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Abstract
Lumen formation and maintenance are important for the development and function of

essential organs such as the lung, kidney and vasculature. In theDrosophila embryonic tra-
chea, lumena form de novo to connect the different tracheal branches into an interconnec-
ted network of tubes. Here, we identify a novel role for the receptor type guanylyl cyclase at

76C (Gyc76C) in de novo lumen formation in theDrosophila trachea.We show that in
embryosmutant for gyc76C or its downsteam effector protein kinase G (PKG) 1, tracheal
lumena are disconnected. Dorsal trunk (DT) cells of gyc76Cmutant embryosmigrate to
contact each other and complete the initial steps of lumen formation, such as the accumula-

tion of E-cadherin (E-cad) and formation of an actin track at the site of lumen formation.

However, the actin track and E-cad contact site of gyc76Cmutant embryos did not mature
to become a new lumen and DT lumena did not fuse. We also observed failure of the luminal

protein Vermiform to be secreted into the site of new lumen formation in gyc76Cmutant tra-
chea. These DT lumen formation defects were accompanied by altered localization of the

Arf-like 3 GTPase (Arl3), a known regulator of vesicle-vesicle and vesicle-membrane fusion.

In addition to the DT lumen defect, lumena of gyc76Cmutant terminal cells were shorter
compared to wild-type cells. These studies show that Gyc76C and downstreamPKG-

dependent signaling regulate de novo lumen formation in the tracheal DT and terminal
cells, most likely by affecting Arl3-mediated luminal secretion.

Introduction
Many of our essential organs, such as the lung, kidney and vasculature are tube-based struc-
tures where gases, nutrients and waste are transported through their respective lumena. For
some tubular organs, lumena form de novo whereas for others, lumena form concomitantly
with tube formation. Much of our understanding of de novo lumen formation has come from
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studies in the Drosophila embryonic trachea, a network of interconnected epithelial tubes that
transport oxygen and other gases [1, 2]. As tracheal cells migrate out to form the primary
branches, blunt-ended tubes with a sealed central lumen are initially formed (Fig 1A). A con-
tinuous tubular network is formed when specialized fusion cells at the tips of migrating
branches contact each other’s partner in the adjacent segment and mediate de novo lumen for-
mation and lumen fusion (Fig 1B–1D) [3, 4]. Lumen formation in the Drosophila trachea is a
complex and highly regulated process involving precise coordination of cytoskeletal proteins,
adhesion proteins and components of the vesicular traffickingmachinery. During lumen for-
mation fusion cells of opposing tracheal branches, such as the dorsal trunk (DT) contact each
other through E-cadherin-mediated adhesion to form actin and microtubule tracks that prefig-
ure the future luminal axis (Fig 1E). This is followed by growth of the pre-existing lumena
along the track towards the new lumen site and subsequent expansion to form a lumen of a
uniform size. Lumen formation requires targeted exocytosis and plasma membrane remodel-
ing. These processes are mediated by the Arf-like 3 small GTPase (Arl3) which associates with
microtubules and vesicles [5, 6], and the COPI coatomer complex that controls vesicular trans-
port [7].

To identify genes required for tracheal development we previously performed a large scale
chemical mutagenesis screen [8]. From this screen we identified a novel allele of the receptor
type guanylyl cyclase at 76C (Gyc76C). Guanylyl cyclases (GCs) are a family of soluble and
receptor-type enzymes that catalyze the conversion of GTP to cGMP in response to signals,
such as nitric oxide (NO), peptide ligands and changes in intracellular calcium [9–12]. In Dro-
sophila, Gyc76C regulates axon guidance by physically associating with the Semaphorin 1a
receptor Plexin A [13, 14] whereas Gyc32E is involved in oogenesis and in egg chamber devel-
opment [15]. Most of the effects of cGMP signaling are mediated by the activation of cGMP-
dependent protein kinases (cGKs or PKGs) [9, 10, 16]. The two Drosophila cGMP-dependent
kinases, PKG1/DG1 and PKG2/DG2 are encoded by the pkd21D and foraging (for) genes,
respectively. for was recently shown to regulate the cytoplasmic-nuclear trafficking of the

Fig 1. De novo lumen formation in theDrosophila trachea. In wild-type embryos dorsal trunk (DT) branches are initially
blind-ended tubes with a central lumen outlined by F-actin (A and A’, arrows). New lumena form between pre-existing lumena to
generate an interconnected network of tubes (B and B’, arrows). DT fusion cells (C and D, white)mediate fusion of the lumen
labelled with Vermiform (Verm; green). Schematic diagram of the steps in DT lumen formation (E): fusion cells of opposing DT
branches (green) accumulateE-cadherin (red) at the site of contact and form an actin andmicrotubule cytoskeletal track that
spans the fusion cells. Lumena of the DT branches (brown) grow along the track towards the site of contact and the actin/
microtubule track matures into a new lumen that connects the pre-existing lumena. Insets in A’ and B’ indicatemagnified views
of regions in A and B marked by arrows. Embryos in A and B were stained for F-actin (green) and Verm (white). Embryos in C
and D were stained for Dysfusion (Dys; white) to label fusion cells and Verm (green) to label the lumen. Scale bars represent
5 μm.

doi:10.1371/journal.pone.0161865.g001
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transcription factor Lola duringDrosophila axon guidance [17]. In addition to a role in axon
guidance, our previous studies showed that Gyc76C is required for salivary gland and muscle
development in the Drosophila embryo. In gyc76Cmutants, the salivary gland fails to migrate
and the lumen is branched [18]. The accompanying defects in accumulation of the extracellular
matrix (ECM) protein laminin and the integrin-adhesion receptor binding protein, talin sug-
gest that the migration and lumen shape defects in gyc76Cmutant glands may in part be due to
defects in integrin-mediated adhesion to the ECM. We also showed that Gyc76C is required
during muscle development for proper localization of integrins at sites of contact between the
body wall muscles and tendon cells [19]. Consistent with our demonstration of a role for
gyc76C and for in integrin-dependent adhesion, recent studies in the developing wing show
that gyc76C and for regulate ECM-remodelingmatrix metalloproteinases [20]. Although we
reported gyc76C to be expressed in the developing trachea [19], it was previously not known
what role gyc76C played in tracheal development. Here, we show that Gyc76C is required for
de novo lumen formation in the dorsal trunk (DT) and terminal branches of the embryonic tra-
chea, at least in part by controlling the intracellular localization of Arl3.

Materials andMethods

DrosophilaStrains and Genetics
Canton-S flies were used as wild-type controls. gyc76C2388 was obtained by standard EMS
mutagenesis as previously described [8]. gyc76Cex173 and UAS-gyc76CWT lines were obtained
from A. Kolodkin (Johns Hopkins University School of Medicine, Baltimore, MD).UAS-
gyc76CRNAi and UAS-pkg21D RNAi lines were obtained from S. Davies (University of Glas-
gow, United Kingdom). pkg21Df05504 was obtained from the Exelixis collection at Harvard
Medical School and is described in Flybase (http://flybase.bio.indiana.edu/). UAS-mcd8GFP
was obtained from the Bloomington Stock Center and is described in FlyBase.Arl3CG6678 was
obtained from L. Jiang (Oakland University, Rochester, MI). For tracheal-specific expression of
the UAS constructs, we used the breathless (btl)-GAL4 driver.

Immunocytochemistry
Embryo fixation and antibody staining were performed as previously described [21]. The fol-
lowing antisera were used at the indicated dilutions: rabbit Vermiform antiserum at 1:300 (a
gift of S. Luschnig); rat Dysfusion antiserum at 1:200 (a gift of S. Crews); mouse 2A12 antise-
rum at 1:10 and rat E-cadherin antiserum at 1:20 (Developmental Studies Hybridoma Bank,
DSHB; Iowa City, IA); guinea pig Arl3 antiserum at 1:200 (a gift of L. Jiang); mouse DSRF anti-
serum at 1:100 (Active Motif, Carlsbad, CA) and mouse β-galactosidase (β-gal) antiserum at
1:500 (Promega, Madison, WI). Appropriate biotinylated- (Jackson Immunoresearch Labora-
tories, Westgrove, PA), AlexaFluor 488-, 647- or Rhodamine- (Molecular Probes-Thermo-
fisher Scientific,Waltham, MA) conjugated secondary antibodies were used at a dilution of
1:500. F-actin was detectedwith phalloidin (1:20; Invitrogen-Thermofisher Scientific) as previ-
ously described [22]. Stained embryos were mounted in Aqua Polymount (Polysciences, Inc.,
Warrington, PA) and thick (1 μm) fluorescence images were acquired on a Zeiss Axioplan
microscope (Carl Zeiss) equipped with LSM 510 for laser scanning confocal microscopy at the
Weill Cornell Medical College optical core facility (New York, NY).

Quantificationof terminal cell lumen length
Terminal cell lumen length was measured from the center of the DSRF-stained nucleus to the
tip of the 2A12-stained lumen using Image J software (National Institute of Health, Bethesda,
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MD). A minimum of 10 lumena were measured for each genotype. Statistical analysis was
done using Microsoft Excel.

Results
To determine gyc76C function in tracheal development we analyzed embryos mutant for
gyc76C2388 [18] and gyc76Cex173[13]. In embryos heterozygous for a null allele of gyc76C,
gyc76C2388, the DT lumen is a continuous structure (Fig 2A). By contrast, in gyc76C2388 homo-
zygous embryos the lumen was disconnected at various points along the length of the DT (Fig
2B). Approximately 93% of gyc76C2388 homozygous embryos showed DT lumen defects com-
pared to wild-type and heterozygous siblings that showed no defects (Fig 2G). Similarly, DT
lumen defects were observed in embryos homozygous for gyc76Cex173, trans-heterozygous for
gyc76ex173 and gyc76C2388 and embryos expressing gyc76CRNAi specifically in the trachea with
the breathless (btl)-GAL4 driver (Fig 2C and 2D and data not shown). Similar to gyc76C
mutant embryos, expression of RNAi to pkg21D, encoding the Drosophila cGMP-dependent
protein kinase 1 (PKG1) resulted in a DT lumen defect (Fig 2F). Embryos trans-heterozygous
for gyc76C2388 and a loss-of-function allele of PKG1, pkg21Df05504 also showed DT lumen
defects, suggesting a strong genetic interaction between gyc76C2388 and pkg21D (Fig 2E).

To test if the discontinuous tracheal lumen observed in gyc76Cmutant embryos is due to a
cell migration or a lumen fusion defect, we analyzed embryos expressing cytoplasmic
mCD8-GFP specifically in the trachea of gyc76C2388 heterozygous and homozygous embryos.
In gyc76C2388 heterozygous and homozygous embryos, DT cells of all embryos analyzed
migrated normally to contact their counterparts in the neighboring tracheal metameres at
stage 12 (Fig 3A and 3B). However, as embryogenesis progressed DT branches of gyc76C2388

homozygous embryos did not remain connectedwith many of them disconnected by stage 15,
unlike their heterozygous siblings (Fig 3C and 3D). Thus, DT cells of gyc76C2388 mutant
embryos migrated normally; however, because the lumena did not fuse, some branches
remained separated and an interconnected tracheal network did not form.

We previously showed that gyc76CmRNA is expressed in the trachea from the onset of primary
branch migration until the end of embryogenesis [19]. To test if gyc76C is required cell-autono-
mously in the trachea we expressed wild-type gyc76C (gyc76CWT) in the trachea of gyc76C2388

homozygous embryoswith btl-GAL4. Expression of gyc76CWT reduced the percentage of embryos
with DT lumen fusion defects from 95% to 55% (Fig 2G). It is possible that lumen fusion defects
persist because of an insufficient amount and/or temporal requirement of wild-type gyc76C expres-
sion. These data demonstrate that gyc76C acts in the trachea to regulate tracheal lumen formation.

Actin and E-cadherinmaturation defects in gyc76C and pkg21Dmutant
trachea
During DT lumen formation an actin-rich track assembled between the fusion cells of two
adjacent DT branches in gyc76C2388 heterozygous embryos as in wild-type embryos (Fig 4A
and data not shown). This is followed by growth of the pre-existing lumena of opposing DT
branches towards the site of contact between the fusion cells (Fig 4B). The actin track then
matured into a new lumen that connected the pre-existing lumena (Fig 4C). In gyc76C2388

homozygous embryos, the actin track was assembled between the fusion cells in the same tem-
poral manner as in heterozygous siblings (Fig 4D). However, the actin track of gyc76C2388

homozygous embryos did not mature into a new lumen at the stage when in heterozygous sib-
lings the new lumen had already expanded to the same diameter as the pre-existing lumena
(Fig 4E). We observed a similar defect in pkg21Df05504 mutant embryos where the lumen
remained constricted at the site of fusion (Fig 4F).
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In DT cells of wild-type embryos expressing mCD8-GFP in the trachea, the cell-cell adhesion
protein, E-cadherin (E-cad) accumulated at the site of contact between the fusion cells at the
onset of lumen formation (Fig 5A). E-cad then expanded to become continuous between the
fusion cells and the adjacent DT cells (Fig 5B and 5C). gyc76C2388 mutant DT cells accumulated
E-cad at the site of contact between the fusion cells; however, E-cad did not expand and remained
at the initial contact site (Fig 5D). These data together demonstrate that Gyc76C is not required
for the initial formation of the actin track or the accumulation of E-cad at the site of new lumen
formation but is required for the maturation and expansion of the actin track and E-cad.

Vermiform is not transported into the new lumen site in gyc76Cmutant
trachea
To test if gyc76C is required for membrane transport into the site of de novo lumen formation
we analyzed the localization of Vermiform, a chitin-modifying enzyme [23]. In gyc76C2388

Fig 2. DT lumendefects in gyc76C and pkg21Dmutant embryos. In gyc76C2388 heterozygous embryos (A) the DT lumen is continuous (A, arrow)
whereas in homozygous siblings (B), gyc76C2388 gyc76Cex173 trans-heterozygous embryos (C), embryos expressing gyc76CRNAi in the tracheawith btl-
GAL4 (D), gyc76C2388 pkg21Df05504 trans-heterozygous embryos (E) and embryos expressing pkg21DRNAi in the trachea (F), the DT lumen is
disconnected (B-F, arrows). Graph depicting percentageof intact (G, red) and broken (G, blue) DT lumena in wild-type embryos, gyc76C2388 homozygous
embryos and gyc76C2388 homozygous embryos expressing wild-type gyc76C (gyc76CWT) in the tracheawith btl-GAL4 (gyc76CWT rescue in trachea). All
embryos shown were stained for 2A12 to mark the tracheal lumen (dark brown) and β-galactosidase (β-gal) (brown) to distinguish heterozygous from
homozygous embryos.

doi:10.1371/journal.pone.0161865.g002

Fig 3. gyc76Cmutant DT cellsmigrate but do not remain connected.DT cells of wild-type embryos expressing
mCD8-GFP in the tracheawith btl-GAL4 (A and C, arrows)migrate towards each other at stage 12 and remained
connected by stage 15 (C). DT cells of gyc76C2388 homozygous embryos expressing mCD8GFPmigrate towards each
other at stage 12 (B, arrows) but do not remain connected to each other by stage 15 (D, arrows). All embryos shown were
stained for GFPwith those in B and D being also stained for β-gal (not shown). Scale bar in A represents 5 μm.

doi:10.1371/journal.pone.0161865.g003
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heterozygous embryos, as in wild-type embryos, Verm was initially found in the cytoplasm and
pre-existing lumena of DT cells but not in the fusion cells (Fig 6A). As the actin track matured
into a new lumen and the pre-existing lumena fused, Verm accumulated in the newly formed
lumen but was absent from the cytoplasm of the fusion cells (Fig 6B). Even when the newly
formed lumen expanded to the same diameter as the pre-existing lumena, Verm was not
detected in the fusion cells (Fig 6C). These data show that luminal proteins such as Verm, that
are not secreted by the fusion cells but instead by the neighboringDT cells are transported into
the site of new lumen formation. In gyc76C2388 homozygous embryos, Verm was synthesized

Fig 4. Actin track does notmature in gyc76C and pkg21Dmutant trachea. In DT branches of gyc76C2388

heterozygous embryos (A-C), an actin track forms between fusion cells of opposing branches (A, arrow) followed by the
maturationof the track (B, arrow) into a new lumen that is continuous with and of equal diameter as the pre-existing lumena
(C, arrow). In gyc76C2388 homozygous embryos the actin track forms (D, arrow) but does not mature into a new lumen (E,
arrow). In pkg21Df05504mutant embryos the site of lumen fusion is constricted (F, arrow). All embryoswere labeled for F-
actin with phalloidin and β-gal (not shown). Dotted red line outlines the DT cells. Scale bar represents 5 μm.

doi:10.1371/journal.pone.0161865.g004

Fig 5. E-cad contact site failed to expand in gyc76Cmutant embryos. In wild-type embryos expressing mcd8-GFP in the trachea with btl-GAL4
(A-C), E-cad initially accumulates as a patch at the site of contact between the two fusion cells (A and A’, arrows) and then becomes continuous with the
pre-existing lumena (B, B’, C and C’, arrows). In gyc76C2388 homozygous embryos expressing tracheal mcd8-GFP (D) E-cad accumulates at the fusion
cell contact site but does not expand to connect with the pre-existing lumena (D and D’, arrows). Embryoswere stained for E-cad (white),GFP (green)
and β-gal (not shown). Scale bar represents 5 μm.

doi:10.1371/journal.pone.0161865.g005
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and secreted into the pre-existing lumena by the DT cells, albeit at a reduced level; however,
Verm was not detected at the site where the new lumen should have formed (Fig 6D). Thus,
gyc76C is required for delivery of the luminal protein Verm into the site of new lumen formation.

Gyc76C genetically interacts with Arl3 and controls Arl3 localization in
DT fusion cells
In embryos mutant for an Arf-like 3 GTPase (Arl3), DT lumena failed to fuse [5, 6]. This is
thought to be due to a defect in vesicle-vesicle and vesicle-plasma membrane fusion. In
embryos homozygous for a hypomorphic allele of Arl3, Arl3CG6678 [5] the DT lumen was con-
tinuous; however, the lumena were constricted at sites of fusion, unlike in wild-type embryos
(Fig 7A and 7B). In embryos trans- heterozygous for gyc76C2388 and Arl3CG6678 DT lumena

Fig 6. Verm is not transported into the lumen fusion site in gyc76Cmutant trachea. In gyc76C2388 heterozygous
embryos (A-C), Verm (A and A’, white) is initially absent from the site of new lumen formation (A and A’, arrow)marked by
the actin track (A, green) that forms between the fusion cells (A, asterisks). As the new lumen forms (B and B’), and
expands to the same diameter as the pre-existing lumena (C and C’, arrow), Verm is now present in the new lumen (B’ and
C’, white). In gyc76C2388 homozygous embryos (D), Verm (D and D’, white) is absent from the site of lumen fusion (D and
D’, arrows) although it is present at reduced levels in the pre-exisiting lumena (D and D’, arrowheads). Panels A’-D’ are
magnified views of the fusion sites indicated by arrows in A-D, respectively. All embryoswere stained for F-actin with
phalloidin (green), Verm (white) and β-gal (not shown). Embryos in A, B and D are at stage 14 whereas the embryo in C is
at stage 15. Scale bars represent 5 μm.

doi:10.1371/journal.pone.0161865.g006

Fig 7. Arl3genetically interactswithgyc76C to control DT lumen fusion. In wild-type embryos (A) the DT lumen is continuous by stage 16 (A and A’,
arrows). In embryos homozygous for Arl3CG6678 (B) the DT lumen is constricted at sites of fusion (B and B’, arrows) and in embryos trans-heterozygous for
gyc76C2388 and Arl3CG6678 (C) DT lumena failed to fuse (C, arrow). All embryos shown are at stage 16 and were stained for 2A12 and β-gal (not shown).
Panels A’ and B’ are magnified views of regions in A and B marked by arrows.

doi:10.1371/journal.pone.0161865.g007
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failed to fuse, like in gyc76C2388 mutant embryos (Fig 7C). In wild-type tracheal fusion cells
endogenous Arl3 is found as cytoplasmic puncta and at the contact site between fusion cells [5,
6]. In gyc76C2388 heterozygous embryos, endogenous Arl3 was found as cytoplasmic puncta
whereas in gyc76C2388 homozygous embryos, Arl3 was enriched at the contact sites between
the fusion cells (Fig 8A–8C). Thus, loss of gyc76C altered the subcellular localization of Arl3 in
DT fusion cells.

Gyc76C is required for de novo lumen formation in terminal cells
To test if gyc76C is required for de novo lumen formation in other tracheal branches we ana-
lyzed lumen formation in the terminal cells (TCs) which form a seamless intracellular lumen.
Unlike the DT where new lumena form and connect with pre-existing lumena, TC lumen for-
mation involves the inward growth of an intracellular lumen [24, 25]. We analyzed the dorsal
terminal branches of wild-type embryos and embryos expressing RNAi to gyc76C or pkdg21D
specifically in the trachea with the btl-GAL4 driver. In wild-type embryos the TC lumen elon-
gated between stages 15 and 16 (Fig 9A and 9B). By contrast, in TCs where gyc76C or pkg21D
have been knocked down with RNAi, the lumen was not elongated and an increased number of
punctate structures were observed in the cytoplasm of the TCs (Fig 9C and 9D). Quantification
of the TC lumen length showed significant reduction in gyc76CRNAi- and pkdg21D RNAi-
expressing trachea compared to WT (Fig 9E). Thus, gyc76C and pkg21D are required for de
novo lumen formation in the terminal branches.

Discussion
We demonstrate in this study that Gyc76C and its downsteam effector PKG1 are required for
de novo lumen formation in the Drosophila embryonic trachea. During DT lumen fusion, the

Fig 8. Arl3 is mislocalized in gyc76C2388mutant fusion cells. In gyc76C2388 heterozygous embryos (A), Arl3 is
found in a punctate pattern in the cytoplasmof the fusion cells (A, arrows). In gyc76C2388 homozygous embryos
(B), Arl3 is predominantly found at contact sites between the two adjacent fusion cells (B, arrow). Diagram
depictingmislocalization of Arl3-positive puncta in gyc76C2388 heterozygous embryos compared to homozygous
siblings (C). Red outlines in C indicate E-cadherin-mediated cell-cell contact sites, the actin andmicrotubule track
in black and fusion cells in green. Asterisks in A and B indicate fusion cells. Embryos in A and B were stained for
Arl3 (white) and β-gal (not shown).

doi:10.1371/journal.pone.0161865.g008
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actin track and the initial site of E-cad-mediated contact between fusion cells formed normally;
however, a new lumen did not form and the pre-existing lumena of adjacent DT branches did
not fuse. The presence of the secreted protein Verm in the DT cells and lumena but not at the
lumen fusion site suggests that the gyc76C lumen defect is due at least in part to defects in the
transport and/or fusion of vesicles at the lumen fusion site. Gyc76C may control vesicle trans-
port and/or fusion through Arl3 GTPase which is known to be required for vesicle-vesicle and
vesicle-plasma membrane fusion [5, 6]. The altered localization of Arl3 in gyc76Cmutant
fusion cells may prevent proper routing, delivery or fusion of vesicles necessary for the forma-
tion of a new lumen. Arl3 is known to regulate the localization of the exocyst subunit Sec5 at
contact points between fusion cells and along the actin track, and has been shown to interact
with microtubules [5, 6]. Thus, Gyc76C-dependent regulation of Arl3 localization in tracheal
fusion cells maybe important for exocyst-mediated vesicle transport along actin and/or micro-
tubule tracks and membrane fusion.

Our finding that gyc76C and pkg21D regulate de novo lumen formation in both the DT and
TCs suggests a common mechanism for de novo lumen formation in different branches of the
Drosophila trachea. Despite the distinct morphology of the DT lumen and the TC lumen, there
are conserved features of lumen formation between the two tubular structures. For example,
similar to the actin and microtubule tracks that form during DT lumen fusion, actin and
microtubules are organized along the elongating lumen of the TC [25, 26]. Moreover, the exo-
cyst complex is required for membrane trafficking events during lumen formation in both the

Fig 9. Gyc76C and PKG1 are required for terminal cell lumen elongation. In terminal cells of wild-type embryos (A
and B) the TC lumen begins to form at stage 15 (A) and is elongated by stage 16 (B). In embryos expressing gyc76C
RNAi (C) or PKG1RNAi (D) specifically in the tracheawith btl-GAL4, TC lumena do not elongate (C and D, arrows).
Quantification of TC lumen length shows that the lumena of trachea expressing gyc76CRNAi or PKG1RNAi are
significantly shorter than those of wild-type trachea (E). Embryos in A-D were stained for DSRF (green) to label TC nuclei
and 2A12 (white) to label the lumena. *** = p<0.01.

doi:10.1371/journal.pone.0161865.g009
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DT and the TC [5, 6, 27]. Thus, gyc76C and pkg21D likely regulate de novo lumen formation in
both the DT and TCs through a common mechanism.

We previously reported that gyc76C is required for proper localization of the βPS integrin
subunit at the myotendinous junctions of developing somatic muscle, and for laminin localiza-
tion around the migrating salivary gland [18, 19]. Since newly synthesized integrin and laminin
proteins are transported through the endomembranous system, our data on Gyc76C function
in the developing trachea, somatic muscle and salivary gland indicate a conserved role in vesi-
cle transport and/or fusion. This is consistent with studies in mammalian cells where cGMP
dependent protein kinases are shown to regulate a number of different membrane trafficking
events, such as phagocytosis [28] and synaptic vesicle trafficking [29–31]. Moreover, loss of
cGKII, the mammalian homolog of PKG2, results in intestinal secretory defects (Pfeifer et al.,
1996). Interestingly, Arf and Arf-like GTPases, like guanylyl cyclases and cGMP dependent
protein kinases, are requried for exocytosis in neuronal cells [32, 33]. Thus, cGMP signaling
through Arl GTPases may be a conservedmechanism for regulating membrane transport in a
number of distinct cell types.
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