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Abstract

Antibody development is still associated with substantial risks and difficulties as single mutations can radically change
molecule properties like thermodynamic stability, solubility or viscosity. Since antibody generation methodologies cannot
select and optimize for molecule properties which are important for biotechnological applications, careful sequence analysis
and optimization is necessary to develop antibodies that fulfil the ambitious requirements of future drugs. While efforts to
grab the physical principles of undesired molecule properties from the very bottom are becoming increasingly powerful,
the wealth of publically available antibody sequences provides an alternative way to develop early assessment strategies for
antibodies using a statistical approach which is the objective of this paper. Here, publically available sequences were used
to develop heuristic potentials for the framework regions of heavy and light chains of antibodies of human and murine
origin. The potentials take into account position dependent probabilities of individual amino acids but also conditional
probabilities which are inevitable for sequence assessment and optimization. It is shown that the potentials derived from
human sequences clearly distinguish between human sequences and sequences from mice and, hence, can be used as a
measure of humaness which compares a given sequence with the phenotypic pool of human sequences instead of
comparing sequence identities to germline genes. Following this line, it is demonstrated that, using the developed
potentials, humanization of an antibody can be described as a simple mathematical optimization problem and that the in-
silico generated framework variants closely resemble native sequences in terms of predicted immunogenicity.
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Introduction

Owing to the extraordinary role antibodies play in life science

research and in the pharmaceutical industry they are one of the

most intensively studied class of proteins [1]. However, generation,

manufacturing and storage of antibodies still poses challenges as

many molecule properties like pharmacokinetics (PK), solubility,

expression, viscosity and long-term stability are very difficult to

predict or yet not predictable at all [2–5]. Although encouraging

progress has been made in recent years to establish a rational link

between sequence, structure and molecule properties our current

understanding of these relationships is rather limited [6–11].

Statistical analyses of antibody sequences and the ability to

distinguish between frequently occuring and rare sequence

patterns therefore offer an alternative, knowledge-based approach

to reduce developability risks by detecting unusual sequence

patterns that have a potentially negative impact on the relevant

properties. This becomes particularly evident if we regard the fact

that the difference between a well-behaved antibody and a

problematic one can be as small as one amino acid [12–15].

The majority of marketed antibodies and those in clinical trials

are derived from natural B-cell repertoires of mice or mice with an

engineered human germline repertoire [16]. In B-cells the genes

encoding for the antibody are assembled from different gene

fragments (termed V and J genes for the light chain, V,D and J

genes for the heavy chain) and enzymes which randomly add and

cut off nucleotides at the junctions account for additional diversity.

In the subsequent affinity maturation cycles further mutations are

randomly introduced in the varible domains of heavy and light

chains which fine-tune the interactions with the antigen.

The entire process thus is a random, evolutionary process

employing classical Darwinian mutation and selection. However,

the selection criteria are defined by the organism that hosts the B-

cell and it has to be noted that these selection criteria are of

biological nature and not necessarily in line with biotechnological

requirements. There is no evolutionary pressure on living

organisms to select antibodies with a thermodynamic stability

beyond 60 degrees, low aggregation tendency and low viscosity at

concentration above 100 mg/ml. Accordingly animals do not

optimize antibodies for properties that make them suitable to be

put on the shelf for months.

An alternative source of antibodies are display technologies.

Here, synthetic or semisynthetic libraries encoding either for the

entire antibody, the antigen binding fragment (Fab) or only the

variable domains (Fv) fused into a single chain (scFv) are cloned

into surface proteins of yeast or phages [17–19]. This elegant

fusion of proteins to their encoding genes enables an iterative cycle

of in-vitro selection and optimization for binding. However,

properties which are important for manufacturability are beyond

the selection criteria just like for antibodies selected in-vivo and as
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a result antibodies, although optimally designed for their biological

purpose, often fail to fulfil the demands of biotechnological

manufacturing and the demands of being used as drugs in humans.

Although all of the biotechnologically relevant properties are

encoded in the antibody sequence and gradual steps are taken to

detect and rationally eliminate individual shortcomings, our

capabilities to translate sequences into favourable CMC (chemical

manufactoring control) and PK are at their infancy. Yet with the

growing number of antibodies characterized on the protein level

and the curation of sequence databases statistical methods can

provide valuable insights into the phenotypes of naturally matured

antibodies without comprehension of all the constraints leading to

their selection. Of particular importance thereby are correlated

mutations [20]. While two point mutations, if occuring individ-

ually, can be detrimental for protein stability, their concerted

occurence may be neutral or even beneficial. These couplings in

sequence alignments have been studied for very different purposes,

often with a link to protein structure, function and evolution [21–

26]. In variable domains (Fv) of antibodies such cooperative

mutations are found as well [27,28]. But although a functional

driving force for some correlated positions can not be excluded for

antibodies, most of the correlated mutations in antibodies appear

through different underlying germline genes and, although the

cooperativity is statistically significant, a structural or functional

cause seems unlikely for most of them, which is underscored by the

fact that correlations in human sequences differ from correlations

in murine sequences. Consequently, it is not a subject of this paper

to elucidate origins of cooperativity in antibody sequences but

rather take correlations as a species specific fingerprint into

account to develop heuristic scoring functions specific for

antibodies from human and murine origin.

The variable domains (Fv) of antibodies show a substantial

amount of variability, most pronounced in the complementary

determining regions (CDRs) but also in the framework. The

variability is partly encoded in the germline genes but many

alterations arise from somatic hypermutation during affinity

maturation. While amino acids located in the CDRs in most

cases have some contribution to the binding affinity, the effect of

mutations in the framework is highly diverse. Some do as well

contribute to the binding affinity either by a direct interaction with

the antigen or via a shaping and stabilizing affect on the

conformation of the CDRs [29]. But many framework mutations

are simply there as a consequence of random mutation with a

neutral effect on potency but with a potentially detrimental effect

on other molecule properties which affect late-stage pharmaceu-

tical development.

The scoring functions developed in this paper specifically

address this problem and provide a rational way to analyze

sequences, identify potentially critical residues and to guide

antibody engineering. In a second application it is shown how

such potentials can be used in combination with optimization

algorithms to sample human-like framework sequences which offers

an alternative, stochastic approach for antibody humanization.

Results and Discussion

Development of Heuristic Scoring Functions
From a multiple sequence alignment (MSA) the probabilities

Pi(Ai) for finding amino acid A in position i can be readily

obtained. Likewise the conditional probabilities Pij (Ai DAj) which

describe the probability of finding amino acid A in position i when

amino acid A is found in position j can be calculated.

If we describe a sequence as system of discrete states of its

individual positions, a quantity Fi(Ai) can be defined as a

statistical energy for amino acid A at position i in the MSA. Using

the inverse Boltzmann formula we can compute Fi(Ai) from the

observed probability Pi(Ai) as

Fi(Ai) ~ {kT ln
Pi(Ai)

Prandom

, ð1Þ

where kT in this context denotes an artificial quantity which can

be neglected. Prandom is the probability of finding amino acid A in a

random setting and is set to 1=20 for simplicity. (Although the 20

amino acids are not equally distributed within the proteome using

the proteome distributions to calculate Prandom would not add

accuray since the developed scoring functions are specifically

designed for subtypes of antibody chains from different species

which show different patterns of amino acid usage compared to

the overall proteome.). For each conditional probability the

statistical energy is accordingly

Figure 1. Comparison of human and murine sequences. Histograms of statistical sequence scores calculated for human (red) and murine
(grey) sequences. Left: Heavy chains (FHh). Right: Light chains (FKh). Scores for Rituximab, a chimeric antibody, and Avastin(Bevacizumab), a
humanized antibody are indicated by green lines/stars.
doi:10.1371/journal.pone.0076909.g001

Computational Antibody Analysis and Optimization
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Fij(Ai,Aj) ~ {kT ln
Pij(Ai DAj)

Prandom

: ð2Þ

Hence, the total score for a sequence of length N, omitting the

prefactor kT , writes as

F (sequence)

~{
1

N

XN

i

ln
Pi(Ai)

Prandom

z
v

N

XN

i

XN

j=i

ln
Pij(Ai DAj)

Prandom

 !
,
ð3Þ

where v is a parameter which balances the contributions from

individual and conditional probabilities. Since a major application

of the scoring function is to guide sequence optimization of a given

sequence an additional term is introduced which imposes a

restraint towards a reference sequence, e.g. the starting sequence.

To this end the sequence identity between the current sequence S

and the reference sequence R is calculated and a potential of the

form V (ID)~1{ID(S,R), where ID is the sequence identity

between zero and one, is used to restrain the sampling around the

reference sequence. The complete scoring function thus writes

F (sequence)~{
1

N

PN
i

ln
Pi (Ai )

Prandom

z v
N

PN
i

PN
j=i

ln
Pij (Ai DAj )

Prandom

0
BBB@

1
CCCAzlV (ID), ð4Þ

where l is a weighting factor to control the strength of the

restraint. At many positions, the Pi(Ai) or Pij(Ai DAj) is zero. In

Figure 2. Sequence analysis of Rituximab-VH. Contributions to the total score are mapped onto individual residues. Yellow and red colors
indicate that this amino acid is uncommon in this position and/or shows unfavourable couplings with other positions. Green shaded areas indicate
CDRs of which some residues are not taken into account. Upper graph: Ritxumab heavy chain with human heavy chain potential (FHh). Lower graph:
Rituximab heavy chain with murine heavy chain potential (FHm).
doi:10.1371/journal.pone.0076909.g002

Figure 3. Stochastic Humanization of Rituximab-VH. Humaniza-
tion of a murine heavy chain can be treated as an optimization of the
objective function FHh . The Monte Carlo algorithm starts from the
sequence of Rituximab-VH and optimizes the scoring function and the
sequence identity to the parental sequence simultaneously.
doi:10.1371/journal.pone.0076909.g003

Figure 4. Predicted immunogenicity. Distribution of Epivax Scores
for human and murine heavy chain sequences of 500 randomly picked
sequences from the Abysis data set are shown. Low Scores indicate a
lower risk of immunogenicity.
doi:10.1371/journal.pone.0076909.g004
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these cases Fi(Ai) and Fij(Ai,Aj) cannot be calculated using the

logarithm which requires the use of pseudocounts. To this end the

highest Fi(Ai) or Fij(Ai,Aj), respectively, calculated from the

lowest non-zero probability was taken in scaled with 1.1 to obtain

an upper limit of contributions to the score from amino acids in a

sequence which have zero-frequency at this position in the dataset

of antibody sequences.

In total five different scoring functions have been developed for

different antibody chain types from MSAs of publically available

antibody sequences which were taken from the Absysis database

[30,31] (http://www.bioinf.org.uk/abysis/).

N FHh: Heavy chain scoring function derived from human

sequences.

N FKh: k-chain scoring function derived from human sequences.

N FLh: l-chain scoring function derived from human sequences.

N FHm: Heavy chain scoring function derived from murine

sequences.

N FKm: k-chain scoring function derived from murine sequences.

Sequence Sampling and Optimization
The derived scoring functions can be used in combination with

sampling algorithms to generate optimized sequences. For the

present work a Monte Carlo protocol has been developed which

employs two different moves to sample the sequence space. The first

move is simply a random mutation at a random position, whereas

the second attempts a double mutation at two random positions.

The new sequence is evaluated with the scoring function and

accepted with a probability P~ min (1,exp({bDF )), where b,

known as 1=kT from the classical Metropolis criterion [32], is a

parameter to adjust acceptance rate and sampling.

Comparison of Human and Murine Sequences
The scoring function which has been derived from human

antibody sequences can be used to evaluate sequences. Compu-

tation of the score essentially denotes a statistical comparison with

all sequences that were used to develop the potential. Sequence

patterns which only infrequently occur in human sequences

thereby contribute larger values to the overall sequence score

which has the consequence that sequences with several unusual

patterns score high. This is for instance the case if we score

sequences of murine origin with the potential that has been

derived from human sequences. Figure 1 shows histograms of the

FHh and FKh scores for human and murine heavy and k-type

sequences in the Abysis dataset [30,31]. There is some overlap, as

some murine germline genes are similar to human germlines, but

the sequence score in most cases clearly distinguishes between

sequences originating from either of the two species. Hence, the

sequence score does not assess humaness in terms of sequence

similarity with human germline genes but rather by a phenotypic

comparison with a large dataset of human antibodies. This has the

advantage that somatic mutations that frequently occur are less

penalized by the score than accidential mutations never seen

before. On the other hand, antibodies derived from rarely used

germlines, even if 100% human, score higher. This is in fact closer

to reality as the use of the different germlines in the antibodyome is

far from equally balanced and certain germlines are heavily

preferred over others. Moreover, in a recent large scale study it

was impressively shown that certain germlines and heavy/light

chain combinations consistently show higher expression levels and

superiour biophysical properties, irrespective of the target they

bind [33]. Therefore, in many cases there might be good reasons

not to use the closest germline gene as a guide for sequence

optimization.

If we use the derived score for sequence optimization the

individual contribution of each amino acid to the overall score is

more important than the total score as they reveal uncommon

Figure 5. Development of Epivax Scores during stochastic humanization of Rituximab. A) Light Chain. B) Heavy Chain. Color codes
indicate progress of the simulation, starting from blue to red. Both trajectories sample sequences with low immunogenic potential as predicted by
the Epivax score.
doi:10.1371/journal.pone.0076909.g005
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sequence patterns. Figure 2 shows the contributions of each

residue in the Rituximab heavy chain to FHh (upper graph) and

FHm (lower graph). What becomes evident from the plot is that all

amino acids contribute favourably to the murine score but that

some positions are highly unusual in human sequences. This is the

typical picture one gets for murine antibodies, however, if high-

energy positions appear for a murine sequence in FHm or for a

human sequence in the FHh, this serves as a warning flag and the

respective positions should be carefully investigated and mutation

to more favourably scoring amino acids should be considered.

Stochastic Humanization
As shown in the previous paragraph low sequence scores

indicate sequences that consist of patterns commonly observed in

human antibody sequences. From this observation it follows that

the humanization of a murine sequence can be regarded as an

optimization problem which can be addressed with stochastic

methods like Monte Carlo Sampling. Humanization of an

antibody sequence essentially means to find sequences which are

as human as possible while staying as close as possible to the

murine precursor [34]. This problem is described by equation 4

where the sequence identity to a reference sequence (in this case

the parental murine sequence) is used to restrain the sampling.

Figure 3 shows an application of the stochastic humanization to

the heavy and light chains of Rituximab. The algorithm starts with

the Rituximab sequence and optimizes the sequence score and

sequence identity to the parent sequence simultaneously. Which

property, the phenotypic humaness or the similarity to the

parental sequence, dominates the sampling can be adjusted by

the parameter l in equation 4. In the shown examples for this

work l was set to 2 for all cases as this has been empirically found

to be a reasonable choice. However, in practice the function of the

antibody needs to be retained and there is no general procedure or

parameter set to ensure optimal humaness and function, as there is

in general no optimal way to humanize antibodies. Yet, the

approach offers a rational way to alternatively humanized

sequences beyond germlining and subsequent mutations back to

the murine sequence.

Humaness is commonly expressed as percent sequence identity

to the closest human germline or by statistical analysis of sequence

identities to known human antibodies [35]. However, the actual

purpose of humanization is not to increase sequence identity but to

reduce immunigenicity. Although the immune response of an

organism to a foreign protein is a complex process, T-cell

mediated immunogenicity is to some extend predictable. If T-cell

receptors recognize complexes between the major histocompati-

bility complex (MHC) II and peptides derived from the foreign

proteins that are presented on the surface of antigen presenting

cells (APC), the APC become activated which eventually leads to

diversification and the secretion of antibodies against the foreign

protein. If the foreign protein is a therapeutic antibody these

antibodies are usually referred to as anti-drug antibodies (ADA).

Appearance of such ADAs is generally unwanted since it may give

rise to drug intolerance and compromise the therapeutic success. A

first step in the T-cell mediated immune response is the loading of

a peptide onto MHCII. The affinity of peptides derived from

digested proteins to different MHCII allels is therefore a crucial

prerequisite for an immune response and computationally

predicted affinities of all possible T-cell epitopes derived from a

protein serve as a surrogate parameter for the immunogenic

potential of a protein. An algorithm which makes use of this

approach and is frequently used to assess the immunogenicity risk

of antibodies and other proteins is the Epivax software [36,37].

The tregitope adjusted Epivax Score, calculated from a sequence, gives

an estimate for the immunogenic potential of a protein.

Figure 4 shows the tregitope adjusted Epivax Score computed for 500

randomly picked human and 500 randomly picked murine heavy

chain sequences. Lower scores indicate low immunogenic poten-

tial and non-immunogenic antibodies usually have Epivax Scores

below {20, whereas antibodies known to induce immune

responses in a substantial number of patients have Epivax scores

greater than zero. What becomes evident when looking at the

histograms is that the distribution of the scores is rather broad and

that many human antibodies are predicted to be immunogenic

Figure 6. Couplings are required to generate non-immuno-
genic sequences. The plot shows the development of the Epivax
score over the course of a Monte Carlo optimization of Rituximab-VH.
The scoring function used here does not consider couplings of
sequence positions and as a consequence, no sequences with low
immunogenic potential are sampled.
doi:10.1371/journal.pone.0076909.g006

Figure 7. Influence of couplings on generated sequences. The
histograms show the distributions of Epivax scores for ensembles of
sequences generated with different influence of positional couplings
(v). The green shaded area marks the desired region for non-
immunogenic sequences.
doi:10.1371/journal.pone.0076909.g007
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which certainly is a tendency towards overprediction. Neverthe-

less, a humanized antibody should in any case display a lower

Epivax score than its murine precursor. This at least is part of risk

mitigation strategies in antibody development.

To test the hypothesis, that sequences generated by the

stochastic humanization procedure described above resemble

human-like sequences, Epivax scores were calculated for the entire

sequence trajectories. Figure 5 shows the development of the

Epivax score over the course of Monte Carlo Simulations starting

from the Rituximab light chain (A) and the Rituximab heavy chain

(B) using FHh and FKh, respectively, as functions to optimize. The

values for the sequence scores are not shown in the plots but in

figure 3 it can be seen that the generated sequences that show 80–

85% sequence similarity to the parental chains appear in the bulk

of the known human sequences and thus are considered human in

the light of the scoring function. If we now look at the predicted

immunogenicity of these sequences it becomes evident that the

stochastic humanization protocol samples sequences with very low

predicted immunogenic potential which strongly indicates that the

generated sequences are in fact human-like. Hence, although

immunogenicity as expressed by the Epivax score is not a quantity

that is explicitely considered or optimized in the humanization

protocol, it is implicitely encoded in the developed scoring

functions and optimized as a side effect.

As it has been outlined before positional couplings in the

sequences of antibodies can be regarded as a species-specific

fingerprint. If couplings are not considered it consequently should

not be possible to sample human-like sequences when starting from

a mouse sequence. With the introduced humanization protocol

this experiment can be done by switching off the coupling terms in

the objective function used in the Monte Carlo sampling (v~0 in

equation 4). The result of this experiment is shown in figure 6

where the sequence trajectory starting from the Rituximab heavy

chains is plotted against the Epivax scores. Although the sequence

identities to the parental chain are comparable to those of the

sequences generated with the full scoring function, the simulation

protocol fails to generate sequences with low predicted immuno-

genicty. In order to elucidate the useful range of values for omega

in a stochastic humanization approach, trajectories from MC

samplings (starting from Rituximab-VH) using different values for

v were evaluated with respect to their potential to create low-

immunogenic sequences. The histograms in figure 7 show the

distributions of Epivax scores for the generated ensembles. With

v-values of 0 and 0.5 sequences in the low immunogenic regions

are hardly sampled, whereas increasing v to 1 or 2 yields larger

fractions of the desired sequences. Increasing v further to 3

constricts the sampled sequence space to a very narrow region

around the closest human germline, which consequently is not

immunogenic. However, for efficient sampling of a resonable

sequence space, v-values between 1 and 2 seem to be a good

choice.

The consideration of positional couplings for antibody sequence

assessment and optimization thus is of utmost importance as they

intrinsically reflect the constraints of in-vivo antibody development

in a particular species. This is particularly attractive as such

constraints are beyond the scope of structure-based optimization

methods. If structural information is available, either from

modelling or from experimental data, protein design algorithms

can be used to probe the effect of mutations on thermodynamic

stability or binding affinity [38–40]. As the total sequence space

Figure 8. Sequence preparation. Sequence processing is shown for heavy (A) and light chain (B) of Rituximab as an example. CDR residues
marked in green belong to structurally varying parts and are not considered in the analysis.
doi:10.1371/journal.pone.0076909.g008
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which is theoretically available for a variable domain of an

antibody is virtually infinite, the Monte-Carlo sequence ensembles

can be used to dramatically reduce the degrees of freedom for a

structure-based optimization and thereby ensure that only

relevant, native-like sequences are considered.

Antibody engineering is still mostly an empirically driven

discipline as it is notoriously difficult to relate complex processes

like expression, shelf-life and PK properties to distinct sequence

patterns or structural features. Heuristic scoring functions derived

from the sequences of known antibodies offer a smart way to deal

with such cases as they do not require a detailed understanding of

the underlying physical and biological principles but rather

provide an empirical description of what was the result of the

complex processes when carried out many times. By analyzing

antibody sequence data that have been assembled over decades it

is implicitely assumed that sequence patterns which massively

compromise important molecule properties occur comparably

rare. The scoring functions introduced here were derived from

such datasets and are suitable to detect sequence patterns that

occur only infrequently in the phenotypic antibody pool of a

particular species and which might give rise to manufacturability

problems or immunogenicity. Using the score as an objetive

function in a Monte Carlo sampling algorithm allows for a

stochastic humanization protocol which optimizes humaness and

sequence identity to the parental sequence simultaneously, thereby

sampling sequences with low predicted immunogenicity.

Materials and Methods

Sequence Preparation and Alignment
Sequences of heavy and light chains from human and murine

antibodies were downloaded from the Abysis database (http://

www.bioinf.org.uk/abysis/). For the heavy chain dataset only

sequences were selected that are complete from H1 to H112

according to Kabat notation. For light chains residues L1 to L107

were considered. Since the sequence analyses in this paper focus

on framework variations, only those parts of the CDRs were taken

into account that are structurally conserved which means the

begin and the end or, in case of CDR2, also the part which forms

defined secondary structure. The residue selection is demonstrated

for the heavy and light chains of Rituximab as shown in figure 8.

Amino acids shown in green are not considered in the analysis.

Processing of the Abysis database and filtering for redundancy

(some sequences appear more than once) yielded 5663 unique and

complete human heavy chain sequences, 1456 human k-type light

chains and 1273 human l-type light chains. For murine sequences

1726 heavy chains, 1636 k-type light chains and 95 l-type light

chains were obtained. Due to the small number of murine l-chains

no scoring function was derived for this chain type. Multiple

sequence aligments (MSA) consisting of the framework residues

and the truncated CDRs as described above were generated for

each chain type and can be found in (File S1). Since the lengths of

the frameworks in antibodies are consereved within the same

chain type sequence constructing sequence alignments is trivial.

Consequently the alignments do not contain gaps which makes

calculation of the frequencies straightforward.

Computational Tools
Programs for handling of antibody sequences, calculations of

scoring functions and Monte Carlo sequence sampling were

written in C++. Figures were prepared with the matplotlib library

which is part of an inhouse developed antibody analysis software

written in C++/Python [41].

Supporting Information

File S1 Contains the processed antibody sequences that
were used to derive the scoring functions.
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