-tailed p < 0.05 was considered 
statistically significant if not otherwise specified. 

Fig. 1. Identification of ROS-related genes in TCGA-ESCA (A) Univariate Cox regression identified 22 ROS-related genes with prognostic efficacy. 
(B) The correlation network of 22 ROS-related genes. (C) The summary of somatic mutation of 22 ROS-related genes. (D) The summary of CNV 
status of 22 ROS-related genes. 
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3. Results 

3.1. Dissecting ROS-related genes in TCGA-ESCC 

We first performed univariate Cox regression to identify the 1426 RRGs with independent prognostic efficacy, and finally identified 
22 prognostic RRGs based on a threshold of P < 0.05 (Fig. 1A). We mapped the interaction network of these 22 prognostic RRGs 
(Fig. 1B), and we found that most of the RRGs had significant and strong positive correlations. Except for NDUFA13, there were 
significant negative correlations between this gene and 4 other RRGs (ALOX12, MAPK1, PRKAA1 and STK26) (Fig. 1B). We sum
marized the single nucleotide mutation events of these 22 RRGs (Fig. 1C). Most of the mutations were missense mutations, with the 
most frequently mutated site was cytosine to thymine. The three genes with the highest mutation frequency (14 %) were PID1, EGFR 
and CAMKK2. Finally, we summarized the CNV profiles of 22 prognostic RRGs in ESCC, which showed that NCF2, PRKAA1 and EGFR 
were the most frequently amplified genes, while APTX, PPP2CB were the most frequently missing genes (Fig. 1D). Notably, APTX and 
PPP2CB were also the genes with the highest total CNV frequencies. 

Fig. 2. Identification of heterogeneous ROS subtypes in TCGA-ESCA (A) The CDF curves of ROS consensus matrix. (B) The adjacency consensus 
matrix of ROS genes when K = 2. (C) Heat map showing clinical features and transcriptional profiles of ROS genes in two ROS subtypes. (D) KM 
survival curves of different ROS subtypes. (E) Differences in clinical outcomes (left) and stage (right) of ESCC patients with different ROS subtypes. 

Q. Lu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e35235

6

3.2. Identification of heterogeneous ROS subtypes 

We first performed consensus clustering on the discovery cohort from TCGA-ESCC and GEO-ESCC cohort respectively and 
generated a consensus matrix using 22 prognostic RRGs. Based on the CDF curve of the consensus score and the adjacency of the 
consensus matrix, k = 2 is suitable as an appropriate number of clusters (Fig. 2A and B, Figs. S1A–B). Fig. 2C showed the different ROS 
activity in two clusters, after assessing the ROS pathway activity and expression of RRGs in the subtypes, we defined ROS-active 
subtypes with more ROS activity and ROS-suppressed subtypes with less ROS activity (Fig. 2C, Fig. S1C). Survival analysis revealed 
that the ROS-active subtype was found to have significantly better survival than the ROS-suppressed subtype in the TCGA-ESCC cohort 
(P = 0.019, Fig. 2D). A worse clinical outcome for the ROS-suppressed subtype was confirmed in the external validation ESCC cohort 
(P = 0.046, Fig. S1D). Moreover, a significantly higher proportion of patients with ROS-active subtypes and a lower proportion with 
stable disease and disease progression were observed in the TCGA-ESCC cohort. Patients with earlier-staged ESCC were more 
numerous in the ROS-active subtype, and notably, all patients in stage IV were in the ROS-suppressed subtype (Fig. 2E). Due to the lack 
of data in the GEO-ESCC cohort, more patients with stage I were observed only in the ROS-active subtype, while more patients with 
stage II and III ESCC were in the ROS-suppressed subtype (Fig. S1E). 

3.3. Biological functional heterogeneity of different ROS subtypes 

We first identified 629 significant ROS-related DEGs by limma package, of which 136 DEGs were up-regulated in ROS-active 
subtype and 493 DEGs were up-regulated in ROS-suppressive subtype. Functional enrichment analysis showed that upregulated 
DEGs in ROS-active subtypes were mainly involved in the innate immune response, digestion, and extracellular matrix (Fig. 3A). GSEA 
analysis revealed that the KEGG pathways enriched in the ROS-active subtype were mainly antigen processing and presentation, 
chemokine signaling pathway, cytokine receptor and NK cell-mediated cell killing (Fig. 3C). While in ROS suppressive subtype, the 
pathways enriched in the ROS inhibitory subtype were peroxisome, spliceosome, and aminoacyl trna biosynthesis (Fig. 3B–D). In 
conclusion, these results suggest that the ROS-active subtype has stronger antitumor immune activity, while the ROS-suppressed 
subtype has stronger cell cycle dysregulation and proliferative activity in tumor cells, which may ultimately guide the difference in 
survival of ESCC patients in different ROS subgroups. 

3.4. Immunological heterogeneity of different ROS subtypes 

We then systematically analyzed the immunological heterogeneity of the two ROS subtypes from several perspectives. First, the 
ESTIMATE algorithm showed that immune scores and Estimate scores were increased in the ROS-active subtype, while the ROS- 
suppressed subtype had higher tumor purity (Fig. 4A), we also found similar results in the GEO-ESCC cohort (Fig. S2A). We then 
examined the transcriptome expression differences of six classical immune checkpoints and therapeutic targets (CTLA-4, LAG-3, TIM- 
3, PD-1, PD-L1, and PD-L2), and found that all six immune genes were significantly upregulated in the ROS-active subtype (Fig. 4B), 
and this finding was confirmed in the validation cohort (Fig. S2B). Subsequently, the pathway activity of interest was assessed by the 

Fig. 3. Heterogeneity of biological functions in different ROS subtypes (A) Functional enrichment of genes characteristic of ROS-active subtypes. (B) 
Functional enrichment of genes characteristic of ROS-suppressive subtypes. (C) The top five KEGG pathways enriched in ROS-active subtypes. (D) 
Top five KEGG pathways enriched in ROS-suppressive subtypes. 
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ssGSEA algorithm, and the ROS active subtype had significantly elevated ROS pathway activity and hypoxic activity (Fig. 4C). In 
addition, immune-related pathways except myeloid immunity were upregulated in the ROS active subset (Fig. 4C). The GEO-ESCC 
cohort had similar results, and notably, the APC co-inhibitory pathway was upregulated in the ROS suppressive subtype in the vali
dation cohort (Fig. S2C). Finally, the relative infiltration of immune cells was identified by CIBERSORT, and we found that in the 
TCGA-ESCC cohort, ROS-active subtypes of resting dendritic cells and CD4 T cells were decreased, whereas neutrophils, activated NK 
cells, and CD8 T cells were increased (Fig. 4D). In contrast, in the GEO-ESCC cohort, not only similar results were observed, but also 
most immune cells were found to be rising in the ROS-activated subset (Fig. S2D). 

Fig. 4. Heterogeneity of immune activity in different ROS subtypes (A) Differences in Estimate scores between different ROS subtypes. (B) Dif
ferences in the expression of six typical immune checkpoints (CTLA-4, LAG-3, TIM-3, PD-1, PD-L1, and PD-L2) among different ROS subtypes. (C) 
Differences in anti-tumor immune-related pathway activities among different ROS subtypes. (D) Differences in the relative infiltration abundance of 
22 immune cell types among different ROS subtypes. *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001, ns: not significant. 
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3.5. Genomic stability heterogeneity of different ROS subtypes 

Firstly, the tumor mutational burdens (TMB) after excluding nonsignificant mutated fragments were counted by maftools, and we 
found no significant difference in TMB between ROS-active and ROS-suppressed subtypes (Fig. 5A). A chi-square test was performed to 
determine whether high-frequency mutated (mutation number >5) genes were different between subgroups, and the results showed 
that the mutation frequency of TRRAP was significantly higher in the ROS-active subtype (Fig. 5B). After summarizing all the mutation 
information, the mutation profile of high-frequency mutated genes among subtypes was mapped by oncoplot (Fig. 5C). CNV occurring 
on chromosomal segments is another form of mutation in the genome, and we further evaluated the correlation between ROS subtypes 

Fig. 5. Heterogeneity of genomic stability in different ROS subtypes (A) Differences in TMB among different ROS subtypes. (B) Forest plot showing 
the difference in frequency of significantly mutated genes among different ROS subtypes. (C) oncoplot showing the mutation profile of high- 
frequency mutated genes among ROS subtypes after summarizing the mutation information. (D) Histogram resolving CNV events on each chro
mosome arm among different ROS subtypes. (E) Differences in overall amplification numbers among different ROS subtypes. (F) Differences in the 
overall number of deletions between different ROS subtypes. *: P < 0.05, ns: not significant. 
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and CNV. We found significantly higher levels of amplification and deletion of ROS suppressor isoforms at the chromosome arm level 
(Fig. 5D). Total CNV events were counted for individual samples, and we found that patients with ROS suppressor subtypes had higher 
amplification counts (Fig. 5E), while deletion counts did not differ significantly between the two subtypes (Fig. 5F). 

3.6. Immunotherapy heterogeneity across ROS subtypes 

We first assessed the relationship between three immunotherapy-related indicators (HRD, MSI, and SNV neoantigens) and ROS 
subtypes. We found no significant difference in HRD between ROS subtypes (Fig. 6A). In contrast, ROS active subtypes had signifi
cantly higher MSI and SNV neoantigens (Fig. 6B and C). In the TCGA-ESCC cohort, we found higher IPS in the ROS active subtype 
(Fig. 6D). As assessed by the TIDE algorithm, we found significantly more patients in the ROS-active subtype who may be responsive to 
immunotherapy (Fig. 6E). In the GEO-ESCC cohort, we did not find significant differences in IPS between ROS subtypes (Fig. 6F). 
However, the TIDE results suggest that the ROS-active subtype in the GEO-ESCC cohort also has more patients who may benefit from 

Fig. 6. Heterogeneity of immunotherapy response in different ROS subtypes (A) Violin plot demonstrating the difference in HRD between different 
ROS subtypes. (B) Violin plot demonstrating the differences in MSI among different ROS subtypes. (C) Violin plot demonstrating the differences in 
SNV neoantigens among different ROS subtypes. (D) Differences in IPS between different ROS subtypes in the TCGA-ESCC cohort and (F) GEO-ESCC 
cohort. TIDE algorithm predicts the response rates of patients with different ROS subtypes to immunotherapy in the (E) TCGA-ESCC cohort and (G) 
GEO-ESCC cohort. *: P < 0.05, ns: not significant. 
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immunotherapy (Fig. 6G). 

3.7. Construction of a robust ROS activity score 

To construct a robust ROS activity score, we first initially screened ROS-related DEGs with prognostic value by one-way Cox 
regression and survival log-rank test and obtained a total of 15 ROS-related DEGs after integration for further RAS generation. Sub
sequently, an iterative LASSO pipeline was used to generate a robust RAS model. After 1000 iterations and cross-validation, 14 
variables were included with a penalty factor of 0.05182673 (Fig. 7A and B). Based on the LASSO coefficients and mRNA expression of 
these fourteen variables we generated the RAS, and the detailed gene coefficients have been uploaded as Table S2. Calculation of the C- 
index of RAS and other clinical variables suggested that RAS was a reliable predictor of OS for ESCC patients (Fig. 7C). Survival analysis 
showed that ESCC patients with high RAS had significantly shorter survival in both cohorts (Fig. 7D, Fig. S3A). ROC curves showed that 
RAS in the TCGA-ESCC cohort could effectively predict patient survival at 1, 2 and 3 years (AUC>0.80,Fig. 7E). In the GEO-ESCC 
cohort RAS could predict overall survival at 2 and 3 years (AUC>0.65, Fig. S3B). We also plotted tROC curves for RAS and patient 
clinical characteristics to assess the predictive efficacy of different variables over the disease cycle, and the results showed that RAS 
could be the best predictor of OS in both cohorts (Fig. 7F, Fig. S3C). Subsequently, univariate and multivariate Cox regression similarly 
confirmed that RAS was an independent and robust predictor of OS in both the TCGA-ESCC and GEO-ESCC cohorts (Fig. 7G and H). In 
addition, we analyzed the predictive efficacy of RAS in different clinical subgroups (Figs. S4A–B). Specifically, RAS could precisely 
predict the survival of ESCC patients in all age groups. However, RAS showed effective predictive ability only in male ESCC patients. In 

Fig. 7. Generation of robust ROS active score (RAS) models (A–B) After iteration and cross-validation, the LASSO algorithm converged to a 14-gene 
RAS model based on the minimum lambda value (0.05182673). (C) Compared with other patient characteristics, RAS had the highest C-index. (D) 
KM survival curves for high and low RAS subgroups in the TCGA-ESCC cohort. (E) ROC analysis for the first three years of RAS in the TCGA-ESCC 
cohort. (F) tROC curves for the first three years of RAS in the TCGA-ESCC cohort. (G) Univariate regression analysis of OS in TCGA-ESCC and GEO- 
ESCC cohorts. (H) Multivariate regression analysis of OS in TCGA-ESCC and GEO-ESCC cohorts. ***: P < 0.001. 
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addition, RAS has more predictive power in patients with advanced ESCC, which is a meaningful addition to clinical application. 

3.8. RAS can effectively predict immunotherapy 

To assess the predictive efficacy of RAS for immunotherapy, we generated RAS in two real-world immunotherapy studies as 
previously mentioned. KM survival curves showed significantly lower overall survival in patients with high RAS than in patients with 
low RAS (Fig. 8A and B). We retrieved statistical patient neoantigens and TMB data from these two cohorts and assessed the correlation 
with RAS. The results showed that RAS had a significant negative correlation with neoantigens in the Imvigor210 cohort (Fig. 8C), 
while it did not show a significant correlation in the nature-SKCM cohort (Fig. 8D). Of interest, RAS showed a significant negative 
correlation with TMB in both immunotherapy cohorts (Fig. 8E and F). 

3.9. RAS in a pan-cancer perspective 

We assessed the genomic regulation as well as prognostic efficacy of RAS models in the TCGA-pancancer cohort. We first sum
marized the SNP frequencies of RAS model genes in 20 solid tumors. The results showed that RAS genes had high mutation frequency 
in non-small cell lung cancer, gastric cancer, and endometrial tumor, and VCAN, ATP10B, and NCAM2 were the three RAS genes with 
the highest mutation frequency (Fig. 9A). We then summarized all the mutated fragments and mapped the mutation profile of RAS 
genes in a pan-cancer perspective and the significant increase of RAS-associated mutations in endometriomas was able to be observed 
(Fig. 9B). We then examined the CNV events of RAS-related genes in the pan-cancer cohort and showed that KCND2, TWIST1, and 
HAS2 were the most frequently amplified genes, while C1QC, C1QA, and LDLRAD1 were the most frequently deletion genes (Fig. 9C). 
We then assessed the prognostic efficacy of RAS in the pan-cancer cohort by COX regression and Log-rank test. The results showed that 
RAS could be a reliable risk factor for esophageal, melanoma, and bladder cancers, which was consistent with the predictive effect in 
the immunotherapy cohort (Fig. 9D). Finally, we evaluated RAS-associated cancer pathway activity and summarized the GSEA 
enrichment results for 50 cancer-associated pathways in a pan-cancer cohort (Fig. 9E). Notably, P53 signaling pathway and TNF 
signaling pathway were positively associated with RAS levels in most solid tumors (Fig. 9E). 

3.10. Preliminary validation of RAS model genes 

Fig. 10A shows the risk coefficients of 14 RAS model genes, among which LDLRAD1 was the most powerful risk factor (coefficient 

Fig. 8. Predictive efficacy of RAS in real-world immunotherapy cohorts (A) KM survival curves for the high RAS and low RAS subgroups in the 
Imvigor210 cohort. (B) KM survival curves of high RAS and low RAS subgroups in the Nature-SKCM cohort. (C) Correlation of RAS with Neoantigens 
in the Imvigor210 cohort. (D) Correlation of RAS with Neoantigens in the Nature-SKCM cohort. (E) Correlation between RAS and TMB in the 
Imvigor210 cohort. (F) Correlation of RAS with TMB in the Nature-SKCM cohort. **: P < 0.01, ***: P < 0.001, ns: not significant. 
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= 0.1421), so we tried to explore the regulation of LDLRAD1 for ESCC malignancy. We analyzed the prognostic efficacy of LDLRAD1 in 
the TCGA-pan cancer cohort and showed that LDLRAD1 could be used as a prognostic indicator for esophageal cancer, renal clear cell 
carcinoma, prostate cancer, and uterine sarcoma (Fig. 10B). Specifically, LDLRAD1 was an effective risk factor for OS in esophageal 
cancer, renal clear cell carcinoma, and prostate cancer, while it was a protective factor for OS in prostate cancer. We then examined the 
effect of LDLRAD1 on tumor cell proliferation activity in esophageal cancer cell lines using CCK-8. The results showed that the pro
liferative activity of both esophageal cancer cell lines (ECA-109 and TE1) silenced with LDLRAD1 was significantly stronger than that 
of the blank transfected group (Fig. 10C). 

Fig. 9. Evaluation of RAS in a Pan-Cancer Perspective (A) summarized the mutation frequencies of RAS-related genes in 20 representative solid 
tumors. (B) After summarizing all mutation information, Oncoplot shows the mutation spectrum of RAS-related genes in the pan-cancer cohort. (C) 
CNV frequencies of RAS-associated genes in 20 representative solid tumors were summarized. (D) The predictive efficacy of RAS-associated genes 
for patient survival in 20 representative solid tumors was summarized. (E) Correlation of RAS features with cancer-related marker pathways 
(HALLMARK) in the pan-cancer cohort. 
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4. Discussion 

In recent years, esophageal cancer has progressed alarmingly worldwide and has gradually become a major type of cancer [30]. 
ESCC, the most common histopathological subtype of esophageal cancer, has a more aggressive degree of malignancy and leads to a 
worse prognosis [2]. The treatment of patients with advanced ESCC is a challenging problem, as conventional surgical resection is no 
longer feasible, and chemotherapy combined with novel therapies, including immunotherapy, becomes the last hope for ESCC patients 
[5]. ROS have complex and multiple roles in cancer, and recent studies have found that specific ROS levels can influence the immune 
system’s response to cancer cells, thereby affecting the antitumor immune activity and the benefits of patients for immunotherapy [10, 
11]. However, the mechanisms by which ROS levels promote effective tumor treatment remain elusive. Our study focused on 
potentially heterogeneous ROS isoforms in ESCC and ultimately defined and validated two subtypes (ROS-active and ROS-suppressive) 
based on ROS-related pathway genes. The ROS-active subtype has stronger ROS activity, more potent cancer-associated immune 
pathway activity, and more infiltration of the effector immune cells. The ROS-suppressed subtype has weaker ROS activity but has 
more cell cycle dysregulation and a richer extracellular matrix, exhibiting characteristics of a malignant tumor. The reproducibility of 
the ROS-active and ROS-suppressive subtypes was confirmed in an external ESCC cohort from GEO. There was heterogeneity in the 
genomic stability of the two subtypes, particularly for CNV events. In addition, better outcomes in clinical outcomes and responses to 
immunotherapy existed for the ROS-active subtype. We constructed a RAS model to characterize ROS levels based on transcriptomic 
differences between the two ROS subtypes, and RAS can be used as a reliable predictor of OS in ESCC patients. Further analysis 
revealed the excellent efficacy of RAS in predicting patient outcomes in real-world immunotherapy cohorts. We also preliminarily 
validated the role of the core RAS gene (LDLRAD1) as a promoter of proliferation in esophageal cancer cell lines by CCK8 assays. These 
results provide a new perspective on transcriptomics for novel ROS-based clinical management and offer new directions for ROS-based 
immunotherapy. 

Regarding the clinical characteristics of the two different ROS subtypes, we found that patients with the ROS-active phenotype had 
significantly better survival than the ROS-suppressive phenotype. Moreover, more patients with advanced ESCC stage were present in 
the ROS-suppressive phenotype, and it was more common for patients to experience disease progression. We analyzed the differences 
in biological functions among ROS subtypes in an attempt to reveal the potential regulatory mechanisms. Specifically, the functional 
enrichment results showed significant enrichment of immune signaling pathways (chemokines and cytokine receptors) [31,32], an
tigen presentation, and NK cell-mediated cell killing pathways mainly in the ROS active phenotype. In contrast, cell cycle-related 
pathways (e.g., Spliceosome and Peroxisome) [33,34], and cancer cell proliferation-related pathways (EGFR and P13K-AKT) were 
significantly enriched in the ROS-suppressed phenotype [35,36]. Subsequent exploration of the immune microenvironment revealed 

Fig. 10. Preliminary validation of the RAS core gene LDLRAD1 (A) Relative risk coefficients of RAS model genes. (B) Summary of the predictive 
efficacy of LDLRAD1 for patient survival in 20 representative solid tumors. (C) CCK-8 assay examined the effect of LDLRAD1 on cell proliferation 
activity in two esophageal cancer cell lines (left: ECA-109, right: TE1). *: P < 0.05. 
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more immune activity scores in the ROS-active phenotype, and significantly increased immune checkpoint expression and anti-tumor 
immune-related pathway activity. In addition, some effector immune cells, mainly NK cells and CD8 T cells, were also more infiltrated 
in the ROS-active phenotype [37,38]. Overall, the ROS-suppressed phenotype is an immune-silenced "cold" tumor environment, 
characterized by more extracellular matrix, less immune activity, and a lack of effector immune cells [39]. These findings suggest that 
the more effector immune cells and stronger immune activity in the ROS-active phenotype may have a stronger anti-tumor capacity, 
which may ultimately result in better survival and tumor remission rates in ESCC patients [40]. 

We then discussed the heterogeneity in genomic stability of the two ROS subtypes. TMB measured the overall SNP status of pa
tients, however, we did not find significant TMB differences between the two ROS subtypes. Nevertheless, we noted a significantly 
higher frequency of mutations in the TRRAP gene in the ROS-active subtype. Previous studies have shown that TRRAP can be involved 
in cell cycle regulation to promote oncogenic transformation and promote tumor proliferation by activating mitotic genes. While 
mutations in TRRAP-encoding genes in ROS-active subtypes may cause phenotypic changes and lead to a better prognosis. CNV events 
provide insight into genomic stability in terms of chromosomal segments, and we found a significant increase in chromosomal 
amplification events in ROS-suppressed phenotypes, while deletion events were significantly upregulated on chromosome 10p, 17p, 
18p and 18q arms. Relative to SNPs, CNV events play a dominant role in genomic stability differences between ROS subtypes. In 
conclusion, the genomic stability of different ROS subtypes was mainly regulated by CNV events. In addition, mutations in TRRAP may 
contribute to the differences in prognosis among patients with different ROS subtypes, suggesting that TRRAP may serve as a molecular 
target for novel clinical management and targeted therapy in ESCC patients. 

We evaluated the potential benefits of immunotherapy in patients with different ROS subtypes in the TCGA-ESCC and GEO-ESCC 
cohorts. We detected a greater response to immunotherapy in patients with ROS-active subtypes. Therefore, we constructed a RAS 
score based on transcriptomic differences in ROS subtypes to assess patients’ ROS levels and to precisely predict prognosis and 
immunotherapy. We confirmed in two ESCC cohorts that RAS could be a reliable risk factor for patient OS and performed more strongly 
in men and advanced ESCC patients. We generated RAS in a real-world immunotherapy study to assess the predictive efficacy of 
immunotherapy. The results showed that patients with high RAS had significantly worse survival than patients with low RAS. Neo
antigens and TMB were reported predictors of immunotherapy and showed a high positive correlation with patients’ response to 
immunotherapy [41,42]. We found that RAS was significantly negatively correlated with TMB in both immunotherapy cohorts and 
negatively correlated with neoantigens in the Imvigor210 cohort. This could partially explain the low response rate of patients with 
high RAS to immunotherapy. We also assessed the predictive efficacy of RAS in a pan-cancer perspective and surprisingly RAS was 
equally detrimental to OS in bladder cancer and melanoma, consistent with the cancer type of patients in the immunotherapy cohort. 
Finally, we demonstrated that knockdown of the core gene LDLRAD1 promotes the proliferation of esophageal cancer cells, which is 
inconsistent with our calculation results. We found heterogeneity in the effect of LDLRAD1 on patient prognosis among different 
cancer types in our pan-cancer analysis, and further experiments are needed to explore the specific mechanism of action. 

Our study also has several shortcomings: a. We did not validate the reproducibility of ROS-related subtypes in more cohorts due to 
the lack of large-scale transcriptomic data in esophageal cancer; b. Genomic stability analysis from a single dataset is not convincing 
enough, and more whole-genome sequencing data are needed to assess the genomic heterogeneity of different ROS subtypes; c. The 
RAS model consists of more genes that are not convenient for clinical use, and more real-world clinical cohorts are needed to optimize 
the application of the RAS model in the future. 

5. Conclusion 

Our work identified heterogeneous ROS-active and ROS-suppressed subtypes in ESCC patients. The ROS-active subtype showed 
better clinical outcomes and response to immunotherapy. The ROS-active subtype had more active immune-related pathways and 
effector immune cell infiltration. The RAS signature developed based on ROS subtypes can effectively predict patient prognosis and 
immunotherapeutic benefit. These results provide a new perspective on transcriptomics for novel ROS-based clinical management and 
offer new directions for ROS-based immunotherapy. 
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