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ABSTRACT

We have developed the following web servers for
protein structural modeling and analysis at http://
theory.med.buffalo.edu: THUMBUP, UMDHMMTMHP

and TUPS, predictors of transmembrane helical
protein topology based on a mean-burial-propensity
scale of amino acid residues (THUMBUP), hidden
Markov model (UMDHMMTMHP) and their combina-
tions (TUPS); SPARKS 2.0 and SP3, two profile–
profile alignment methods, that match input query
sequence(s) to structural templates by integrating
sequence profile with knowledge-based structural
score (SPARKS 2.0) and structure-derived profile
(SP3); DFIRE, a knowledge-based potential for
scoring free energy of monomers (DMONOMER),
loop conformations (DLOOP), mutant stability
(DMUTANT) and binding affinity of protein–protein/
peptide/DNA complexes (DCOMPLEX & DDNA); TCD,
a program for protein-folding rate and transition-state
analysis of small globular proteins; and DOGMA, a
web-server that allows comparative analysis of
domain combinations between plant and other 55
organisms.Theseserversprovide tools forprediction
and/or analysis of proteins on the secondary

structure, tertiary structure and interaction levels,
respectively.

BACKGROUND

In the post-genomics era, attention is now squarely focused on
the interconnections between sequences, structures and func-
tion of proteins. As more sequences from genome-sequencing
projects and more structures from structure-genomics projects
become available, tools are urgently needed to extract the max-
imum amount of information from them in order to analyze
and predict unknown structures and function. We present
a number of web-based servers available at http://theory.
med.buffalo.edu as shown in Table 1. They are THUMBUP,
UMDHMMTMHP and TUPS for topology prediction of trans-
membrane helical proteins (1); SPARKS 2.0 (2) and SP3

(3) for sequence-to-structure fold recognition and alignment;
DFIRE energy function (4) for scoring structural monomer
(DMONOMER) and loop conformations (DLOOP) (5), pre-
dicting mutant stability (DMUTANT) (4), binding affinity
of protein–protein/peptide complexes (DCOMPLEX) (6) and
protein–DNA complexes (DDNA) (7); TCD for analysis of
folding kinetics (8,9) and DOGMA for comparative analysis
of plant domain graph (10). These servers can be classified
as the tools for prediction and analysis of the secondary
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structures, tertiary structures and interactions of proteins as
shown in Figure 1. Details are described below.

THUMBUP, UMDHMMTMHP AND TUPS

Overview

Communications and regulation of the communications
between the inside and the outside of cell membranes are con-
trolled mostly by transmembrane (TM) proteins. Most TM
proteins are helical (TMH) proteins. Many different methods
have been developed to predict the topology of TMH proteins
(11–13). The determination of the topology of a TMH protein
is useful for the annotation of its function.

Description

THUMBUP uses a simple scale of burial propensity and a slid-
ing window-based algorithm to predict TM helical segments,
and a positive-inside rule (14) to predict N-terminal orienta-
tion. The use of burial propensity was based on the fact that
helical membrane proteins are packed more tightly than helical
soluble proteins (15). It was found that THUMBUP gives an
excellent prediction for TM proteins with known structures
(3D_helix database), but relatively poorer prediction for a
1D_helix database (topology information was obtained by
gene fusion and other experimental techniques) (1). The
latter was attributed in part to the high inaccuracy of
1D_helix database employed (16–18).

UMDHMMTMHP uses a modified version of hidden
Markov model software developed at University of Maryland
(version 1.02, http://www.cfar.umd.edu/�kanungo/software/
software.html) for transmembrane-helical-topology predic-
tion. The program differs from typical HMM-based methods
for TMH proteins in that the parameters in UMDHMMTMHP

were trained by the 3D_helix database only.
TUPS combines the prediction of THUMBUP and

UMDHMMTMHP for TM segments and PHOBIUS (19) for
the identification of signal peptides. More specifically,
TUPS first takes the results from UMDHMMTMHP. Then,
if a TM segment predicted by THUMBUP does not overlap
with any TM segments predicted by UMDHMMTMHP, the
segment is included in the TUPS prediction. Finally, signal

peptides identified by PHOBIUS are removed from the TUPS
prediction. There is no additional parameter introduced
in TUPS other than the parameters determined in THUMBUP
and UMDHMMTMHP.

Table 1. List of web-based toolkits on the services section of the website:

http://theory.med.buffalo.edu

Name (reference) Inputa Output

TM helical topology (secondary structure level)
THUMBUP (1) Sequence TMH residue ranges

N-terminal orientation
(in or out)

UMDHMMTMHP (1) As above As above
TUPS As above As above

Fold recognition, alignment and structure prediction (tertiary structure level)
SPARKS 2.0 (2) Sequence Sequence-to-structure

alignment
No. of models

to be built
Models built
(in PDB format)

SP3(3) As above As above
Application of DFIRE energy function (interaction level)

DMONOMER (4) Structure file Conformation energy score
DLOOP (5) Structure file Conformation energy score

Loop location
DMUTANT (4) Structure file Stability change

Residue mutated
DCOMPLEX (6) Complex structure

file
Binding affinity

Two chain IDs
DDNA (7) Complex structure

file
Binding affinity

Two chain IDs
Protein folding kinetics (interaction level)

TCD (8,9) Structure file TCD, folding rate
transition-state size

Chain ID
Residue range

Domain graph analysis (interaction level)
DOGMA (10) Organism name Comparative domain graph

List of domain
names

Shortest path
between domains

Phylogenetic profiling of
domain/combination

Topology analysis of
domain graph

aThe formats for sequence and structural inputs are those of FASTA and PDB,
respectively.

Interaction Level

Tools for Sequence, Structure, Interaction Analysis of Proteins

Transmembrane
Topology Prediction
      THUMBUP
       UMDHMM
       TUPS

Fold Recognition
      SPARKS 2.0
      SP

DFIREenergybased
Applications
      DMONOMER
      DLOOP
      DMUTANT
      DCOMPLEX
      DDNA
Domain Graph Analysis
      DOGMA
Folding Kinetics

TCD

TMHP

3

Structure Level
Secondary Tertiary

Structure Level

Figure 1. The classification of the web servers available on http://theory.med.buffalo.edu.
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Performance

In addition to the 3D and 1D helix datasets tested in the
original paper (1), we tested THUMBUP and UMDHMMTMHP

in the static benchmark established by Kernytsky and Rost
(20). UMDHMMTMHP and THUMBUP without any modifi-
cation provides 86 and 80% per-segment accuracy for high-
resolution dataset, respectively. The performances were
ranked #1 and #3, respectively, among the methods compared
in the static benchmark. Their performances on low-resolution
dataset were only about average, as expected. The new TUPS
server provides 88% per-segment accuracy for high-resolution
dataset in this benchmark with significant lower rate for
misidentifying signal peptides as TM helices (3 versus 70 in
UMDHMMTMHP and 28 in THUMBUP). TUPS also provides
a substantially better performance per topology accuracy on
our 3D_helix test set (1) (86% versus 75% by THUMBUP and
78% by UMDHMMTMHP).

Input and output

The input is protein sequence in the FASTA format. Multiple
sequences can also be submitted. The output provides informa-
tion on the residue ranges of TM helices (if any) and the
N-terminal orientation (Inside or Outside of membrane if
the protein is a TMH protein) for every protein submitted.
The output is now reported in a table format for easy under-
standing. A graphical interface will be built in near future for
visualizing the TM region. Sample input and output with
detailed line-to-line explanations are available online.

SPARKS 2.0 AND SP3

Overview

Fold recognition refers to recognition of structural similarity
of two proteins with or without significant sequence identity.
One way to detect structural similarity is to identify remote
sequence homology via sequence comparison. Advances have
beenmade from the pairwise to multiple sequence comparison,
from sequence-to-sequence, sequence-to-profile to profile-to-
profile comparison. Another way to detect structural similarity
is via sequence-to-structure threading. More recent works
attempt to optimally combine the sequence and structure
information for a more accurate/sensitive fold recognition.
For a recent review, see Ref. (21).

Description

Both fold recognition servers SPARKS 2.0 (2) and SP3 (3)
belong to the profile-based methods that provide sequence
to structure alignment based on the sequence as well as the
structure information of templates. SPARKS 2.0 and SP3

differ in how structural information is integrated with the
sequence profile of templates. The former uses a sophisticated
knowledge-based, single-body score that includes torsion,
contact energy and surface-accessible potentials. The structure
score is calculated by threading the query sequence into tem-
plate structure. The latter builds two separate sequence profiles
from the sequence and structure of a template. The structure-
derived sequence profile was derived from depth-dependent
structural alignment of the fragments in the template structure
with the fragments in a fragment library. SPARKS 2.0 an

upgraded version of SPARKS (2), takes the methods for
parameter optimization, dynamic programming and template
ranking from SP3 (3). Both SPARKS 2.0 and SP3 automatic-
ally make a weekly update for template and sequence libraries,
i.e. based on new releases from the NCBI (sequences) and
PDB (structures), respectively.

Performance

Testing on various benchmarks including LiveBench (22)
indicates that SP3 is slightly more accurate than SPARKS 2.0.
SPARKS 2.0 and SP3 are the two best servers for comparative
modeling targets and are among the top single-method servers
for all targets in the CASP 6 meeting that assessed 49
automatic webservers (http://predictioncenter.llnl.gov/casp6/
meeting/presentations/talks.html).

Input and output

The input for both SPARKS 2.0 and SP3 is the query
sequence in the FASTA format and the number of structure
models to be built is based on top ranked templates. The
structure models are built by MODELLER (23). It usually
takes 30 min to a few hours to complete the fold recognition
of a sequence (depending on the size of the query protein and
the load of the server computer). The output (in html format)
contains the links to PSI-BLAST output for sequence profile,
PSIPRED output for the secondary structure prediction, the
top 10 sequence-to-structure alignments and the structure
models (in PDB format) built based on the alignments. The
significance of the sequence-to-structure alignment is indic-
ated by the Z-score for each alignment. An alignment is sig-
nificant if Z-score is >5.6 for SPARKS 2.0 and >6.3 for SP3.
The thresholds were based on LiveBench 8 (22) for predicted
models with MaxSub score (24) >0.01 when compared to their
respective native structures. The output is now reported in a
table format for easy understanding. Sample input and output
with detailed line-to-line explanations are available online.

DFIRE ENERGY-BASED SERVERS

Overview

One bottleneck to the solution of the problems of how proteins
fold, bind and function is the lack of an accurate energy func-
tion. The energy functions that are currently used by the com-
putational biology community are obtained through either a
physical-based (25) or a ‘bioinformatics-based’ statistical
approach (26). Statistical energy functions are easy to produce
and have been proven effective in many applications.

Description

Our group developed an all-atom statistical potential based on
a new reference state named Distance-scaled, Finite, Ideal-gas
REference (DFIRE). The DFIRE-based energy function has
been successfully applied to structure (4) and docking selec-
tions (6), loop scoring (5), prediction of mutation-induced
change in stability (4), and binding affinity of protein–
protein (peptide) (6), protein–ligand (7) and protein–DNA
complexes (7). These applications resulted in several servers:
DMONOMER and DLOOP for scoring protein monomer and
loop conformations, respectively; DMUTANT for predicting
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mutant stability; DCOMPLEX and DDNA for predicting
binding affinities of protein–protein/peptide complexes and
those of protein–DNA complexes, respectively.

Performance

Comparisons between the DFIRE energy function and other
knowledge-based or physical-based energy functions were
made. For example, the DFIRE energy function was found
to be comparable in accuracy to some physical-based energy
functions equipped with various state-of-the-art solvation
models [illustrated in loop selection (5)] or empirical energy
functions with many adjustable terms [illustrated in docking
(6) and prediction of protein–ligand binding affinities (7)].
The usefulness of the DFIRE energy-based servers was also
independently verified in predicting protein stability of arc
repressor mutants by using our webserver (27).

Input and output

The input for DMONOMER, DCOMPLEX and DDNA is the
atomic coordinates file in PDB format and the chain ID, while
DLOOP needs additional input for loop location. The outputs
for these four servers are corresponding DFIRE energy scores
and/or binding affinities. DCOMPLEX also gives an indica-
tion whether input complex is a genuine homodimer or crystal
artifact. Inputs for DMUTANT is structure file, Chain ID and
residue position. The output is the stability change due to the
mutation of a specified residue into 19 other residues. Note that
the binding affinities predicted by DCOMPLEX and DDNA
were shifted and/or scaled based on test sets used in publica-
tion. Sample input and output with detailed explanations are
available online for each server.

TCD

Our group developed a parameter called total contact distance
(TCD) to predict folding rates of small two-state proteins (8).
This parameter was built on the observation that either contact
order (CO) or long-range order (LRO) parameter has a signi-
ficant correlation with the logarithms of folding rates (28,29).

The TCD web-server takes the inputs of the structure file,
chain ID and residue range of interest for a specific protein. Its
output is the calculated value of TCD as well as the predicted
folding rate. The auxiliary TCD transition-state server presents
the predicted TCD, the approximate size of the folding trans-
ition state of a given protein (9).

DOGMA

Proteins are made of functional domains. One effective
method to uncover the function of proteins on a genomic
scale is by analyzing the network graph of domain–domain
interactions (30). A domain graph consists of all domains
found in a given proteome. Each vertex (node) represents a
distinct domain and two vertices are linked by an edge if they
occur together in at least one protein.

DOGMA is an online server implementing CADO
(Comparative Analysis of Protein Domain Organization)
algorithms (31) and applying it in the comparative analysis
of domain graph between plant and other 55 organisms

(9 eukaryote, 30 bacteria and 16 archae) (10). The input
includes name(s) of Pfam domain(s) (32) and organism(s)
to be compared with plant (taken Arabidopsis as representat-
ive). Depending on the option chosen, output can be domain
graph, shortest path between two given domains, phylogentic
profile, and others in both comparative and graphical format.
Although the original paper is about comparison between plant
and other proteomes, DOGMA could be used to analyze any
one against other 55 proteomes.
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