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7-Methylguanine (7-MG) competitively inhibits the DNA repair enzyme poly(ADP-ribose)
polymerase (PARP) and RNA-modifying enzyme tRNA-guanine transglycosylase (TGT)
and represents a potential anticancer drug candidate. Furthermore, as a natural
compound, it could escape the serious side effects characteristic for approved
synthetic PARP inhibitors. Here we present a comprehensive study of toxicological
and carcinogenic properties of 7-MG. It was demonstrated that 7-MG does not induce
mutations or structural chromosomal abnormalities, and has no blastomogenic activity. A
treatment regimen with 7-MG has been established in mice (50 mg/kg per os, 3 times per
week), exerting no adverse effects or changes in morphology. Preliminary data on the 7-
MG anticancer activity obtained on transplantable tumor models support our conclusions
that 7-MG can become a promising new component of chemotherapy.
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1 INTRODUCTION

7-Methylguanine (7-MG) (Shapiro et al., 1968) is a degradation product of nucleic acids which is
present in small amounts in human urine (Bromberg et al., 1957a; Bromberg et al., 1957b; Lothrop
and Uziel, 1983; Svoboda and Kasai, 2004; Rodríguez-Gonzalo et al., 2013; Raćkowska et al., 2019)
and may be considered an indicator of whole-body RNA turnover (Sander et al., 1986a; Sander et al.,
1986b; Sander et al., 1986c; Topp et al., 1987). In mRNA the guanosine cap is methylated due to
methyltransferase activity, that is required for maturation and translation (Shuman, 2002; Shafer
et al., 2005; Topisirovic et al., 2011; Varshney et al., 2016). Furthermore, 7-MG adducts are normally
present in DNA, exposed to various exogenous and endogenous methylating agents, and their
number is increasing on aging (Park and Ames, 1988; Tan et al., 1990; Mustonen and Hemminki,
1992; O’Connor, 1993; Tamae et al., 2009). There is no evidence, however, for synthesis of
nucleotides from free 7-MG base or for its direct incorporation into nucleic acids (Craddock
et al., 1968; Kaina et al., 1983; Kerr, 1985; Kerr, 1990). A certain proportion of 7-MG is converted to
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8-hydroxy-7-methylguanine by xanthine oxidase or
demethylated (Weissmann and Gutman, 1957; Borowitz et al.,
1965; Litwack andWeissmann, 1966; Skupp and Ayvazian, 1969).

Recently we have shown that 7-MG inhibits DNA repair
enzymes poly(ADP-ribose) polymerases, PARP1 and PARP2, in
a competitive manner and accelerates apoptotic death of cancer
cells induced by cisplatin and doxorubicin (Nilov et al., 2016; Nilov
et al., 2018a; Nilov et al., 2020a). These PARP enzymes bind to
DNA breaks and synthesize a signal polymer poly (ADP-ribose)
from NAD+ molecules to activate the excision repair proteins
(Hassler and Ladurner, 2012; Drenichev and Mikhailov, 2015; Ray
Chaudhuri and Nussenzweig, 2017; Alemasova and Lavrik, 2019;
Nilov et al., 2020b). Inhibitors of PARP1/2, therefore, can exert
anti-proliferative effect and be combined with DNA damaging
agents (Cepeda et al., 2006; Martin et al., 2008; Ferraris, 2010; Lord
et al., 2015; Nilov et al., 2018b). We have demonstrated that 7-MG
forms substrate-specific interactions with the Gly863 and Tyr907
residues in the PARP1/2 active site and suppresses DNA-
dependent PARP activity in three different assays (biochemical
assay with radiolabeled NAD+, fluorescence anisotropy assay, and
Förster resonance energy transfer microscopy assay with nucleosome
particles) (Nilov et al., 2016; Nilov et al., 2020a). This results in the
formation of nonproductive PARP–nucleosome complexes and
likely prevents further steps in DNA repair, replication and
transcription, leading to cancer cell death (Maluchenko et al.,
2019; Nilov et al., 2020a). 7-MG is also known as a competitive
inhibitor of RNA-modifying enzyme tRNA-guanine transglycosylase
(TGT) which substitutes the guanine base with 7-deazaguanine
derivative queuine (Farkas et al., 1984; Johannsson et al., 2018). In a
recent paper, it was shown that TGT deficiency could significantly
suppress the proliferation and migration of cancer cells (Zhang
et al., 2020). From the point of view of polypharmacology, such a
multitarget (PARP1/2, TGT) mechanism of a drug candidate may
be promising, if adverse effects are negligible (Bolognesi, 2013;
Medina-Franco et al., 2013).

FDA-approved synthetic PARP1/2 inhibitors olaparib,
rucaparib, niraparib (Frampton, 2015; Mittica et al., 2018;
Zimmer et al., 2018) can cause side effects likely related to the
nonselective interaction with numerous NAD+-binding proteins
and nonspecific effects on the organism. Myelodysplastic
syndrome/acute myeloid leukemia occurred in some patients
after treatment with above-mentioned synthetic inhibitors, and
some cases were fatal (Malyuchenko et al., 2015; Sonnenblick et al.,
2015;Wang et al., 2016; Ohmoto and Yachida, 2017; Jain and Patel,
2019). 7-MG, being a natural compound, may have a more
favorable toxicity profile, which is also supported by QSAR
modeling (Nilov et al., 2016; Nilov et al., 2018a). In this article,
we present the results of a comprehensive experimental study of
toxicological and carcinogenic properties of 7-MG that establish
the basis for further testing of its anticancer activity.

2 MATERIALS AND METHODS

2.1 Toxicology Studies
Six-week-old female CBA, BALB/c, and C57BL/6 mice were
obtained from the Stolbovaya farm of the Federal Medical

Biological Agency (http://www.scbmt.ru). These mouse strains
are widely used in toxicology studies and in studies involving
transplantable tumormodels. 7-MG (Sigma-Aldrich, product No.
67073) was administered orally by gavage in experiments A and B
(Figure 1). In experiment A, CBAmice were divided randomly to
four treatment groups of 10 animals: control group I, drinking
water (3 times per week for 4 weeks); group II, 50 mg/kg 7-MG
(3 times per week for 4 weeks); group III, 200 mg/kg 7-MG
(3 times per week for 1 week); group IV, 600 mg/kg 7-MG
(single dose). Animals were euthanized by cervical dislocation
1 week after the last treatment. In experiment B, mice of each
strain (CBA, BALB/c, C57BL/6) were divided into two groups,
group I (drinking water) and group II (600 mg/kg 7-MG), and
euthanized 4 weeks after single-dose administration. Lungs,
heart, liver, spleen, thymus, kidneys, adrenal glands, pancreas,
stomach, small and large intestines were collected from
euthanized mice and inspected. The tissues were processed for
light microscopy by fixing in 10% buffered formalin, dehydrating,
and embedding in paraffin. Histological analysis was performed
on sections stained by hematoxylin-eosin. Organ lesions were
detected on the examined sections (representative
microphotographs of the found abnormalities are shown in
Supplementary Figure S1), and the number of lesions per
animal was counted.

2.2 Carcinogenicity Studies
The Ames test was performed in S. typhimurium strains TA98
and TA100 as described previously (Maron and Ames, 1983).
Three 7-MG doses (1.4, 7.0, and 35.0 µg/plate) were tested with
and without rat liver S9 fraction. Distilled water was used as a
negative control; 3,4-benzopyrene (4.4 µg/plate), 2-
acetylaminofluorene (22.0 µg/plate), 4,9-diazapyrene derivative
(8.8 µg/plate), and sodium azide (8.8 µg/plate) served as positive

FIGURE 1 | Toxicology study of 7-MG: schematic representation of
experiments. (A) CBA mice were treated either with water (group I) or with
single andmultiple doses of 7-MG (groups II–IV, total dose for each group was
600 mg/kg); (B) CBA, BALB/c, or C57BL/6 mice were treated with
water (groups I) or a single 600 mg/kg dose of 7-MG (group II), and euthanized
4 weeks later.
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controls. Plates were incubated for 72 h and then revertant
colonies were counted. The comet assay was performed as
described previously (Singh et al., 1988). Immortalized human
kidney epithelial cells (NKE-hTERT) were treated with different
concentrations of 7-MG (0.02 and 0.2 mg/ml) for 24 h and then
embedded in agarose on microscope slides. After cell lysis and
electrophoresis, slides were stained with DNA dye (Vista Green)
and the number of comets was counted. Distilled water was used
as a negative control and cisplatin (25 µg/ml) served as a positive
control. The somatic mutation and recombination test in D.
melanogaster was based on previous work (Kirsanov et al.,
2011). Five wild type males and 10 wtsP4/TM3 females were
placed into vials for breeding. Heterozygous larvae were treated
with 7-MG (1 and 2 mg/vial); distilled water and oxoplatin (0.2
mg/vial) were used as controls. Adult F1 males and females were
examined for the presence of tumors using a binocular
microscope.

The chromosomal aberration assay was performed using
standard procedure (Albertini et al., 2000). C57BL/6 mice were
divided to groups of 5 animals and treated with 7-MG
(50–250 mg/kg per os). Distilled water was used as a negative
control and cyclophosphamide (50 mg/kg i.p.) served as a
positive control. Bone marrow cells were collected 24 h after
the treatment; to arrest proliferating cells at metaphase, animals
received colchicine (0.004% i.p.) 3 h prior to euthanasia. Cells
were obtained from the femurs, stained on slides with Giemsa,
and analyzed by microscopy.

2.3 Anticancer Activity
Six-week-old female CBA mice were obtained from the
Stolbovaya farm. Uterine sarcoma US-322 and cervical
squamous cell carcinoma RShM-5 (originally derived from
CBA mice exposed to 1,2-dimethylhydrazine and 3-
methylcholanthrene, respectively) (Treshalina et al., 2000;
Turusov et al., 2005; Bunyatyan et al., 2019) were inoculated
subcutaneously by injecting 0.5 ml of tumor cell suspension
(0.1 g/ml in PBS) into the right axillary cavity. Mice with US-
322 were divided into three treatment groups of 10 animals:
control group I, PBS (s.c., 3 times per week); group II, 7-MG
(50 mg/kg per os, 3 times per week); group III, cisplatin
(2.5 mg/kg s.c., 2 times within a week after inoculation). Mice
with RShM-5 were divided into five groups of 10 animals: group I,
PBS (s.c., 3 times per week); group II, 7-MG (50 mg/kg per os,
3 times per week); group III, 7-MG for 1 week (50 mg/kg per os,
3 times within a week after inoculation); group IV, cisplatin
(1.5 mg/kg s.c., 3 times within a week after inoculation); group V,
cisplatin + 7-MG (1.5 mg/kg s.c. + 50 mg/kg per os, 3 times within
a week after inoculation). For the combined treatment, 7-MGwas
administered 3 h prior to cisplatin. The length and width of a
subcutaneous tumor were measured with a digital caliper, and the
tumor volume was calculated as 1/2 (length×width2).

The animal protocols were approved by the Local Committee
for Ethics of Animal Experimentation (Blokhin Cancer Research
Center, decision 2019-5 dated 11 February 2019), experiments
were conducted in accordance with resolution 81 of the Eurasian
Economic Commission and directive 2010/63/EU (on the
protection of animals used for scientific purposes).

2.4 Statistical Analysis
Statistical significance of the difference between animal groups
was assessed with the Pearson’s chi-squared test (study of
anticancer activity, study of chromosomal abnormalities in
mice), Student’s t-test (analysis of organ weights), and Fisher’s
exact test (study of blastomogenic activity in flies). Significant
differences between cells in the comet assay were assessed with
the Fisher’s exact test. Data processing was carried out using the
Statistica software (StatSoft Inc.).

3 RESULTS

3.1 Toxicology Studies
The adverse effects of 7-MG that can result either from a single or
multiple exposures were assessed using four groups of female
CBA mice, as presented in Figure 1A. A maximum dose of
600 mg/kg was chosen based on mouse/rat oral LD50 values
(40–500 mg/kg) predicted for 7-MG with QSAR software
ACD/Percepta (www.acdlabs.com). Oral administration of 7-
MG to group II (50 mg/kg, 3 times per week for 4 weeks),
group III (200 mg/kg, 3 times per week for 1 week), and group
IV (600 mg/kg, single dose) was not lethal to any of the animals.
Visual observation revealed no apparent lesions or abnormalities
of internal organs in treated mice. However, a significant
elevation in spleen weight was produced in group IV
(Supplementary Table S1). Histological analysis of the heart,
thymus, kidney, adrenal gland, pancreas and stomach showed no
abnormalities in all treatment groups. Lung, liver, and spleen
tissues were affected only in group IV (Table 1). In this group,
small lymphoid infiltrates developed in the lungs and liver
(Supplementary Figures S1A,B). The splenic white pulp had
poorly defined follicles and lacked germinal centers, and the red
pulp was infiltrated with lymphoid cells (Supplementary Figure
S1C). In addition, focal lymphoid hyperplasia of the small and
large intestines was found in groups III and IV (Supplementary
Figure S1D).

The stimulating effect on lymphoid tissue caused by a single
600 mg/kg dose of 7-MG was then investigated in more detail
using different mouse strains: CBA, BALB/c and C57BL/6.
Animals were administered with either water or 7-MG
(600 mg/kg), and samples of lung, liver, spleen, and
intestine were collected after 4 weeks (Figure 1B).
Microscopic examination revealed the persistence of
lymphoid lesions produced by a high dose of 7-MG in all
strains. Lung, liver and intestine abnormalities were found in

TABLE 1 | Histological abnormalities of internal organs (+) in CBA mice treated
with 7-MG.

Group Lungs Liver Spleen Intestine

I control — — — —

II 50 mg/kga — — — —

III 200 mg/kga — — — +
IV 600 mg/kg + + + +

aMultiple-dose administration.
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nearly all animals (Supplementary Table S2), and the splenic
microarchitecture was affected in 33% of CBA mice, 30% of
BALB/c, and 60% of C57BL/6. However, 7-MG treatment was
not lethal to any of the animals and had no significant effect on
body weight (Supplementary Figure S2). The median lethal
dose (LD50) is therefore expected to be substantially greater
than 600 mg/kg, which allows us to classify 7-MG as only
slightly toxic inhibitor.

These results lead to a conclusion that 50 mg/kg administration
3 times per week may be an optimal regimen, which is devoid of
adverse effects and can be readily applied in further testing for
anticancer activity of 7-MG in mice (see the Section 3.3).

3.2 Carcinogenicity Studies
The mutagenic and carcinogenic properties of 7-MG have been
studied using various short term tests: the Ames test (uses bacterial
strains to assess the mutagenic potential) (Maron and Ames, 1983),
comet assay (detects DNA strand breaks at the level of the individual
cell) (Collins, 2004), chromosomal aberration assay (detects
structural chromosomal abnormalities in mice) (Albertini et al.,

2000), and somatic mutation and recombination test (uses
Drosophila melanogaster to assess the mutagenic, recombinogenic
and blastomogenic potential) (Sidorov et al., 2001). The
mutagenicity of 7-MG was tested in Salmonella typhimurium
strains, TA98 and TA100, both with and without metabolic
activation by rat liver S9 fraction. It was demonstrated that 7-
MG does not induce frameshift mutations or base-pair substitutions
(Table 2). The comet assay showed that 7-MG does not produce
DNA damage in immortalized human kidney epithelial cells
(Figure 2; Supplementary Figure S3), and the chromosomal
aberration assay showed that it does not induce chromatid or
chromosome breaks in bone marrow cells of C57BL/6 mice
(Table 3; Supplementary Figure S4). The somatic mutation and
recombination test detected no blastomogenic activity of 7-MG in
wts/+ heterozygotes of D. melanogaster (Table 4).

3.3 Anticancer Activity
In previous sections, the following findings were made: 1) 7-MG is
not carcinogenic and 2) it can be safely administered in an
appropriate dosage. As molecular mechanisms of 7-MG are
known (PARP1/2 and TGT inhibition), a thorough investigation
of its anticancer properties could be initiated in vivo, involving
various transplantable tumor models and a set of existing drugs as
active controls. Below are two illustrative examples demonstrating
the utility of 7-MG as a component of chemotherapy.

Preliminary studies of 7-MG anticancer activity at a safe dose
were carried out using mouse transplantable tumor models of
uterine sarcoma US-322 (Figure 3, Supplementary Table S3)
and cervical cancer RShM-5 (Figure 4, Supplementary Table
S4). Tumor nodes appeared in all control group animals within 3
and 7 days after inoculation, respectively. The US-322 model
demonstrated a statistically significant inhibition of tumor
growth by the treatment with 7-MG, 50 mg/kg 3 times per
week (Figure 3, group II), and the effect of 7-MG was
comparable to cisplatin (group III). In the case of RShM-5
model, an ineffective dose of cisplatin was used to test the
ability of 7-MG to sensitize the tumor to DNA-damaging
agents. It was revealed that the combined treatment with
cisplatin and 7-MG within a week after inoculation inhibits
tumor growth, whilst 7-MG or cisplatin administration alone

TABLE 2 | Study of the mutagenicity of 7-MG in S. typhimurium strains TA98 (detects frameshift mutagens) and TA100 (detects mutagens that cause base-pair
substitutions).

Tested compound Dose, µg/plate TA98 TA100

−S9 +S9 −S9 +S9

M MA M MA M MA M MA

Control — 9 ± 1 — 16 ± 5 — 43 ± 9 — 53 ± 2 —

BP 4.4 139 ± 15 + 623 ± 23 +
AAF 22.0 448 ± 53 + 433 ± 33 +
DP 8.8 248 ± 42 +
AZ 8.8 397 ± 31 +
7-MG 1.4 11 ± 3 — 16 ± 0.4 — 45 ± 1 — 56 ± 3 —

7.0 10 ± 1 — 14 ± 3 — 35 ± 8 — 44 ± 8 —

35.0 11 ± 1 — 14 ± 2 — 41 ± 3 — 56 ± 2 —

7-MG, 3,4-benzopyrene (BP), 2-acetylaminofluorene (AAF), 4,9-diazapyrene derivative (DP), and sodium azide (AZ) were tested with and without rat liver S9 fraction. The number of
revertant colonies (M) was counted to assess the mutagenic activity (MA). MA was considered positive if M in the treated plates exceeded that in the control more than twice.

FIGURE 2 |Study of the ability of 7-MG to produce DNA strand breaks in
immortalized human kidney epithelial cells using the comet assay (500 cells
were analyzed per slide). *Significant difference from the control cells (Fisher’s
exact test, p < 0.05).
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exerted no significant effect (Figure 4, groups III–V). It is
noteworthy that single-agent 7-MG treatment extended to
more than 1 week (group II) had an even more pronounced
antitumor effect compared to 1 week of combined treatment.
Furthermore, group III (7-MG given for 1 week) clearly
demonstrates that interruption of the 7-MG treatment results
in accelerated tumor growth starting from the 10th day.

4 DISCUSSION

PARP1/2 inhibitors represent a novel class of anticancer agents.
Although initially proposed for treatment of BRCA-deficient

tumors in women (breast or ovarian cancer), these inhibitors
have also demonstrated efficacy in other models such as prostate
and gastric cancers (Underhill et al., 2011; Sachdev et al., 2019).
Soft tissue sarcomas were also shown to be sensitive to PARP
inhibition combined with genotoxic chemotherapy (Ordóñez
et al., 2015). The strong PARP1/2 suppression seems to be
inherently toxic due to an important role played by these
proteins in the organism, but attempts are continuing to find
the proper balance between efficacy and toxicity of inhibitors.
Fatigue, anemia, nausea and neutropenia together with a risk of
myelodysplastic syndrome/acute myeloid leukemia accompany
the use of synthetic PARP1/2 inhibitors (Walsh, 2018). The
recently described inhibitor 7-MG is a natural nitrogenous

TABLE 3 | Study of the ability of 7-MG to induce chromosomal aberrations in C57BL/6 mice.

Group Dose, mg/kg Number of damaged cells per 500 cells

Chromatid breaks Chromosome breaks Multiple aberrations Total number

1 day I control, males — 8 0 0 8
II cyclophosphamide, males 50 30 1 11 42a

III 7-MG, males 50 7 0 0 7
IV 7-MG, males 250 7 0 0 7

5 days V control, males — 9 0 0 9
VI control, females — 10 0 0 10
VII 7-MG, males 5 × 50b 7 0 0 7
VIII 7-MG, females 5 × 50 9 0 0 9

Bone marrow cells were collected 24 h after the last treatment.
aSignificant difference from the control group (Pearson’s chi-squared test, p < 0.01).
b50 mg/kg per day.

TABLE 4 | Study of the blastomogenic activity of 7-MG in D. melanogaster.

Tested compound Dose, mg/vial Number of flies Number of tumors Tumor frequency, %

Control — 452 14 3.1
Oxoplatin 0.2 564 128 22.7a

7-MG 1.0 488 14 2.9
2.0 405 9 2.2

aSignificant difference from the control (Fisher’s exact test, p < 0.01).

FIGURE 3 | Dynamics of US-322 tumor growth in female CBA mice at
different treatment regimens.

FIGURE 4 | Dynamics of RShM-5 tumor growth in female CBA mice at
different treatment regimens. *7-MG was given for 1 week only.
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base that could escape the serious side effects and become a
promising new component of chemotherapy. Additionally, 7-MG
inhibits the RNA-modifying enzyme TGT, which may enhance
its anticancer activity.

The primary aim of this research was to outline the safety
profile of 7-MG in vivo. We have established an oral regimen for
7-MG treatment in CBA mice (50 mg/kg, 3 times per week for up
to 4 weeks) that exerts no adverse effects or changes in
morphology. Adverse events were detected only at a maximum
single dose of 600 mg/kg, in the form of small lymphoid infiltrates
of non-inflammatory origin in the lungs and liver. These lesions
may be resulted from the excessive inhibition of PARP (Beneke
and Möröy, 2001; Ricks et al., 2015; Dasa et al., 2018) at
concentrations much higher than therapeutic levels. The safety
of 7-MG was also confirmed by the examination in four short-
term carcinogenicity assays where it showed no mutagenic or
blastomogenic effects.

Preliminary data obtained on mouse transplantable tumor
models (uterine sarcoma, cervical carcinoma) demonstrated that
7-MG significantly reduces tumor growth at a safe dose and can
also potentiate the activity of cisplatin. The interruption of the 7-
MG treatment results in accelerated tumor growth, which
highlights the advantages of a multiple-dose regimen. The
molecular mechanism of 7-MG is fundamentally different
from that of drugs like cisplatin. It acts by modulating the
enzyme activity instead of causing DNA damage, and the
multiple exposure to 7-MG is needed for the effective
modulation. The present study of the natural 7-MG
compound has confirmed its safety and potential tumor
suppressing activity in mice. For further development, it
would be important to identify the most sensitive tumors for
the 7-MG treatment as well as to select DNA-damaging agents for
the combination treatment.
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