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A B S T R A C T

The wide use of motor imagery as a paradigm for brain-computer interfacing (BCI) points to its characteristic
ability to generate discriminatory signals for communication and control. In recent times, deep learning tech-
niques have increasingly been explored, in motor imagery decoding. While deep learning techniques are prom-
ising, a major challenge limiting their wide adoption is the amount of data available for decoding. To combat this
challenge, data augmentation can be performed, to enhance decoding performance. In this study, we performed
data augmentation by synthesizing motor imagery (MI) electroencephalography (EEG) trials, following six ap-
proaches. Data generated using these methods were evaluated based on four criteria, namely – the accuracy of
prediction, the Frechet Inception distance (FID), the t-distributed Stochastic Neighbour Embedding (t-SNE) plots
and topographic head plots. We show, based on these, that the synthesized data exhibit similar characteristics
with real data, gaining up to 3% and 12% increases in mean accuracies across two public datasets. Finally, we
believe these approaches should be utilized in applying deep learning techniques, as they not only have the
potential to improve prediction performances, but also to save time spent on subject data collection.
1. Introduction

The use of brain-computer interfaces in health-related applications,
such as the prognosis of abnormality conditions like epilepsy [1, 2] and
the restoration of hand grasping functionality in patients with movement
impairments and disorders, such as stroke [3, 4, 5, 6, 7], is very common.
In non-health related applications like gaming and vehicle use [8, 9, 10,
11, 12], brain-computer interfaces can also be used to communicate and
control. Many of these applications make use of motor imagery (MI),
either solely or in a hybrid fashion, with other paradigms.

Motor imagery remains one of the most popular BCI paradigms
widely explored. It is a state wherein a person imagines the performance
of a particular body movement action. This involves thinking, as though
performing the action [13, 14, 15, 16]. It could be viewed as performing
the action in the mind. Previous works have shown that motor imagery
and the actual performance of an activity have similar neural mecha-
nisms over the sensorimotor cortex [17, 18]. Since these imaginations
create neuronal activity in the sensorimotor area in a similar way as the
actual action does, many works have investigated the use of motor im-
agery in performing commands of action. This has proven to be very
useful, particularly in neurorehabilitation, where the goal is to gradually
u (O. George).
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help a patient gain functionality of a damaged part of their body. In such
cases, which typically include stroke, the goal is to help the patient
gradually make use of the affected part through motor imagery. When-
ever an imagined action is performed in this scenario, the BCI decodes
the signals for the imagined action and sends a command to the orthosis,
to gradually lift that part of the body. Repeated use can help the patient
gain functionality of the affected area, over time.

In processing MI signals via deep learning techniques, fairly large
amounts of data are required to train a model. This has been stated as a
challenge to the wide adoption of deep learning techniques in the
decoding process, since most MI experiments yield datasets, which are
small and typically only a few hundred in number [19, 20, 21, 22]. The
laboratory process of data collection for MI can be exhaustive and have a
tiring effect on participants. The repeated instructions to perform the
imagined action [23, 24, 25] can cause subjects to be easily worn out,
hampering their ability to generate necessary neurological signals
needed for the experiment [26, 27]. Prolonged repetition of trials can
lead to the acquisition of bad quality data, unsuitable for building a good
decoding model.

Given the wide use of MI and its efficacy in BCIs [23, 24, 25], the
investigation of possible enhancements to the decoding process is
ust 2022
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beneficial, since that can potentially improve communication and con-
trol. Deep learning techniques prevalent in computer vision have seen
wide successes in enhancing model performance via data augmentation
and transfer learning. Data augmentation techniques, in this case, include
image rotation, flips, noise addition and shearing. These techniques,
though prevalent, in computer vision, need to be adapted for MI data
augmentation and ought not to be used without a consideration of motor
imagery peculiarities. In motor imagery, for instance, random flips of the
signal or its representation might yield a totally different representation
than expected, leading to data corruption.

Considering the limitation due to dataset sizes, we explore the use of
six data generation techniques in synthesizing motor imagery signals,
which may be used in augmenting data for the decoding process. The
techniques are:

1. Averaging randomly selected trials
2. Recombining time slices of randomly selected trials
3. Recombining frequency slices of randomly selected trials
4. Gaussian noise addition
5. Cropping
6. Variational autoencoder (VAE) data synthesis

More details on these techniques are presented in Section 3.2.

2. Related works

While data augmentation has been widely used in computer vision
and natural language processing (NLP), it has not seen wide use in motor
imagery decoding. A few works have, however, explored data augmen-
tation for motor imagery decoding. This section presents some of such
works.

Zhang et al., in their work [28], explored data augmentation in the
motor imagery decoding process. They applied the empirical mode
decomposition (EMD) on the EEG data to obtain intrinsic mode functions
(IMFs). Artificial EEG frames were then generated by mixing the IMFs.
For any given class, real EEG trials were randomly selected and the IMFs
of the real trials were summed for each channel. The signals were then
transformed into the time frequency domain, using complex Morlet
wavelets. Classification was done with neural networks and traditional
machine learning classifiers, with the neural networks outperforming the
machine learning classifiers. Their approach was validated on their
motor imagery EEG dataset and dataset III from the BCI Competition II
[29].

In Li et al.‘s work [30], the authors took an amplitude-perturbation
approach to data augmentation. First, the time-frequency representa-
tion of the signals were generated, using short time Fourier transform
(STFT). Then, the amplitude and phase information at each time and
frequency were obtained. Random noise was added to the amplitude
after which the perturbed amplitude and original phase information were
combined in the representation. Afterwards, the inverse STFT was
computed to get the artificially generated EEG time series. The data were
then classified using a variety of neural network architectures and filter
bank common spatial patterns. Their approach was validated on the BCI
competition IV 2a [31] and high gamma [32] datasets. Across both
datasets and for the same network architectures, the results obtained
with augmentation were better than those without augmentation. A
recent work by Dai et al. [33] took an approach of performing recom-
bination across the time and frequency domains to generate trials. First,
the trials were grouped into their classes, after which real trials of the
same class were randomly selected and time slices of the trials were
swapped. After the time domain swapping, frequency swaps were done,
in which slices of the same frequency bands of the intermediate artificial
trials were swapped. A CNN was used for classification, with validation
performed using BCI Competition IV 2a and 2b datasets. Average clas-
sification accuracies on the latter dataset, with and without data
augmentation, were reported as 87.6% and 85.6%, respectively, showing
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that augmentation improved classification. The authors also reported
individual subject improvements of 2.9–19.7%. Another work by Tayeb
et al. [34], performed data augmentation by cropping. The authors used a
time window of 4 s, on trials 7 s long, with a stride of 125 ms to create
crops, yielding 25 times more trials. Though, results for direct compari-
son between the use and non-use of augmentation were not provided, the
authors reported having better results with augmentation, as against
without augmentation. They also reported that the approach helped curb
overfitting and forced their convolutional neural network (CNN) model
to learn features from all the crops, leading to better classification.

Other approaches to data generation have made use of generative
adversarial networks (GANs). GANs are a combination of neural net-
works in a generating- discriminating cycle. They were first introduced in
Goodfellow et al.‘s work [35], have progressively evolved and are being
used in many applications. GANs have been used in image processing and
medical analysis [36, 37, 38], generation of financial data [39, 40, 41]
and also in EEG signal processing, for signal generation and reconstruc-
tion [19, 42, 43, 44, 45, 46]. These works demonstrate that data
augmentation is beneficial to classification performance.

In contrast to many of these works, where a single dataset and one or
two methods are explored for augmentation, this work contributes by
exploring 2 datasets across a wider range of data augmentation methods.
Exploring different datasets of varying trial lengths help to better validate
the strengths or limitations of the approaches.

3. Method

3.1. Datasets

Two public datasets were used in this work. The first dataset by Cho
et al. [47] is a dataset of 3-second left- and right- hand motor imageries of
52 subjects. A Biosemi Active Two system, with a 64-electrode 10-10
montage and 512 Hz sampling rate, was used for data acquisition. Sub-
jects had between 100 to 200 trials recorded. Electromyographic read-
ings (EMG) readings were also made available for muscular artifact
removal. The second dataset, provided by Kaya et al [48], contained
imageries of 6 tasks – left hand, right hand, left foot, right foot, tongue
and a passive period, during which the subject was not performing any
imagined action. Data for 12 subjects were made available for the 6-class
imagery, with subjects having between 700 to 900 trials recorded. The
EEG-1200 EEG system, a standard medical EEG station, was used for data
acquisition, with a sampling rate of 200 Hz and 19 EEG channels in a
10–20 montage. Similar pre-processing steps were carried out on both
datasets. The steps were as follows:

1. Data were bandpass filtered for 1–40Hz.
2. Baseline correction was performed with the first 200ms pre-cue.
3. Artifact correction was done slightly differently for each dataset. The

major artifacts of concern were the oculographic and myographic
artifacts. For the first dataset [47], EMG artifacts were eliminated, by
using EMG readings and independent component analysis (ICA), to
remove artifact-like components. For the second [48], a simulated
electrooculographic (EOG) bipolar channel was constructed using the
two pre-frontal electrodes, Fp1 and Fp2. The bipolar channel readings
were used to remove EOG artifacts in a similar manner as EMG arti-
facts in the first dataset, before ICA application for removal of other
artifact-like components.

4. Data re-referencing to average to improve the signal-to-noise ratio.
5. A final round of artifact repair and rejection was performed, using the

auto-reject package [49].

3.2. Augmentation techniques

Six augmentation techniques were used namely: trial averaging, time
slice recombination, frequency slice recombination, noise addition,
cropping and the use of a VAE. These include simple approaches



Figure 1. Schematic depicting trial generation by averaging N randomly selected trials.
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(averaging, time slice recombination) to more sophisticated ones (crop-
ping, VAE) and these were chosen for comparisons across a wide range of
augmentation techniques. First, the data for each subject and/or session,
was split into train, validation and test sets; after which data augmen-
tation was performed on the training set. A 70:12:18 split ratio was used
for train, validation and test sets. This was chosen due to the small
number of trials, particularly in dataset I and the need to have a vali-
dation set. For all data generation approaches, data were grouped for
each subject and class. Artificial trials were generated on a per-class basis
for approaches requiring direct synthesis from real trials.

3.2.1. Trial averaging (AVG)
This approach involved the random selection of N real trials, which

were then averaged to create a new trial. We set N to be 5, as that pro-
vides a good number of samples for averaging, for a baseline. N was
varied to see how the results vary with the number of averaged samples.
With varied number of epochs, we noticed no significant increase in
performance. Figure 1 depicts the data generation process via averaging.
The significance of this method lies in the fact that averaging trials
generates a trial with different numerical values but similar distribution
as that of the original trials.

3.2.2. Recombination of time slices (RT)
This involves selecting N trials randomly to generate a new trial by

recombining roughly equal time slices from all selected trials. We set N to
be 5 and combine roughly equal time slices from the 5 trials, for a
baseline. N was varied and like AVG, we noticed no significant increase in
performance. Figure 2 depicts the process of data generation via
recombination of time slices. Recombining slices of trials generates
unique trials, which take on patterns from across the originating trials.
Figure 2. Schematic depicting trial generation by recombinin
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3.2.3. Recombination of frequency slices (RF)
For recombination in frequency, first, the time-frequency represen-

tations of all trials are generated using the short time Fourier transform
(STFT). N trials are then randomly selected and roughly equal frequency
slices of the trials are combined to generate a new trial. After recombi-
nation in frequency domain, the inverse STFT is applied to get the time
series representation of all generated trials. N was set to 5 for a baseline
and like the previous two approaches, we noticed no significant increase
in performance with varied number of recombination trials. Figure 3
depicts the process of data generation via recombination of frequency
slices.

3.2.4. Noise addition (NS)
This approach involves adding random Gaussian noise, generated

based on the statistical properties of the data. First, the mean of trials of
the class for which trials are generated is calculated. Afterwards,
Gaussian noise is generated with zero mean and standard deviation equal
to the class mean. The generated noise is then added to randomly
selected trials to generate artificial frames. Figure 4 depicts the process of
data generation via Gaussian noise addition. The simplistic approach
retains the original characteristic of the wave form, while generating
trials with slightly different numerical values.

3.2.5. Cropping (CPS)
Crops were generated, on the data, with a sliding window of length,

wlen¼ 0.5 and overlap¼ 50%, from start to the end of the trial. Each trial
in the training set was broken down into crops of length wlen and crops
originating from the same trial were assigned the same label. For testing,
prediction scores were generated on crops originating from a test trial,
after which the predictions were averaged and the trial was assigned the
g roughly equal time slices of N randomly selected trials.



Figure 3. Schematic depicting trial generation by recombining roughly equal frequency slices of N randomly selected trials.
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class with the highest mean score. The number of crops per trial gener-
ated is represented by the formula:

’ððtrial length*sampling rateÞ � crop sizeÞ’�
1� n overlap

�
*crop size

þ 1 (1)

where
crop size ¼ wlen * sampling rate ¼ 0.5 * 200 ¼ 60
Number of crops ¼ floor [((1 * 200) - 100)/((1-0.5) * 100)] þ 1
¼ floor(2) þ 1 ¼ 2 þ 1 ¼ 3
For instance, to generate crops ofwlen¼ 0.5, with n overlap¼ 50% on

dataset II, having trial length¼ 1 s and 200Hz sampling rate, the number
of crops generated is 3. This yields 3 times more data on dataset II.
Figure 5 depicts the cropping process. Using crops not only generates
more training instances but could allow for learning task-specific patterns
in a time window.

3.2.6. Variational autoencoder (VAE)
A conditional variational autoencoder was used to learn the distri-

bution of the data and to generate artificial trials based on real ones. The
VAE [50] consists of the encoder and the decoder, just as in the case of an
autoencoder. In the typical encoder-decoder combination of an autoen-
coder, the encoder learns a representation of the data and encodes it, by
giving a lower-dimensional representation. The decoder, on the other
hand, takes the encoded representation and aims to reconstruct the signal
back to its original form, thereby decoding the representation. With a
VAE, the autoencoder does not simply learn a function that maps the
input to a compressed form and back to its original form. Rather, it learns
Figure 4. Schematic depicting trial generation by

Figure 5. Schematic depictin
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the parameters of the probability distribution describing the data. The
representation learned is, therefore, constrained, based on the mean and
standard deviation of the data. We conditioned the learning by merging
the labels with the trials, during the learning process. The loss function of
the VAE was a summed loss function, consisting of the Kullback-Leibler
(KL) divergence [51] and mean square reconstruction loss. We applied
KL cost annealing [52], training the VAE on the reconstruction loss only
for the first 40 epochs and gradually increasing the weight of the KL loss
component over the next 20 epochs. The VAE architecture comprises
convolutional layers and is seen in Tables A1 and A2 of the appendix. The
original training set of the VAE was oversampled as that yielded better
losses and training stability. Training was done for 300 epochs with a
batch size of 32 and the Adam optimizer was used in the VAE and across
all neural networks in this study. Figure 6 below shows the VAE learning
process. The VAE differs from other methods given its sophisticated
approach of learning the distribution of the real data and before gener-
ating synthetic ones.
3.3. Data evaluation

The quality of the generated data was evaluated using four criteria,
namely:

i Accuracy of prediction using the augmented set as against no
augmentation.

ii Fr'echet inception distance (FID).
iii TSNE plots of both real and synthetic trials.
adding noise to N randomly selected trials.

g the cropping process.



Figure 6. Illustration of the learning process of a VAE [53].
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iv Topographic head plots of both real and synthetic trials.

For accuracy evaluation, classification was done using a CNN - the
Deep Net, with an architecture inspired by Schirrmeister et al.‘s work
[32]. The structure of the network is seen in Table A3 of the appendix. In
training the classifier, the already partitioned training set was used with
and without augmentation across the mentioned techniques, with the
classifier being trained for 50 epochs and with a batch size of 32. As
earlier stated, the baseline approach for augmentation was to generate
equal number of samples as the number of available trials for each subject
and session. Using more augmentation samples yielded no significant
improvement. Hence, the baseline was used for comparison across
methods. Mean accuracies are shown in Figures 6 and 10 for datasets I
and II, respectively.

The FID [54] calculates the distance between feature vectors calcu-
lated for real and generated samples. It measures how similar they are, in
statistical terms, based on the features of the trials calculated using the
Inception v3 model [55]. Lower scores show closeness or similarities in
properties, being correlated with higher quality data, while larger scores
show a greater dissimilarity. The FID on two datasets that are the same is
0. For each augmentation approach, we computed FID values compared
with the original data and compare for similarities in distribution due to
lower FID scores. FID values are shown in Figures 7 and 11 for datasets I
and II, respectively.

The t-SNE visualization [56] is a dimension-reduced plot of the data.
The TSNE procedure compresses an n-dimensional sample into
two-dimensions and the plot of the 2-d representations of samples shows
how the samples are clustered together. Similarities between well
generated and real datasets would be observed by similar clustering and
shapes. For each augmentation approach, we generated t-SNE plots to
Figure 7. Summary plot of accuracies across all methods for dataset I. NA – No
augmentation; AVG – Averaging; RT – Recombination in time; RF – Recombi-
nation in frequency; NS – Noise addition; CPS – Crops; VAE – VAE. Crosses and
horizontal markers depict the mean and median, respectively.
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show clustering of original versus synthetic data for all classes. Sample
plots for AVG are presented in Figures 8 and 12 for datasets I and II,
respectively.

Topographic head plots of evoked responses of both real and syn-
thetic trials were generated, showing brain activity over the course of the
trial. It is expected that generated trials would show similar evoked
response patterns. This was noticed across the head plots, giving a
consistent pattern of events, as expected. Sample plots for datasets I and II
are seen in Figures 9 and 13, respectively.

4. Results and discussion

In this section, we present the results of our analyses on the two
datasets. The accuracies show how well, a model distinguishes the clas-
ses, with and without augmentation; the FID shows the degree of
divergence between the synthesized and real data; the TSNE plot shows
how real and synthetic trials for all tasks are clustered; and the topo-
graphic head plot shows signal characteristics and power across the trial
period. For comparisons across methods, p-values were computed using
repeated measures one-way analysis of variance (ANOVA) and the
Bonferroni-corrected alpha value was set at 7.14E-03.

4.1. Accuracies of classification for Dataset I

Summaries of resulting accuracies are shown in Figure 7 and p-values
computed are shown in Table 1. Initial comparison was made for varied
Figure 8. Summary plot of FID values across all methods. AVG – Averaging; RT
– Recombination in time; RF – Recombination in frequency; NS – Noise addition;
VAE – VAE. CPS is excluded since no new data is calculated and the resulting
data form is not of the same dimension as the original trial. Crosses and hori-
zontal markers depict the mean and median, respectively.



Figure 9. TSNE plots across all 52 subjects of dataset I using AVG augmentation. Real and synthetic (synth) data are plotted as circles and crosses, respectively. Left
and right classes are denoted by blue and red colours, respectively. The reader is referred to the electronic copy for better viewing.
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number of epochs for generation and varied number of augmentation
samples. There was, however, no significant change in results with
higher number of generation epochs or augmentation samples. So, equal
number of augmentation trials as real trials were generated across sub-
jects and/or sessions for both datasets.
6

I All augmentation methods yielded increases in decoding
accuracy
Compared with no augmentation, all augmentation techniques yiel-
ded higher (78.30–86.51 > 77.73) mean accuracies. Though, all p-
values except for CPS do not show significance (all p-values > α ¼



Table 1. p-values for comparisons across all methods - Dataset I α ¼ 5E-02; Bonferroni-corrected α with 7 tests ¼ 7.14E-03. Bold values show significance in mean
differences.

NA AVG RT RF NS CPS VAE

AVG 7.20E-01 - - - - - -

RT 4.01E-01 5.33E-01 - - - - -

RF 1.09E-01 2.23E-01 6.13E-01 - - - -

NS 1.81E-01 3.07E-01 7.07E-01 8.97E-01 - - -

CPS 1.14E-04 2.05E-04 5.32E-04 5.46E-03 3.47E-03 - -

VAE 3.15E-01 5.24E-01 9.99E-01 5.24E-01 6.64E-01 2.30E-03 -

Cho et al. 1.40E-05 9.44E-07 2.26E-06 1.59E-09 5.36E-07 6.83E-10 6.96E-07
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7.14E-03), the increments do show that slight improvements are
achievable using these techniques.

II Most significant increases were seen using CPS
The augmentation techniques yielding the most increases on Dataset I
were CPS and frequency recombination. RF yielded a higher mean
accuracy (80.24> 77.73) than NA, though not statistically significant
(1.09E-01 > α ¼ 7.14E-03). CPS, on the other hand, yielded a higher
mean accuracy (86.51 > 77.73), with statistical significance (1.14E-
04 < α ¼ 7.14E-03). Model performances improved across 75% of
subjects, with up to 12% increase in mean accuracy and most indi-
vidual increases of 3–30 %, using CPS. In some cases, percentage
increases were slightly above 50%. This shows how cropping
improved model performances on the dataset. The crops of window
length 0.5 (1500 ms) with 50% overlap yielded 3 times more data for
each subject, providing smaller windows of data, with certain char-
acteristics that may be peculiar to similar window lengths across trials
of the same class. Based on this, the model can learn window-specific
features across trials of the same class.

III All methods significantly outperformed results reported by au-
thors of the dataset
In comparison with results reported by the original authors [47], all
methods, with and without augmentation, gave superior performance
with statistical significance (all p-values < α ¼ 7.14E-03). Our ap-
proaches significantly differ from the authors' due to the
pre-processing, the use of CNNs for classification, rather than tradi-
tional machine learning algorithms, and augmentation. Results show
better performances following our approaches, as compared to the
original authors', meaning that our approaches are preferred.

4.2. FID values for Dataset I

A summary of resulting FID values is shown in Figure 8. FID for all
methods were calculated based on the real and synthetic data. So, values
were only generated for augmentation techniques yielding trials with
dimensions like the original data. CPS was excluded, since crops give
smaller dimensions compared to the original data. Moreover, crops are
not generated by modifying the values of the original data in any way.
Lower FID values are usually preferred, as they show lower divergence, in
terms of the distribution, from the real data. NS yielded the least FID. RF
and RT also yielded low FID values. FIDs of the VAE and averaging are
quite high compared to the others. The low FID of NS shows that the
perturbations were not too severe to distort the signals. A recommen-
dation would be to explore RF and NS, as these yielded similar values in
terms of accuracy improvements and low FIDs.

4.3. TSNE plots for Dataset I

Figure 9 shows the TSNE plot of real and synthetic data across all
subjects in the dataset, using AVG. TSNE plots are helpful in showing how
samples are clustered, based on inherent characteristics of the data.
Closely clustered points would infer that such points have similar char-
acteristics and so, it is expected that data for the same class, either real or
synthetic, would be clustered together, if the augmentation is done well
7

and if the resulting data is not too divergent from the real. Data points are
shown to be well clustered with overlaps between real and synthetic data
for left and right class labels. The overlaps show similarities between the
real and synthetic data. A similar plot for Dataset II is presented in Sec-
tion 4.7.

4.4. Topographic head plots for Dataset I

The topographic head plots are plots of the evoked response for each
class, for both real and synthetic data. The evoked responses are gener-
ated by averaging trials, for each class. The plots in Figure 10 show that
the characteristics of the synthetic signals are not widely different from
those of the real signals. Similar characteristics, in terms of the peaks, are
seen across time points of the experiment. With S01, peaks in signals, for
the left class, are observed at about 355 ms, 506 ms and 680 ms for the
real trial. For the synthetic trial, as well, peaks are observed at 350ms,
510 ms and 682 ms. Similarly, for the right class, we see peaks around
340 ms, 496ms, 756 ms and 779 ms, for both real and synthetic data.
These time points are close, showing that the augmentation did not
significantly change the observed peaks in evoked responses, across
classes for the subjects. With S52, there is a slight variation, though not
too wide. A similar plot for dataset II is presented in Section 4.8.

4.5. Accuracies of classification for Dataset II

Summaries of resulting accuracies and computed p-values are shown
in Figure 11 and Table 2, respectively. As with dataset I, initial com-
parisons were done for varied number of generation epochs and
augmentation samples. However, no significant change in results was
noticed and so, equal number of augmentation trials as real trials were
generated across subjects and/or sessions in the dataset.

I Most augmentation methods yielded increases in decoding
accuracy
Compared with no augmentation, all augmentation techniques,
except CPS and the VAE yielded higher (81.74–83.01 > 80.73) mean
accuracies. Though, all p-values do not show significant increases (p-
values > α ¼ 7.14E- 03), the increments do show that slight im-
provements are achievable using these techniques.

II All methods, except CPS, significantly outperformed results re-
ported by authors of the dataset
In comparison with results reported by the original authors [48], all
methods, except CPS, gave superior performance with statistical sig-
nificance (p-values < α ¼ 7.14E-03). As with dataset I, our ap-
proaches differ from the authors' due to the pre-processing, the use of
CNNs and augmentation.

III Results significantly worsened using CPS, inferred to be due to
the trial length
CPS and VAE yielded lesser mean accuracies than without augmen-
tation (65.17, 79.92< 80.73), with the decrease from the VAE being
statistically insignificant (4.17E-01 � α ¼ 7.14E-03). However, the
decrease resulting from the crops is significant (1.37E-10 < α ¼
7.14E-03), with 93% of subjects having decreases in individual



Figure 10. Topographic plots of subjects of dataset I showing real and synthetic signal characteristics. Plots are shown for subjects (a) S01 and (b) S52, for both left
and right classes, using AVG. The reader is referred to the electronic copy for better viewing.
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performance, resulting in a 20% total decrease in mean accuracy. We
varied the parameters, such as the window length and overlap, for
generating the crops but our variation of the parameters, particularly
in Dataset II, did not yield performances better than without
augmentation. In the comparison of the CPS approach across both
datasets, we conclude that CPS might be more suitable with longer
trials than shorter ones. The trial length of Dataset I – 3 s - is 3 times
more than that of Dataset II – 1 s. The cropped window length for
Dataset I covers 1500ms, whereas that of Dataset II covers 600ms. It
may be inferred that the 1500ms window length is sufficient to
contain discriminatory patterns over the imagery period, as compared
to 600ms. Typical reactionary times have been placed at between
200-500ms [56], which is one reason why a longer window length
may be more appropriate, since it would, more consistently, capture
key signal changes over the course of the task. The significant wors-
ening of results in Dataset II shows the length of trials should be
considered before using CPS, as trials of length greater than 1 s might
be more suitable than shorter trials when applying CPS.
8

4.6. FID values for Dataset II

A summary of resulting FID values is shown in Figure 12. FID for all
methods were calculated based on the real and synthetic data. As with
the first dataset, FID values were not computed for CPS, since crops give
smaller dimensions compared to the original data.

Since lower FID values are preferred, NS, RF and RT yielded the least
FIDs, followed by AVG and VAE. Just as with the first dataset, the low FID
of NS shows that perturbations were not too severe to distort the signals.
Also, a recommendation would be to explore RF, NS and RT, as these
yielded low FIDs and improvements in accuracies.
4.7. TSNE plots for Dataset II

TSNE plots for all 12 subjects A-M (excluding D) are shown in
Figure 13. The 6 classes of motor imageries are left hand (LH), right hand
(RH), left leg (LL), right leg (RL), tongue (TT), passive mode of inactivity
(PV). The 6 classes are denoted with the following colours: blue (LH),



Figure 11. Summary plot of accuracies across all methods for dataset II. NA –

No augmentation; AVG – Averaging; RT – Recombination in time; RF –

Recombination in frequency; NS – Noise addition; CPS – Crops; VAE – VAE.
Crosses and horizontal markers depict the mean and median, respectively. Figure 12. Summary plot of FID values across all methods. AVG – Averaging;

RT – Recombination in time; RF – Recombination in frequency; NS – Noise
addition; VAE – VAE. CPS is excluded since no new data is calculated and the
resulting data form is not of the same dimension as the original trial. Crosses and
horizontal markers depict the mean and median, respectively.
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orange (LL), green (PV), red (RH), purple (RL) and brown (TT). Real and
synthetic data points are denoted with circles and crosses, respectively.
The data points are shown to be well clustered with overlaps between
real and synthetic data for left and right class labels. The overlaps show
similarities between the real and synthetic data. TSNE plots of AVG show
much finer clustering, compared with other techniques, where there the
plots show greater dispersion in the data.
4.8. Topographic head plots for Dataset II

The topographic head plots of the evoked response for each class, for
both real and synthetic data are presented in Figure 14, for dataset II. As
seen with dataset I, the plots also show similar characteristics between
synthetic and real trials. Similar characteristics, in terms of the peaks, are
seen across time points of the experiment. With the plot for Subject A
(Session 160223), peaks in signals are observed at about 235 ms, 360 ms,
425 ms and 435 ms, in the evoked response plot for the left-hand class,
for real and synthetic trials. This same pattern is seen for all 6 classes.
Also, for Subject H (Session 160720), similarities in peaks are seen for the
tongue imagery, with peaks noticed at 225 ms, 330 ms, 425 ms and 430
ms, for the real and synthetic data. These similarities in peaks are also
seen across other imageries. In some cases, slight differences, between
observed peaks in real and synthetic data, are seen. However, these
changes are not so significant, showing that signals were not undesirably
distorted.
4.9. Timings for data generation across all methods

In scenarios where computation time might be a factor to be
considered, techniques with less computation time would be desired.
Table 3 shows the time taken for data generation, across all methods.
Cropping took the least time and might be the preferred augmentation
method, where the trial length is also suitable. Compared with others,
Table 2. p-values for comparisons across all methods - Dataset II α ¼ 5E-02; Bonferr
differences.

NA AVG RT

AVG 4.74E-02 - -

RT 2.60E-01 2.22E-01 -

RF 6.70E-02 4.81E-01 4.66E-01

NS 2.27E-02 9.99E-01 1.24E-01

CPS 1.37E-10 8.57E-12 8.81E-11

VAE 4.17E-01 4.80E-03 1.05E-01

Kaya et al. 1.18E-06 4.69E-06 2.60E-06
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VAE is seen to be the most computationally expensive, due to the need to
train the networks.

4.10. Comparisons with other works

Some recent works exploring data augmentation in motor imagery
decoding include works by Freer and Yang [57], K. Zhang et al. [58] Z.
Zhang et al. [28] and Dai et al. [33]. In all of these works, only a few
augmentation techniques were explored. Freer and Yang [57] applied 5
methods for comparisons. Also, much of their augmentation efforts were
toward handling data imbalances, which we handled by oversampling,
and not exploring in detail the effect of augmentation across different
datasets. K. Zhang et al. [58] also explored 3 augmentation methods.
There augmentation was based on spectograms alone and no experi-
mentation was done with the raw data. So also, Z. Zhang et al. [28] and
Dai et al. [33] only made use of the empirical mode decomposition
(EMD) and time- frequency recombination, respectively. These recent
works have limited their exploration to only a few augmentation tech-
niques and have mostly used the BCI competition datasets [29]. These
contrast greatly with our work where we have used more augmentation
techniques across two datasets of varying trial lengths, showing statisti-
cally which methods tend to provide more significant results compared
with others

5. Conclusion

In this comparative study, we presented our findings on the use of
different data augmentation techniques for motor imagery decoding,
using neural networks. We compared a no-augmentation approach with
six different augmentation techniques, which can be applied in gener-
ating synthetic trials for enhancing decoding performance. The six
oni-corrected α with 7 tests ¼ 7.14E-03. Bold values show significance in mean

RF NS CPS VAE

- - - -

- - - -

- - - -

4.73E-01 - - -

1.79E-12 1.46E-13 - -

1.35E-03 4.26E-03 4.70E-09 -

1.08E-06 9.01E-07 7.76E-01 1.86E-10



Figure 13. TSNE plot across all subjects and sessions using AVG augmentation. Real and synthetic (synth) data are plotted as circles and crosses, respectively. The
reader is referred to the electronic copy for better viewing.
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techniques include: averaging of trials, recombination in time, recom-
bination in frequency, noise addition, cropping and the use of a varia-
tional autoencoder (VAE). These techniques range from simple ones
(AVG, RT, RF and NS) to more computationally intensive ones, such as
the training of the VAE for the augmentation. Our results from applying
these techniques, are presented across two public datasets, to investigate
these techniques on different datasets of different trial lengths. Time
taken for data generation across all techniques is also shown.

Our findings generally show that these techniques offer improve-
ments in performance compared to an un-augmented approach. Across
both datasets, noise addition and recombination in frequency seemed to
improve decoding performance, with both techniques yielding mean
accuracies � 80% on both datasets, albeit not significantly. All tech-
niques gave some form of improvement on both datasets, except for the
VAE and cropping, which gave reduced performances on dataset II. The
drastic difference in results obtained with cropping on both datasets,
implies that the trial length needs to be considered, when applying
cropping.
10
In future, we can consider other techniques, such as the use of a robust
lightweight generative adversarial network (GAN), that can learn the
data distribution with a smaller number of samples, as are available in
motor imagery experiments. GANs have become increasingly popular for
data generation and several modifications to the original GAN have been
proposed, for different tasks [59, 60, 61, 62].

Noise addition must be done carefully to avoid overly perturbing the
data and distorting it. Using the mean and standard deviation for
generating Gaussian noise is not recommended, due to the non-
stationarity of the signal. We chose to add noise with zero mean and
standard deviation equal to the mean of trials for a task. This preserves
the data and avoids introducing impurities, which will adversely affect
learning. Another approach to noise addition could be performing the
perturbations in the frequency space, as the signals are more stationary in
that case. In future, we could also investigate noise addition in the fre-
quency domain for comparison with noise addition in time.

A wider gap or variation in performance across the datasets is seen in
CPS, as compared with other methods. However, with the other simpler



Figure 14. Topographic plots of subjects of dataset II showing real and synthetic signal characteristics, for 6 classes, using AVG. Plots are shown for subjects (a) A –

Session 160223 and (b) H – Session 160720. The reader is referred to the electronic copy for better viewing.

Table 3. Table of timings for data augmentation techniques. Time (in secs) to generate 1000 trials. CPS is for window length ¼ 0.5 and 50% overlap. Times were
generated using Kaggle GPU - NVIDIA TESLA P100. CPS took the least time, as shown boldened.

AVG RT RF NS CPS VAE

Dataset I 1.83 0.85 88.52 4.17 0.05 1022.35

Dataset II 0.08 0.10 19.00 0.15 0.02 168.16
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methods, there is less variation, which we infer to be because the full
length of trials is used for other methods. Also, parameters for the gen-
eration of crops should be selected to achieve optimal crops containing
useful information for the learning. Another approach to cropping could
involve filtering crops temporally. So, only certain portions of the trial
are used. In choosing the most relevant region, a good choice might be
500–2500 ms for the 3-second-long trial or 100–900 ms for the 1-second-
long trial. The purpose of crop filtering would be to discard, as much as
possible, crops not significantly contributing to the decoding process.
Since there exist latencies in subject reactionary times for the perfor-
mance of the imagery task, filtering out crops of earlier times will reduce
the amount of noise resulting from including non-discriminatory crop
regions. In future, we could perform correlation analyses on the crops to
determine, which ones contain the most significant amount of informa-
tion. With this, an empirical optimal time range can be selected, though,
this may vary across subjects.

In conclusion, we recommend using NS or RT, for quick augmentation
and crops for trial lengths greater than 1 s. Where computational power is
not a constraint, VAEs could also be explored. In future, we could also use
a hybrid approach, by combining more than one augmentation
techniques.
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Appendix A. Structure of networks

Outputs and dimensions are shown for Dataset I only.
Table A.1. VAE encoder architecture. trial dimension ¼ (64 * 1536); n nodes 1 ¼ product (trial dimension) ¼ 98304; kernel size 1 ¼ (1, floor (2 * trial dimension [1]/
96)) ¼ (1, 32); kernel size 2 ¼ (trial dimension [0], 1) ¼ (64, 1); strides ¼ (1, max (floor (trial dimension [1]/96), 4)) ¼ (1, 16).

Layer Type Filters Kernel size Strides Output Connected to
12
Input 1
 -
 -
 -
 (None, 2)
 -
Embedding 1
 -
 -
 -
 (None, 2, 10)
 Input 1
Flatten 1
 -
 -
 -
 (None, 20)
 Embedding 1
Dense 1
 5
 -
 -
 (None, 5)
 Flatten 1
Dense 2
 n nodes 1
 -
 -
 (None, 98304)
 Dense 1
Reshape 1
 -
 -
 -
 (None, 64, 1536, 1)
 Dense 2
Input 2
 -
 -
 -
 (None, 64, 1536, 1)
 -
Concatenate 1
 -
 -
 -
 (None, 64, 1536, 2)
 Input 2
Reshape 1
Conv 1
 16
 kernel size 1
 strides
 (None, 64, 95, 16)
 Concatenate 1
LeakyReLU 1
 -
 -
 -
 (None, 64, 95, 16)
 Conv 1
Conv 2
 32
 kernel size 2
 -
 (None, 1, 95, 32)
 LeakyReLU 1
LeakyReLU 2
 -
 -
 -
 (None, 1, 95, 32)
 Conv 2
Flatten 2
 -
 -
 -
 (None, 3040)
 LeakyReLU 2
Dense 3
 16
 -
 -
 (None, 16)
 Flatten 2
Dense 4
 10
 -
 -
 (None, 10)
 Dense 3
Dense 5
 10
 -
 -
 (None, 10)
 Dense 3
Sampling 1
 -
 -
 -
 (None, 10)
 Dense 4
Dense 5
Table A.2. VAE decoder architecture. trial dimension ¼ (64 * 1536); kernel size 1 ¼ (trial dimension [0], 1) ¼ (64, 1); kernel size 2 ¼ (1, floor (2 * trial dimension [1]/
96)) ¼ (1, 32) strides ¼ (1, max (floor (trial dimension [1]/96), 4)) ¼ (1, 16) * add padding to retain previous dimension.

Layer Type Filters Kernel size Strides Output Connected to
Input 1
 -
 -
 -
 (None, 10)
 -
Dense 1
 3040
 -
 -
 (None, 3040)
 Input 1
LeakyReLU 1
 -
 -
 -
 (None, 3040)
 Dense 1
Reshape 1
 -
 -
 -
 (None, 1, 95, 32)
 LeakyReLU 1
ConvTranspose 1
 64
 kernel size 1
 -
 (None, 64, 95, 64)
 Reshape 1
LeakyReLU 2
 -
 -
 -
 (None, 64, 95, 64)
 ConvTranspose 1
ConvTranspose 2
 32
 kernel size 2
 strides
 (None, 64, 1536, 32)
 LeakyReLU 2
LeakyReLU 3
 -
 -
 -
 (None, 64, 1536, 32)
 ConvTranspose 2
ConvTranspose 3 *
 1
 7
 -
 (None, 64, 1536, 1)
 LeakyReLU 3
LeakyReLU 4
 -
 -
 -
 (None, 64, 1536, 1)
 ConvTranspose 3
Table A.3. Structure of the Deep Net classifier trial dimension ¼ (64 * 1536); kernel size ¼ (1, floor ((5 * trial dimension [1])/(256 * 1))) ¼ (1,30); pool size ¼ (1, max
(floor ((trial dimension [1] * 2)/(256 * 4)), 2)) ¼ (1, 3); strides¼ (1, max (floor ((trial dimension [1] * 2)/(256 * 4)), 2)) ¼ (1, 3).

Layer Type Filters Kernel size Pool size Strides Dropout rate Output
Input
 -
 -
 -
 -
 -
 (None, 1, 64, 1536)
Conv
 25
 (1, 30)
 -
 -
 -
 (None, 25, 64, 1507)
Conv
 25
 (1, 30)
 -
 -
 -
 (None, 25, 1, 1507)
Batch Normalization
 -
 -
 -
 -
 -
 (None, 25, 1, 1507)
Activation (SELU)
 -
 -
 -
 -
 -
 (None, 25, 1, 1507)
Average pooling
 -
 -
 (1, 3)
 (1, 3)
 -
 (None, 25, 1, 502)
Dropout
 -
 -
 -
 -
 0.4
 (None, 25, 1, 502)
Conv
 50
 (1, 30)
 -
 -
 -
 (None, 50, 1, 473)
Batch Normalization
 -
 -
 -
 -
 -
 (None, 50, 1, 473)
Activation (SELU)
 -
 -
 -
 -
 -
 (None, 50, 1, 473)
Average pooling
 -
 -
 (1, 3)
 (1, 3)
 -
 (None, 50, 1, 157)
Dropout
 -
 -
 -
 -
 0.4
 (None, 50, 1, 157)
Conv
 100
 (1, 30)
 -
 -
 -
 (None, 100, 1, 128)
Batch Normalization
 -
 -
 -
 -
 -
 (None, 100, 1, 128)
Activation (SELU)
 -
 -
 -
 -
 -
 (None, 100, 1, 128)
Average pooling
 -
 -
 (1, 3)
 (1, 3)
 -
 (None, 100, 1, 42)
Dropout
 -
 -
 -
 -
 0.4
 (None, 100, 1, 42)
(continued on next column)
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Table A.3 (continued )
Layer Type
 Filters
 Kernel size
 Pool size
13
Strides
 Dropout rate
 Output
Conv
 200
 (1, 30)
 -
 -
 -
 (None, 200, 1, 13)
Batch Normalization
 -
 -
 -
 -
 -
 (None, 200, 1, 13)
Activation (SELU)
 -
 -
 -
 -
 -
 (None, 200, 1, 13)
Max pooling
 -
 -
 (1, 3)
 (1, 3)
 -
 (None, 200, 1, 4)
Dropout
 -
 -
 -
 -
 0.4
 (None, 200, 1, 4)
Flatten
 -
 -
 -
 -
 -
 (None, 800)
Dense
 6
 -
 -
 -
 -
 (None, 2)
Activation (Softmax)
 -
 -
 -
 -
 -
 (None, 2)
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