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ABSTRACT: A recently proposed tailored approach based on the distinguishable
cluster method and the stochastic FCI solver, FCIQMC [J. Chem. Theory Comput. 2020,
16, 5621], is extended to open-shell molecular systems. The method is employed to
calculate spin gaps of various Fe(II) complexes, including a Fe(II) porphyrin model
system. Both distinguishable cluster and fully relaxed CASSCF natural orbitals were
used in this work as reference for the subsequent tailored distinguishable cluster
calculations. The distinguishable cluster natural orbitals occupation numbers were also
used as an aid to the selection of the active space. The effect of the active space sizes and
of the explicit correlation correction (F12) onto the predicted spin gaps is investigated.
The tailored distinguishable cluster with singles and doubles yields consistently more
accurate results compared to the tailored coupled cluster with singles and doubles.

1. INTRODUCTION

Accurate and reliable computation of spin gaps of transition-
metal complexes represents a challenge for quantum chemical
methods.1 The correct estimation of the relative stability of
spin states is important not only to identify the right ground
state but also because reactivity patterns in catalytic and
enzymatic processes are deeply influenced by the spin gaps.
Density functional theory (DFT) is often employed to study
these systems,2−5 but the results can drastically change
depending on the choice of the functional,4−9 with differences
up to 20 kcal/mol, which obviously is very problematic if the
spin gap itself is only a few kcal/mol. Wave function theory
approaches are, in general, computationally more expensive
but can offer higher accuracy and systematic improvability.
The coupled-cluster (CC) theory10−12 is popular for its
hierarchy of methods, which rapidly converges to the full
configuration interaction (FCI) limit for weakly correlated
systems. The most common CC method includes only singles
and doubles amplitudes (CCSD),13 but higher excitations
must be taken into account to achieve chemical accuracy. The
obvious further step includes triples, CCSDT, which quickly
becomes prohibitively expensive and can be applied only to
small systems. A more practical version with perturbative
triples (CCSD(T))14 is usually adopted. Although these
truncated CC methods are very accurate for a wide range of
molecular systems, they are still based on a single-reference
(SR) formalism, and typically fail for strongly correlated
systems. The distinguishable cluster (DC) approach15−19 has
been established in the last decade as a convenient way to
improve the results for such systems without increasing the
computational cost. However, the SR framework is not well
suited to recover the complexity of wave functions with

multiple similarly weighted most important configurations.
These systems are usually studied by multireference (MR)
approaches.
The complete active space self-consistent field (CASSCF)

method20−25 is typically the first step of common MR
strategies used in molecular systems. In this method, an active
orbital space is selected and the electron correlation in this
space is recovered at the FCI level. Simultaneously, the orbitals
are relaxed under the mean field generated by the multi-
configurational many-body expansions. The exponential scaling
of the FCI method limits the active space sizes for
conventional CASSCF to ∼18 electrons in 18 orbitals.
Substantial advances have been made in the past decades to
mitigate the exponential scaling of FCI (and CASSCF), and
various approximate methods have been developed, e.g.,
density matrix renormalization group (DMRG)26−32 or FCI
Quantum Monte Carlo (FCIQMC),33−37 and the correspond-
ing CASSCF methods, DMRG-SCF38−40 and Stochastic-
CASSCF.41 Additional truncations of the active space can
further reduce the computational cost, as is done in generalized
active space (GAS),42,43 GASSCF,44 restrict-CASSCF in
Molpro,45 ORMAS46 from GAMESS,47 and Stochastic-
GASSCF48,49 approaches.
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In the CASSCF approach, the electron correlation outside of
the active space is missing, and therefore the results are usually
only qualitatively correct. Higher accuracy can be achieved by
employing methods that recover the missing part of the
correlation on top of CASSCF or GASSCF, e.g., CAS second-
order perturbation theory (CASPT2)50,51 or GASPT2,52

multireference configuration interaction (MRCI),53 multi-
reference coupled cluster (MRCC),54 or multiconfiguration
pair-density functional theory (MC-PDFT).55−58

The SR CC methods can also be used to recover dynamic
correlation outside of the active space. In this respect,
externally corrected CC methods59−68 utilize information
from the active space to improve the CC description, without
leaving the simple and comparably inexpensive SR framework.
The tailored CC (TCC) approach introduced by Kinoshita et
al.69 is one of these methods. In this approach, the singles and
doubles amplitudes in CAS are frozen at the FCI level and all
other amplitudes are optimized using CC amplitude equations.
It has been combined with the CCSD and CCSD(T) methods,
yielding tailored CCSD (TCCSD) and TCCSD(T).70

Recently, we have combined the tailored approach with
distinguishable cluster with singles and doubles (DCSD),
which has been demonstrated for closed-shell systems to yield
substantially more accurate results than TCCSD.71 Two main
drawbacks of tailored approaches exist, the missing relaxation
of the CAS amplitudes and the fact that the tailoring is still
inherently single reference. Both limitations are to some extent
alleviated by enlarging the active space.72,73 We use FCIQMC
to obtain the approximate FCI solutions in large active spaces.
The active space can be specified either using (Stochastic-)
CASSCF or through DCSD natural orbitals (NOs), as
demonstrated in the previous publication.71 However, the
tailored methods are useful not only to describe molecular
systems with a large amount of static electron correlation. Also
studies on systems with mostly dynamical electron correlation,
but which require high-level single-reference methods for an
accurate description, can benefit from the tailored methods. A
typical example of such studies is the computation of spin gaps
of single-center transition-metal complexes.74−89

In this study, the TDCSD method is extended to open-shell
molecular systems and employed to calculate spin gaps of
various iron(II) complexes. The accurate computation of spin-
state splittings of such compounds is not a trivial task. These
systems are not characterized by a strong MR character.
However, dynamic correlation effects are important and
different for each spin state, and neglecting them leads to
large errors in the resulting spin-gap predictions. Thus, they
represent an interesting subject to assess the validity of our
novel FCIQMC-TDCSD approach.

2. THEORETICAL OVERVIEW
In the following, a brief overview of the computational
methods employed in FCIQMC-tailored DCSD is given.
Further theoretical details can be found in the previous
publication.71

The tailored DC (TDC) and TCC methods have been
implemented in the Molpro package,45,90,91 and the extraction
of the CI coefficients from FCIQMC has been implemented in
the NECI program.92

2.1. Distinguishable Cluster. The DC approach is a small
modification of the amplitude equations in the CC with
doubles (CCD). The intercluster exchange diagrams are
removed, and the remaining quadratic terms are rescaled to

restore the particle-hole symmetry of the amplitude equations
and the exactness for two electrons (after orbital relaxa-
tion).15,93 A partial orbital relaxation can be achieved by
introducing single excitations using the eT̂1 similarity-trans-
formed Hamiltonian.16 The resulting DCSD method is size-
extensive, orbital-invariant with respect to intraspace orbital
rotations, and as insensitive to the interspace orbital rotations
as CCSD.
DCSD has been shown in numerous benchmarks to be more

accurate than CCSD for weakly correlated systems.17

Furthermore, it vastly outperforms CCSD for strongly
correlated systems, often yielding qualitatively good results in
situations where the traditional CC breaks down.
One-body density matrices can be calculated in the usual

manner using the Lagrange technique, and natural orbitals and
occupation numbers are obtained as eigenvectors and
eigenvalues of such matrices, respectively.
The basis set incompleteness error is largely reduced by

adopting a perturbative basis set correction (denoted by a
subscript F12a)94,95

2.2. FCI Quantum Monte Carlo. The FCIQMC method
is used to perform stochastic FCI calculations on very large
active spaces and molecules consisting of several atoms. In this
work, the corresponding Hilbert spaces have been spanned by
Slater determinants, which are stochastically sampled and
populated by signed walkers. The dynamics of the walker
population evolves according to the imaginary-time Schrö-
dinger equation

∑
τ

− = − +
≠

N
H S N H N

d
d

( )i
ii i

j i
ij j

(1)

where Ni is the number of walkers on the determinant i, τ is
the imaginary time, Hij are the Hamiltonian matrix elements in
the basis of Slater determinants, and S is a shift parameter that
controls the total walker number. As long as a sufficient
number of walkers is provided, a long time integration of the
imaginary-time Schrödinger equation converges to the ground-
state wave function. The initiator method (i-FCIQMC)34

helps to dynamically truncate the Hilbert space (and the
adaptive shift approach96,97 drastically reduces the associated
error) extending the applicability of FCIQMC to even larger
molecules.
Additionally, the stochastic noise can be reduced using the

semistochastic approach,98,99 where a number of determinants
are treated deterministically in the imaginary-time propagation.
FCIQMC has been combined with the Super-CI algorithm

to obtain the Stochastic-CASSCF,41 which can be utilized to
perform large-active-space CASSCF calculations.
Finally, the combination of FCIQMC with CC has already

been studied in the last few years with different objectives to
our FCIQMC-TDC approach (see refs 100−102).

2.3. FCIQMC-TDC. The basic concept of tailored methods
is based on the split-amplitude ansatz, which is straightforward
for the CC wave function

|Ψ ⟩ = |Φ ⟩ = |Φ ⟩̂ ̂ + ̂e eT T T
TCC 0 0

CC CAS

(2)

The T̂CAS cluster operators with amplitudes extracted from an
external calculation represent the strongest part of the electron
correlation in the system, and the rest of the cluster operators,
T̂CC, is responsible for the remaining weaker dynamic
correlation. The T̂CAS amplitudes are obtained using well-
known relations from CI coefficients, which are extracted and
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averaged from FCIQMC calculations inside of the active space.
T̂CAS amplitudes are kept frozen in the tailored calculation, and
only the T̂CC amplitudes are optimized. The error introduced
by missing the relaxation of T̂CAS can be reduced by enlarging
the active space. As demonstrated in our previous publica-
tion,71 the tailored approach can also be applied to modified
coupled-cluster methods, in particular DCSD, greatly enhanc-
ing the accuracy without an increase of the computational cost.
As in other embedding or active-space-based methods, a

correct selection of the active space for the external correction
is essential for accurate results. Here, we employ the
(Stochastic-)CASSCF method to optimize the active space.
For large active spaces, we also utilize DCSD NOs to define
the active space, which has been shown to be comparably
accurate to the CASSCF-defined CASs in our previous
studies.71

The tailored methods still retain a strong dependence on a
particular reference determinant. However, thanks to
FCIQMC, calculations for large active spaces are possible,
which drastically reduces the potential error caused by the bias
toward a specific determinant.
Additionally, we have extended our FCIQMC-TCCSD

implementation to include the perturbative triples correction,
FCIQMC-TCCSD(T), first introduced by Lyakh et al.70 The
perturbative triples (T) correction depends only on the T̂CC

amplitudes, and the computational cost is the same as of
CCSD(T).
Finally, a perturbative basis set correction is also applied to

our tailored approaches (TDCSDF12a, TCCSDF12a, and
TCCSD(T)F12a), as also described in our previous publica-
tion.71

3. RESULTS
3.1. Computational Details. The accuracy of the

FCIQMC-TDC approach for open-shell systems has been
evaluated by computing electronic spin states of five iron(II)-
complexes. This test set includes four Fe(II) octahedral
complexes, [Fe(H2O)6]

2+, [Fe(NH3)6]
2+, [Fe(NCH)6]

2+, and
[Fe(CO)6]

2+, which have been studied previously with various
methods,74−86 as well as a four-coordinated ferrous porphyrin
model.48,87,88,103−105 The range of spin gaps goes from tens of
kcal/mol for the former systems to a few kcal/mol for the iron-
porphyrin model.
All tailored calculations included in this study have been

done on top of NOs, either from (Stochastic-)CASSCF or
from DCSD calculations, and all iron(II)-complexes have been
evaluated at the CC level including the semicore orbitals of Fe
(3s3p shell).87,88 The basis set used for the Fe(II)-porphyrin is
the generally contracted atomic natural orbitals ANO-RCC-
VTZP, while for the remaining four complexes, cc-pVTZ was
employed.
All of the FCIQMC calculations performed in our study

utilize the semistochastic approach with a deterministic space
of up to 106 Slater determinants. Additionally, the adaptive
shift method96 has been used in all our calculations, and the
trial space that defines our new shift S was composed of 1000
determinants. The number of walkers used in our FCIQMC
was up to 2 × 108, adjusted according to the sizes of the
studied CASs.
For comparison, we have also computed DCSD, CCSD, and

CCSD(T) estimates of the spin gaps using restricted open-
shell Hartree−Fock (ROHF) orbitals, and CASPT2 and MC-
PDFT on top of the CASSCF wave functions. The MC-PDFT

values are obtained with the tPBE translated functional, which
was shown to perform well on the prediction of spin-state
ordering with a substantially lower cost compared to
CASPT2.81 Although the DCSD and CCSD results are
reported without F12 correction, we estimate that the latter
will be similar to the correction obtained for the corresponding
tailored approaches. All of the spin gap values calculated in this
work are listed in the Supporting Information.
The usual convention to define the size of the active space,

(nelectrons, norbitals), is employed.
3.2. Small Ligand Fe(II) Complexes. Energy spin gaps of

four transition-metal complexes in an octahedral environment
have been computed to test the accuracy of the FCIQMC-
TDC and FCIQMC-TCC approaches for open-shell systems.
These compounds, which can be written as [Fe(L)6]

2+ (L =
H2O, NH3, NCH, and CO), have been the focus of many
different studies over the years.74−86 In the present work, we
focus on the singlet (low spin, LS) and quintet (high spin, HS)
spin gaps, given by ΔE = EHS − ELS. The main computational
challenge of these Fe(II) complexes lies in a balanced
description of the dynamic correlation across spin states. An
accurate sub-kcal/mol description often requires high-level
methods beyond the “gold standard” CCSD(T).105

In this work, the spin gaps of the four octahedral Fe(II)-
complexes have been investigated by varying the active spaces
and using different methods. The small active spaces,
CAS(6,5) and CAS(6,10), have been optimized at the
deterministic CASSCF level. The former CAS comprises the
five 3d orbitals of Fe together with six electrons, whereas in the
latter CAS, the five correlating d′ orbitals are added to the
CAS(6,5), to take into account the double-shell correlation of
3d orbitals. The larger active spaces considered for these four
compounds include over 30 electrons in more than 30 orbitals,
and have been defined by DCSD NOs corresponding to
occupation numbers deviating strongly from 0 and 2.
Additionally, we ensure that both spin states under
consideration have a similar active space, i.e., if some type of
orbitals is important for one of the spin states, it is included in
both spin states. The orbitals chosen in the various CASs are
available in the Supporting Information. Subsequently,
FCIQMC calculations within the active spaces have been
performed to obtain the CI vectors.
The geometries of these octahedral systems and diffusion

Monte Carlo (DMC) results are taken from a work of Song et
al.82

3.2.1. [Fe(H2O)6]
2+. Our first test system is the Fe(II)

water−ligand complex. As discussed in Section 3.2, three
different active spaces have been evaluated using various
methodologies. The large active space contains a total of 42
electrons and 41 orbitals, CAS(42,41), as defined by the most
correlated DCSD NOs, and comprises 3d orbitals of the iron
atom, and various σ and π type orbitals (see the Supporting
Information).
For this compound, a high-spin ground state is expected.

Thus, not surprisingly, already ROHF alone yields a correct
order of states (ΔEROHF = −78.8 kcal/mol). However, ROHF
overstabilizes the HS state. A reduction of the energy gap is
predicted by correlated methods. The tailored methods yield
consistent results across the different active spaces and in good
agreement with ROHF-based coupled-cluster calculations,
DMC and MC-PDFT (Figure 1).
The largest doubles amplitude in CAS(42,41), which

corresponds to the second largest CI coefficient after
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intermediate normalization and which can be used as a
measure of the multiconfigurationality of the system, is 0.041
for the LS state and 0.038 for the HS state. Thus, this
compound is mostly single-configurational.
For all tailored cases, a perturbative F12 basis set correction

has been evaluated. It is presented in Figure 1 with lighter
colors relative to the underlying methods. The basis set
correction reduces the spin gap further, bringing the results
closer to the MC-PDFT(6,10) value and in general agreement
also with CCSD(T)F12a. Interestingly, CASPT2 and the low-
order CCSD and DCSD methods overstabilize the HS state,
most certainly due to the lack of the higher-order many-body
effects, as discussed elsewhere.104 On the contrary, the
perturbatively corrected CCSD(T) method, DMC, TCC
(especially upon F12 correction), and MC-PDFT are capable
of capturing these forms of weak correlation and stabilize the
LS state, reducing the spin gap. The TCCSD(T)F12a result lies
in between the MC-PDFT and the DMC predictions. For this
system, the size and quality of the active space have only a
negligible effect on the TCC predictions.
3.2.2. [Fe(NH3)6]

2+. Next, we evaluate the spin gap estimate
of the [Fe(NH3)6]

2+ complex. Again, the small CASs have
been optimized at the CASSCF level and include 3d and d′
orbitals, and the large CAS obtained from DCSD NOs
contains 42 electrons in 41 orbitals (see the Supporting
Information).
As in the previous case, a high-spin ground state is observed,

and electron correlation reduces the spin gap, which can be
seen already at the CASSCF (or CAS-CI) level: ΔECASSCF(6,5) =
−60.9 kcal/mol; ΔECASSCF(6,10) = −48.1 kcal/mol;
ΔECAS‑CI(42,41) = −40.0 kcal/mol.
The externally corrected calculations reduce the spin gap

further, Figure 2, and the dependence on the active space is
small compared to the active-space-only calculations. However,
the tailored results from CAS(6,5) and CAS(42,41) agree
better with each other, and the CAS(6,10) tailored methods
are more biased toward the HS state, which is a consequence
of the missing relaxation of the CAS amplitudes and can be
understood as follows. In the octahedral environment, the
degeneracy of the 3d orbitals is lifted resulting in the three t2g
and the two eg orbitals. In the case of the quintet state, all 3d
orbitals are occupied in the reference determinant, and in the
LS state, only the t2g orbitals are (doubly) occupied. Thus, the
correlating d′ orbitals are especially beneficial in the LS case
(as can be seen from the CASSCF (6,5) and (6,10) results)
since they allow higher flexibility for the paired electrons and
improve the electron correlation description. However,
another important LS stabilization mechanism is related to

the ligand−metal charge-transfer (CT) excitations. This
mechanism has been discussed in great detail in refs 48, 104,
105. There exists a competition of excitations to the d′ orbitals,
either from the occupied valence 3d orbitals or from ligand-
based orbitals. By introducing the d′ orbitals into the active
space and optimizing the coefficients without the ligand
orbitals and then freezing the corresponding singles and
doubles amplitudes at the level of the tailoring step, we
artificially enhance the 3d to d′ channel, which subsequently in
the tailored calculations suppresses the important ligand−
metal excitations. This negatively impacts the LS state
relatively to the HS state since the ligand−metal excitations,
as well as the 3d → d′ excitations, are more important there
compared to the HS state, and therefore the frozen singles and
doubles are more harmful for the LS state.
The multiconfigurational character, measured by the largest

doubles amplitude within CAS(42,41), is low: 0.041 and 0.037
for LS and HS states, respectively.
The TDCSDF12a and TCCSD(T)F12a results are closer to the

MC-PDFT(6,10) and to the CCSD(T)F12a spin gaps. The
DMC and especially CASPT2 spin gap estimates are quite
large compared to other methods. The CASPT2 over-
stabilization of the HS states has been already observed for
the Fe(II)-aquo complex, and earlier by us in the context of
Fe(II)-porphyrin spin gaps,104,105 and it has been related to the
missing higher-order correlation effects that otherwise differ-
entially stabilized the lower spin states.

3.2.3. [Fe(NCH)6]
2+. Now, we consider the Fe(II) compound

with the NCH ligand. The largest CAS in this case is
composed of 34 electrons in 31 orbitals, CAS(34,31), that
contains 12 πML and 12 πML* orbitals (the local π bonds
between the metal and the ligands), together with the five 3d
orbitals of Fe and two σML bonds (see the Supporting
Information).
An HS ground state is observed and electron correlation

stabilizes the lower spin state (Figure 3). The results from the
nontailored coupled-cluster methods substantially deviate from
each other, e.g., CCSD spin gap is almost 2 times larger than
the CCSD(T) one. The tailored methods agree more within
each other, and in most of the cases reduce the gap further.
However, the tailored results for the CAS(6,10) are again less
accurate, indicating the importance of the relaxation of the
amplitudes corresponding to the 3d → d′ excitations.
TCCSD(T) for the largest CAS remains close to CCSD(T),
while the other tailored methods are shifted noticeably more to
the CCSD(T) value. As in all previous calculations, the
tailored DCSD results agree well with the tailored CCSD(T)
numbers, and are consistently between TCCSD and TCCSD-

Figure 1. Spin gaps of [Fe(H2O)6]
2+ over different active spaces. Figure 2. Spin gaps of [Fe(NH3)6]

2+ over different active spaces.
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(T) estimates. The basis set correction reduces the gap even
further.
As before, the multiconfigurationality of the system is low

for both spin states with the largest doubles amplitude of 0.066
and 0.038 for LS and HS states within CAS(34,31).
For this system, DMC and CASPT2 predict the most

negative spin-gap (HS energetically lower than LS), while MC-
PDFT predicts the least negative spin gap, with the HS state
only 5 kcal/mol more stable than the LS state. Interestingly,
the TCCSD(T)F12a is much closer to the latter.
3.2.4. [Fe(CO)6]

2+. In the [Fe(CO)6]
2+ system, the carbon

monoxide ligands strongly stabilize the low-spin state, and a
singlet ground state is observed. This is to be compared to the
previous cases, where an HS ground state was identified. As
shown in Figure 4, the single-reference CCSD, DCSD, and

CCSD(T) calculations based on ROHF orbitals give already a
qualitatively correct result. CASPT2 calculated on top of
CASSCF(6,10) yields a spin gap very close to the CCSD value.
However, one can see large quantitative differences between
methods, e.g., the gap at the CCSD(T) level is 5 times larger
than at the CCSD level of theory.
The CASSCF(6,5) spin gap of −47.4 kcal/mol shows that

the active space does not include all essential correlation effects
that is necessary to stabilize the singlet state. The tailored
approach on top of this small active space recovers the correct
spin state ordering, which demonstrates that the correlation
outside of this active space plays a key role in stabilizing the LS
state. The tailoring noticeably improves the agreement within
the CC hierarchy, with TDCSD becoming very close to

TCCSD(T) (as well as to ROHF-CCSD(T)). The TCCSD
gap increases by a factor of 2, compared to CCSD, and
fortuitously coincides with the DMC gap. The spin gap from
TDCSD for this active space is very close to the MC-PDFT
(6,10) result.
The spin gaps calculated using the tailored methods on the

CAS(6,10) with the double-shell d′ orbitals show a large bias
towards the HS state in the TCCSD and TDCSD cases. Note
that in this case, a state-averaging of HS and LS states in
CASSCF was necessary to obtain an active space containing all
of the d′ orbitals for the LS calculations. As shown in Figure 4,
the TCCSD energies without the F12 correction are in this
case nearly degenerate, and the TDCSD spin gap is much
smaller than even the DCSD one. Such small spin gaps are due
to the state-averaged orbitals used in the LS state and the
overall less accurate frozen active space amplitudes for the LS
state. This result shows how sensitive TCC could actually be to
the size and quality of the chosen active space, a feature that
was not observed in the previous complexes discussed in this
work. The perturbative triples in TCCSD(T) account for
additional relaxation effects curing some of the unbalanced
description due to the active space choice. Nevertheless, large
active spaces are indispensable for accurate and reliable
tailored calculations to compensate for the frozen amplitudes.
For large active spaces, we use DCSD NOs to define (34,31)

CAS. The active orbitals include the five 3d orbitals of the iron
center, 12 πML and 12 πML* orbitals of the ligand, and two σML
bonds (see the Supporting Information). The CAS-CI results
from this active space are still predicting the wrong order of
states, as the previous CASSCF results. This can be due to the
missing orbital optimization that could be added by perform-
ing a Stochastic-CASSCF optimization prior to the TCC
correction. However, the tailored methods are again yielding
the correct spin state order. With this large active space, the
TCCSD results are closer to TDCSD and TCCSD(T), and the
TDCSD value for the spin gap almost overlaps with the
CCSD(T) estimate. TCCSD(T) demonstrates a further
stabilization of the low-spin state.
Again, the multiconfigurational character of this complex is

low as in the previous systems: the largest doubles amplitudes
within CAS(34,31) are 0.053 and 0.037 for LS and HS states,
respectively.
The F12 correction favors the LS state, further increasing

the spin gaps. The resulting TDCSDF12a and TCCSD(T)F12a
values for the spin gap are larger than from CCSD(T)F12a, in
the TCCSD(T)F12a case by almost 10 kcal/mol. Finally, it is
worth pointing out that there is better agreement between
CCSD(T), MC-PDFT, and TCCSD(T) compared to PT2 and
DMC, that exhibit a bias toward the HS state. It is relevant to
point out that the TCCSD(T)F12a spin gap is more than 10
kcal/mol higher than the MC-PDFT result. It is possible that
in this case a dependency of MC-PDFT also exists on the
active space size, and that the MC-PDFT(6,10) is not
converged with respect to the active space choice. Particularly
relevant in this case is the correlation within the CO ligand and
its direct effect on the ligand-field splitting and CT correlation.

3.2.5. Overview. Figure 5 offers an overview of the TCC
predictions over all of the octahedral complexes presented thus
far.
For all complexes, TDCSD results are between TCCSD(T)

and TCCSD, and in some of the cases, they are very close to
TCCSD(T) results. This suggests a higher accuracy of the
TDCSD approach over TCCSD, as shown in our previous

Figure 3. Spin gaps of [Fe(NCH)6]
2+ over different active spaces.

Figure 4. Spin gaps of [Fe(CO)6]
2+ over different active spaces. The

LS active space in CAS(6,10) has been obtained using state-averaged
CASSCF; see main text.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00059
J. Chem. Theory Comput. 2022, 18, 3427−3437

3431

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00059/suppl_file/ct2c00059_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00059?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00059?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


work71 and as expected due to previous studies on the DCSD
method.16,17 The qualitative trend of spin gaps in these
systems is well described at all coupled-cluster levels of theory
and for all active spaces employed here, although the CAS
(6,10) tailored results are not very accurate, especially in the
case of TCCSD.
Table 1 summarizes some of the spin gap estimates available

in the literature, with a focus on the variety of different
methods used for the same compounds in some of the most
recent studies. Very promising is the general agreement
between the TCC results and MC-PDFT, showing how
computationally inexpensive schemes can yield comparable
accuracy or can outperform methods, such as DMC or
CASPT2, commonly used for ground- and excited-state
chemistry.
In a recent work by Mariano et al.,85 the spin gap estimates

of these systems were calculated using a new Hubbard U
density-corrected DFT approach. In this method, the PBE
functional is evaluated on the Hubbard density, whose value U
is obtained self-consistently. These results are shown in Table
1 together with the reference values considered in the same
work, i.e., the CC-corrected CASPT2 method (CASPT2/CC),
originally proposed a few years back.106 It has been shown by
Pierloot et al.87 that CASPT2 yields accurate spin state
energetics as long as only the valence electrons are correlated;
however, an overstabilization of the higher spin states occurs in
the full CASPT2 treatment, as is also evident from our
CASPT2 results. The latter is found to be caused by the poor
treatment of transition-metal semicore orbitals. This deficiency
is mitigated in CASPT2/CC by introducing a semicore
CCSD(T) correction for the (3s3p) correlation contribution.
In the results shown in Table 1, the CASPT2 values used in
CASPT2/CC are extrapolated to the complete basis set limit.
The newly introduced DFT-PBE[U] approach has been shown
in ref 85 to give the smallest mean absolute deviations for these

four octahedral Fe(II) complexes in comparison to many other
DFT functionals. However, it is evident from Table 1 that our
spin gap estimates have a better agreement with their reference
values from CASPT2/CC rather than the DFT-PBE[U]
estimates (except for the L = H2O case). Particularly striking
is the spin-gap prediction for [Fe(II)(NCH)6]

2+, for which
DFT-PBE[U] predicts an LS ground state, while all other
methods predict an HS ground state. With the data in our
hands, it is not possible to exclude that the differences in
predictions are correlated to differences in the structural
parameters; in fact, in this work, we employed the geometry
used by Song and co-workers, allowing for direct comparison,
while Mariano and co-workers used a different geometry
optimization strategy.
In another recent study by Neese and co-workers,83 the

Fe(II) complexes exhibiting a weak ligand strength, i.e., L =
H2O, NH3, and NCH, have been investigated using the
domain-based pair natural orbital CCSD with iterative triples
(DLPNO-CCSD(T1)).

107 The results shown in Table 1
represent basis set extrapolated estimates of the spin gaps.
These values agree within a few kcal/mol with our TCCSD-
(T)F12a and TDCSDF12a results. Note that in the DLPNO-
CCSD(T1) calculations scalar relativistic effects are included,
which account for a further lowering of the spin gaps by 2−3
kcal/mol.83 Thus, the DLPNO-CCSD(T1) spin gaps without
the relativistic correction are expected to be in between
TDCSDF12a and TCCSD(T)F12a results.
In multiple works, DMC results have been reported (Table

1). However, all of the DMC estimates (including the values
from Song et al.82) show a tendency to favor the HS state in
comparison to our results.
This comparison with many different studies and methods

demonstrates once more the difficult problem at hand. Many
approaches from DFT to ab initio methods have been used in
the past years showing a scattering of the results in a wide

Figure 5. Spin gaps of the four octahedral Fe(II) complexes. Specifically, one graph for every active space.
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range of energies. In refs 83, 85, for example, many popular
DFT functionals have been studied giving rise to deviations in
a range up to tens of kcal/mol. Thus, even though these
systems are not characterized by a strong MR character, a
balanced description of their electronic structure is not trivial.
3.3. Fe(II)-Porphyrin. The TDC approach has also been

applied to an Fe(II)-porphyrin model system. This molecular
system is characterized by a number of nearly degenerate spin
states. Previous studies using Stochastic-CASSCF and high-
order coupled-cluster methods104,105 have demonstrated the
stability of the intermediate state (3Eg) over the high-spin state
(5A1g). Furthermore, the key excitations that lead to the
stabilization of the triplet state have been extensively
analyzed.48 In a recent study, Stochastic-MRCISD calculations
have shown further evidence of a correlation-induced differ-
ential stabilization of the 3Eg state over the

5A1g.
49 In this work,

we focus on the quintet−triplet spin gap ΔE = EQ − ET, which
is estimated to be in a range of a few kcal/mol.
The system has been investigated using four different active

spaces optimized at the CASSCF level. The smallest active
space (8,11) comprises five 3d orbitals of the iron atom, five
empty correlating d′ orbitals (double-shell orbitals), and one σ
Fe−N bonding orbital. The second smallest CAS (12,15) also
contains the four Gouterman π orbitals. These π-frontier
orbitals were shown to play a crucial role in stabilizing the

triplet state over the quintet.104 The next CAS(14,18) does not
correspond to a direct extension of the CAS(12,15). Instead, it
contains four 4s4p Fe orbitals and the remaining three σ Fe−N
bonding orbitals on top of the CAS(8,11). The four
Gouterman π orbitals are not included in this case. The
largest active space considered here, CAS(32,34), contains the
entire π system together with the orbitals from CAS(14,18). As
the size of this CAS is prohibitive for the conventional
CASSCF, the Stochastic-CASSCF has been employed to
optimize the orbitals. These orbitals have also been used in
other works of ours and are described there in greater
detail.48,49,104,105

The multiconfigurational character of this molecular system
is more pronounced as can be seen from the largest amplitudes
within the CAS(32,34): 0.242 and 0.221 for LS and HS,
respectively.
The spin gap results are summarized in Figure 6. The

tailored calculations are based on the (Stochastic-)CASSCF
NOs. Additionally, the DCSD, CCSD, and CCSD(T) spin
gaps calculated using ROHF orbitals are presented.

Also in this case results from the tailored methods are much
closer to each other (for a chosen CAS), than from their
corresponding conventional coupled-cluster methods. How-
ever, the fixed amplitudes in the small active spaces clearly
reduce the accuracy of the methods, and especially the
TCCSD(T) spin gaps are much smaller compared to the
CCSD(T) estimate. It demonstrates that large active spaces are
necessary for tailored methods to obtain reliable results. This is
particularly important as the degree of multiconfigurational
character increases.
In CAS(32,34) a large spin gap with triplet lower than

quintet is obtained already at the Stochastic-CASSCF level.
The introduction of the entire π system is essential for the
triplet stabilization, while for smaller CASs, a quintet ground
state is erroneously predicted. The tailored approach and the
F12 correction on top of the CAS(32,34) further enlarge the
spin gap prediction (5.8 kcal/mol) revealing the importance of
dynamic correlation effects outside the active space and bound
to the basis set incompleteness error. This result is in
qualitative agreement with the recent Stochastic-MRCI on
top of the same CAS(32,34), where also an enlarged spin gap
has been predicted (6.8 kcal/mol).

Table 1. Spin Gap Estimates of the Four Octahedral Fe(II)-
Complexes in kcal/mol from Different Studies in
Comparison with Some of Our Results

compound method ΔE ref

[Fe(H2O)6]
2+ TDCSDF12a −37.0 this work

TCCSD(T)F12a −35.8 this work
MC-PDFT −30.7 this work
DLPNO-CCSD(T1) −33.3 83
DFT-PBE[U] −34.6 85
CASPT2/CC −42.2 85
DMC −41.0 82
DMC −58.6 79

[Fe(NH3)6]
2+ TDCSDF12a −15.7 this work

TCCSD(T)F12a −14.3 this work
MC-PDFT −13.6 this work
DLPNO-CCSD(T1) −11.3 83
DFT-PBE[U] −10.1 85
CASPT2/CC −14.9 85
DMC −28.4 82
DMC −36.7 79

[Fe(NCH)6]
2+ TDCSDF12a −12.4 this work

TCCSD(T)F12a −8.7 this work
MC-PDFT −6.6 this work
DLPNO-CCSD(T1) −8.8 83
DFT-PBE[U] 4.8 85
CASPT2/CC −3.8 85
DMC −27.0 82
DMC −31.8 79
DMC −19.6/−21.9 80

[Fe(CO)6]
2+ TDCSDF12a 32.6 this work

TCCSD(T)F12a 38.5 this work
MC-PDFT 24.6 this work
DFT-PBE[U] 60.9 85
CASPT2/CC 46.5 85
DMC 13.6 82
DMC 7.6 79

Figure 6. Spin gaps (ΔE = EQ − ET) of the Fe(II)-porphyrin over
different active spaces. aStochastic-MRCISD (6.8 kcal/mol) corre-
sponds to a calculation correlating 96 electrons in 159 molecular
orbitals, using CAS(32,34) as the reference wave function, ref 49.
bOur previous best estimate from a subtractive embedding scheme, ref
105.
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One can compare the results of the tailored methods with a
subtractive embedding employed in ref 105. The spin gap
estimated using a CCSD(T)-embedded CAS(32,34)+ΔF12
amounted to 5.7 kcal/mol, and using a DCSD-embedded
CAS(32,34)+ΔF12 to 3.6 kcal/mol. The tailored results are
much more consistent: both TDCSDF12a and TCCSD(T)F12a
yield 5.8 kcal/mol, in good agreement with the CCSD(T)-
embedded calculation. Overall, all tailored methods for this
large active space agree well with each other.

4. CONCLUSIONS
In this work, we have extended our explicitly correlated
tailored DC/CC methods externally corrected by FCIQMC to
open-shell systems and have explored their accuracy by
studying Fe(II) transition-metal complexes. The active spaces
have been defined using DCSD NOs, CASSCF, and
Stochastic-CASSCF. Since the size of the CAS is critical to
compensate for all of the potential errors arising from frozen
CAS amplitudes and strong bias toward a particular reference
determinant that are present in the tailored methods, we have
investigated a number of active spaces, including very large
ones that have been solved by the FCIQMC method. This
strategy has provided the means to investigate the effects of
frozen amplitudes and the SR character of the approach in
spin-gap predictions.
Among the tailored schemes, the TCCSD(T) is the highest

in the TCC hierarchy here investigated. The TDCSD results
for the spin gaps of the four octahedral Fe(II) complexes are
much closer to TCCSD(T) results than TCCSD, confirming
the higher accuracy of the TDCSD method compared to
TCCSD also for open-shell systems.
Comparing results across different active spaces, one can see

that larger active spaces do not guarantee higher accuracy. For
example, adding the correlating double-shell d′ orbitals to the
active space did not improve the quality of the results, showing
an evident bias toward the HS state. This is due to an artificial
amplification of the 3d→ d′ excitation in this frozen-amplitude
approach at the expense of the important ligand to metal
excitations. The overstabilization of the HS state is also
observed at the level of the CASPT2 calculations. When the
active space is increased in a balanced way, to include orbitals
important for both states, the tailored results improve
consistently for all complexes.
Remarkably, there is closer quantitative agreement between

TDCSD, TCCSD(T), and MC-PDFT compared to the well-
established CASPT2 and DMC correlated methods. In ref 81,
the discrepancy between CASPT2 and MC-PDFT has already
been reported, and same as in the present work, with the
CASPT2 and MC-PDFT favoring the HS and the LS states,
respectively. The semiquantitative agreement between the
TCCSD(T), TDCSD, and MC-PDFT is very encouraging for
these methods that are relatively cheap and can effectively be
coupled to large-active-space reference wave functions.
The tailored results for the iron-porphyrin model system

agree very well with our previous findings, confirming the
triplet ground state in this model. The calculated TCCSD(T)
and TDCSD spin gaps for our largest active space in this work
(32,34) are very close to each other and to the estimate from a
subtractive embedding of CAS(32,34) into CCSD(T)-F12.
The F12 correction improves the convergence toward the

complete basis set limit. In all calculations presented here, it
resulted in an additional LS stabilization (and triplet
stabilization in Fe(II)-porphyrin case).

For all systems considered here, we found that CCSD(T)
can yield quite accurate spin gap estimates, coinciding well
with our best tailored results. However, even in such rather
single-reference problems, a combination of coupled cluster or
distinguishable cluster with FCIQMC (or alternatively, with
higher-order coupled-cluster methods) provides a way for a
systematic improvement of the results beyond a perturbative
triples correction. We are currently working on extending the
tailored methods to strongly correlated open-shell systems that
usually require spin-broken reference determinants, and for
which our recently developed spin-purification technique for
FCIQMC108 will be essential.
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