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Abstract: Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of
the brain, is the leading cause of permanent disability and is among the leading causes of death
worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous
thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations
and does not consider the complex set of events taking place after the onset of ischemic stroke
(ischemic cascade), which is characterized by significant pro-oxidative events. The transcription
factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great
number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological
target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade.
This review summarizes studies concerning the protective role of Nrf2 in experimental models of
ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel,
modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in
using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation
and metabolically active cells in treating ischemic stroke patients.
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1. Introduction

Ischemic stroke, the most common one, accounts for approximately 87% of all stroke
cases. It is characterized by the sudden loss of blood flow caused by thrombosis or em-
bolism that occludes cerebral vessel(s) supplying specific area(s) of the brain [1]. Ischemic
stroke is the leading cause of permanent disability and is among the leading causes of
death worldwide. Globally, one in six people will have a stroke in their lifetime and
around 14 million have a stroke each year. Even though stroke was initially classified as a
condition affecting blood vessels, it was recently reclassified and is currently considered
a neurological disorder; this led to improvements in acute healthcare and acquisition of
research funding for stroke [2].

There is a great number of modifiable and non-modifiable risk factors for ischemic
stroke. Among the non-modifiable risk factors, the most important ones are (i) age (the
incidence of stroke increases with age [3]), (ii) sex (incidence is greater at younger ages in
women, but increases with older age in men [4]), (iii) ethnicity (Hispanic and black popu-
lations are at higher risk of stroke than white populations [5]) and (iv) genetics (parental
stroke by 65 years of age was associated with a 3-fold increase in risk of offspring stroke [6].
Among the modifiable risk factors, the most important ones are (i) hypertension (high
blood pressure is one of the predominant risk factors and a 10 mm Hg increase in systolic
blood pressure has been associated with a 38% increased stroke risk [7]), (ii) hyperglycemia
(impaired glucose tolerance is an independent risk factor for future stroke [8]), (iii) atrial
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fibrillation (contributes to 15% of all strokes [9]), (iv) hyperlipidemia (total plasma choles-
terol is positively associated with risk of stroke, while plasmatic levels of high-density
lipoprotein are negatively associated with risk of stroke [10]), (v) smoking (tobacco smoking
is directly linked to increased risk of stroke [11]) and (vi) insufficient physical inactivity and
poor diet (lack of exercise increases the chances of a stroke episode and poor diet influences
the risk of stroke, contributing to hypertension, hyperlipidemia and diabetes [12,13]. In
addition to the aforementioned factors, socioeconomic variation also affects the occurrence
and/or outcomes of stroke; for broader information regarding risk factors for ischemic
stroke, see reference [14].

Regarding treatments, intravenous thrombolysis with recombinant tissue plasminogen
activator is the only approved pharmacological treatment for acute ischemic stroke. It
has significant beneficial effects in acute ischemic stroke when administered between 3
and 4.5 h after the onset of symptoms [15], although an extension of this time interval is
currently under debate [16]. This thrombolytic treatment aims at stimulating fibrinolysis to
allow for clot removal, but does not consider the complex set of events taking place after
the onset of ischemic stroke, called ischemic cascade (discussed below).

A great number of experimental studies has been performed in order to discover
drugs able to mitigate the neurodegeneration following ischemic episodes. Of particular
importance, oxidative stress has been highlighted as a potential pharmacological target in
ischemic stroke, which is in line with the increased generation and decreased detoxification
of oxidant molecules leading to stroke-mediated neurodegeneration [17]. Among the
potential oxidative stress-related molecular targets, the transcription factor Nrf2 (Nuclear
factor erythroid 2-related factor 2), which regulates the expression of a great number of
antioxidant and/or defense proteins (discussed below), has been pointed as a potential
pharmacological target involved in the mitigation of deleterious oxidative events taking
place at the ischemic cascade. In this review, we summarized studies concerning the
protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular
events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. We also
reviewed the available experimental literature concerning the effects of Nrf2 activators in
ischemic stroke models, discussing the potential pharmacological use of Nrf2 activators in
ischemic stroke patients.

2. The Ischemic Cascade and Oxidative Consequences

Ischemic stroke is characterized by the interruption or sudden restriction of cerebral
blood flow in specific area(s) of the brain. Considering that brain metabolism is greatly de-
pendent upon blood-derived glucose and oxygen, which allow for the proper functioning
of glycolysis, tricarboxylic acid cycle and mitochondrial electron transport chain [18], is-
chemic stroke leads to major changes in cellular bioenergetics. The lack of proper adenosine
triphosphate (ATP) levels represents a primary metabolic change resulting from ischemia;
it is a main trigger for the initiation of a series of molecular deleterious events known as
ischemic cascade, which is particularly detrimental to neurons due to its highly oxidative
and glucose-dependent metabolism.

Because of the crucial role of ATP in maintaining cellular (especially, neuronal) ionic
homeostasis, a significant ionic imbalance occurs few minutes after ischemia, with the
abnormal influx of Na+ and efflux of K+, contributing to extensive depolarization and
water transport into cells [19], which leads to cytotoxic edema. The low ATP synthesis,
followed by Na+/K+ imbalance (due to Na+/K+ ATPase), also decreases the uptake of
glutamate, the main excitatory neurotransmitter. This phenomenon is related to the fact
that the action potential induced by glutamate on postsynaptic receptors is terminated by
its clearance from the synaptic cleft by transporters located in neurons and, remarkably,
in glial cells. Several glutamate transporters are dependent on extracellular Na+, thus on
the activity of Na+/K+ ATPase. The impaired removal of glutamate, or even its release
through the reverse operation of their transporters, represents an important event in the
ischemic cascade, leading to neuronal toxicity due to excessive excitatory neurotransmis-
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sion (excitotoxicity) [20]. In fact, increased glutamate levels in the synaptic cleft cause
overstimulation of neuronal post-synaptic glutamate receptors, stimulating sodium and
calcium influx. This may induce cytoplasmic calcium overload and activation of diverse
enzymes, such as phospholipases, proteases and nucleases, which drive the breakdown
of phospholipids, proteins and nucleases [20]. Of note, the depolarization of adjacent
neurons produces a further calcium influx and additional glutamate release, leading to
local amplification of the ischemic damage [21].

Cytoplasmic calcium overload is also detrimental to the mitochondrial function, being
linked to the mitochondrial production of oxidant molecules [22]. Some mechanisms
related to the pro-oxidative role of calcium in the ischemic cascade include a calcium-
stimulated increase in metabolic rate, nitric oxide production and cardiolipin peroxidation.
Thus, the excitatory overstimulation resulting from low ATP levels may culminate in
oxidative damage, which represents a critical event leading to neuronal damage in this
hypoxic phase of stroke [23]. In addition, it is important to mention that the synthesis of
glutathione (GSH), a main low-molecular weight intracellular antioxidant, is dependent
upon ATP. Consequently, decreased GSH synthesis subsequent to low ATP levels may also
contribute to the redox imbalance and oxidative damage resulting from ischemia.

Even though fast reoxygenation, via reperfusion, is a desired step required to mitigate
the metabolic stress that takes place in ischemic stroke, reoxygenation may also contribute
to the generation of reactive oxidants [24], thus exacerbating the ischemia-reperfusion
oxidative injury. Approximately 4 decades ago, considering the low levels of molecular
oxygen in ischemic tissues, there was no reason to suppose that ischemia involved elevated
production of oxygen-derived reactive species. However, evidence showed that a signifi-
cant part of the damage resulting from ischemia may be more accurately called reperfusion
injury or post-ischemic injury. Indeed, much of the injury was shown to occur not during
the period of hypoxia but rather during the period when molecular oxygen is reintroduced
to the tissue [25]. In this scenario, experimental evidence showing the protective effects of
superoxide dismutase (SOD) indicated that superoxide was a critical molecule in ischemic
(or post-ischemic) events [26,27]. Concerning the mechanisms mediating the generation
of oxygen radicals in the ischemic cascade, a main source of superoxide in post-ischemic
tissues is the enzyme xanthine oxidase, which is usually synthesized as a dehydrogenase
(type D) and able to catalyze the conversion of xanthine into uric acid with no produc-
tion of superoxide. However, under certain conditions (pro-oxidative environment and
increased intracellular calcium levels), xanthine dehydrogenase is converted into xanthine
oxidase in vivo in ischemic tissues, catalyzing the conversion of xanthine into uric acid
with production of superoxide [28]. In addition, the ischemia-related depletion of ATP is
paralleled by an increase in the levels of AMP, adenosine, inosine and hypoxanthine and
xanthine. These two last products of purine catabolism represent the substrate for xanthine
oxidase. The “new enzyme” with oxidase activity and the availability of molecular oxygen
during reperfusion represent two important factors that contribute to the oxidative stress
taking place during the post-ischemic (reperfusion/reoxygenation) period [25]. Currently,
since most of the studies concerning ischemia-reoxygenation do not dissociate ischemic-
from post-ischemic-related injuries, the term ischemic-reperfusion injury (IRI) has been
used to correctly refer to the damage resulting from ischemia following reoxygenation
and/or reperfusion.

During the last decades, evidence has highlighted additional molecules that stimulate
oxidative damage toward biomolecules in IRI. One of these molecules is phospholipase A2
(PLA2), whose activation represents a critical metabolic event in ischemic stroke, leading
to the hydrolysis of membrane phospholipids and consequent release of lysophopholipids
and free fatty acids (FFAs), including arachidonic acid, a metabolic precursor for pro-
inflammatory eicosanoids [29]. PLA2 (mitochondrial secretory isoform) also catalyzes
the hydrolysis of cardiolipin, leading to disruption of the mitochondrial respiratory chain
and increased production of reactive oxygen species (ROS) [30]. In addition, the ox-
idative metabolism of arachidonic acid also generates ROS. Both events contribute to
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the occurrence of lipid peroxidation, whose end products (i.e., malondialdehyde and
4-hydroxynonenal) covalently bind to proteins/nucleic acids, altering their function and
causing cellular damage [29]. FFAs released in PLA2-catalyzed reactions can accumulate
following ischemic stroke, undergoing oxidative metabolism by non-enzymatic and enzy-
matic processes catalyzed mainly by cyclooxygenases (COXs) and lipoxygenases (LOXs),
resulting in the formation of lipid oxoderivatives [31], which modulate inflammatory
and pro-oxidative processes. In line with this, experimental evidence indicates that both
COXs [32,33] and LOXs [34,35] represent potential pharmacological targets for stroke ther-
apy. This experimental (nonclinical) evidence has provided new insights into the regulation
of inflammatory and pro-oxidative events in the ischemic brain. However, the potential
translation of such experimental data to clinic scenarios remains a matter of debate [36].

In addition to COXs and LOXs, nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs), a family of enzymes that catalyze the production of superoxide
by transferring one electron from NADPH to molecular oxygen, have also been reported
to exert detrimental effects on ischemic brain tissue. Evidence shows that NOX-knockout
mice are resistant to damage due to experimental stroke and the infarct size and blood–
brain barrier breakdown are enhanced in mice with pericyte-specific overexpression of
NOX4 [37]. A recent experimental study has elegantly identified type 5 NADPH oxidase
(NOX5) as a major player of IRI. Using in vitro organotypic cultures, the authors found
that reoxygenation or calcium overload increased brain ROS levels in a NOX5-dependent
manner. Based on in vivo approaches, the authors also showed that postischemic ROS
formation, infarct volume and functional outcomes were worsened in NOX5-KI mice [38].

Based on the aforementioned evidence, it becomes clear that several pro-oxidative
events display central roles for the occurrence of IRI. Some of these events include (i) calcium-
mediated oxidative events (through increased metabolic rate, nitric oxide production and
cardiolipin peroxidation), (ii) impaired GSH synthesis, (iii) increased superoxide genera-
tion (in dysfunctional mitochondria, as well as in xanthine oxidase and NOX-catalyzed
reactions) and (iv) formation of lipid oxoderivatives (including in LOX- and COX-catalyzed
reactions). The knowledge concerning the involvement of oxidative events in the ischemic
cascade and consequently in IRI, was mostly derived from experimental studies (in vitro
approaches and in vivo animal studies). Of note, such experimental studies have also elu-
cidated several ischemia/reoxygenation-mediated biochemical and histological oxidative
changes toward biomolecules, such as lipid peroxidation [39] and nucleic acid oxida-
tion [40], as well as protein carbonylation [41] and nitrosylation [42]. Of note, increases in
the levels of some of these oxidative-stress-related biomarkers have also been observed in
patients with ischemic stroke [43], highlighting the significance of oxidative events in hu-
man IRI. Such findings suggest that drugs able to mitigate such oxidative events represent
potential pharmacological strategies to treat ischemic stroke patients. Among the variety
of molecules and/or targets that might be useful to mitigate IRI-mediated oxidative stress,
there is the transcription factor Nrf2, which is the main topic of this review (Section 3).

3. Nrf2 Signaling Pathway and Ischemic Stroke
3.1. Overview of the Nrf2 Signaling Pathway

Nrf2 is a member of the cap’n’collar family of transcription factors and is present
in various cell types. It consists of 605 amino acids with 7 highly conserved Nrf2-ECH
domains (Neh1-7), which serve as a different functional region [44–48]. The Neh1 regulates
DNA binding through the CNC–bZIP [49] and a nuclear localization signal (NLS) is respon-
sible for the nuclear translocation of Nrf2 [50]. The Neh2, an N terminal regulatory domain,
consists of DLG (low affinity) and ETGE (high affinity) motifs for the interaction with the
Nrf2 negative regulator Kelch-like ECH-associated protein 1 (Keap1), which influences
the stability and ubiquitination of Nrf2 [51]. The Neh3, Neh4 and Neh5 are transactiva-
tion domains mediating the interaction of Nrf2 with other coactivators [52,53], while the
Neh5 domain is responsible for its cytoplasmic localization [54]. The Neh6 domain is
a negative regulatory domain which binds to a β-transducin repeat-containing protein
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(β-TrCP), leading to Nrf2 ubiquitination, or regulates the Nrf2 stability by phosphorylation
of serine residues [55]. The Neh7 domain inhibits the Nrf2-antioxidant response element
(ARE) signaling pathway by promoting the binding of Nrf2 to the retinoic X receptor α
(RXRα) [56].

In homeostatic conditions, Nrf2 stays in its inactive form within cells via Keap1. Keap1
is a cysteine-rich (27 cysteines), cytoplasmic, actin cytoskeleton-associated adapter zinc-
metalloprotein of the Cul3/Rbx1 complex. It consists of five domains and Keap1/Cul3
homodimerization is regulated by the N-terminal portion of the intervening region with the
BTB (Broad complex, Tramtrack and Bric-a-Brac) domain. The BTB domain of Keap1 plays
a key role in sensing environmental electrophiles and is believed to be the target for several
small molecule covalent activators of the Nrf2 pathway [57–59]. In the cytoplasm, Keap1
homodimerizes and binds to the cullin-based (Cul3) E3 ligase, forming Keap1-Cul3-RBX1
(Ring box protein-1) E3 ligase complex, that interacts with the Neh2 domain, forms the
Keap1-Nrf2 complex and initiates degradation of Nrf2 by ubiquitination and proteasomal
degradation [60–62].

In stress conditions (excessive accumulation of ROS, electrophilic molecules and pro-
teotoxic stress), Nrf2 is released from the Keap1-Cul3-RBX1 complex and translocates into
the nucleus, wherein it heterodimerizes with small Maf proteins (sMaf) and binds to the
AREs on DNA, leading to the transcription of Nrf2 target genes [63]. The Nrf2/Keap1
pathway regulates a coordinated activation of a battery of cytoprotective genes that include
biotransformation enzymes, antioxidant proteins, drug transporters, anti-apoptotic pro-
teins and proteasome proteins. There are over 250 currently identified NRF2 target genes in-
volved with redox regulation [44,58,64–68]. For example, target genes of Nrf2 are glutamate-
cysteine ligase, NAD(P)H qui-none oxidoreductase 1 (NQO1), heme-oxygenase (HO-1),
sulfiredoxin1 (SRXN1), heme-oxygenase (HO-1), glutathione S-transferase (GST), mul-
tidrug resistance-associated proteins (MRPs) and UDP-glucuronosyltransferase (UGT) [57].
Figure 1 depicts major molecules and events modulating Nrf2 stability and activation, as
well as main downstream protein targets and their functions.

In addition, Nrf2 signaling takes part in the regulation of the cellular response
to inflammation cooperating with NF-κB signaling pathways via suppression of pro-
inflammatory genes, redox homeostasis and controls fundamental cellular processes, such
as apoptosis, autophagy, angiogenesis, proliferation and cell migration [69,70]. Of note,
Nrf2 can indirectly control the transcription of a host of non-ARE-containing genes. Indeed,
functional AREs have been identified in the promoters of a number of transcription factors
involved in DNA damage repair and apoptosis prevention [71–73].

Regulation of Nrf2 mainly occurs through the controlled maintenance of Nrf2 protein
levels at the post-transcriptional and post-translational levels, as well as via epigenetic
factors and interaction with other signaling pathways. It is important to note that its
regulation mainly depends on the physiological and pathological context.
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Neh2 and Neh6) that, after redox or signaling regulation, affect Nrf2 stability. Under homeostatic conditions, Keap1 binds 
to Nrf2, directing this transcription factor to ubiquitination and subsequent degradation by the proteasome. Keap1 is a 
redox sensor that, upon oxidative thiol modification, loses its capability to repress Nrf2. Glycogen synthase kinase 3 (GSK-
3)-mediated phosphorylation of Nrf2 represents an alternative mechanism, facilitating its ubiquitination and consequent 
degradation by the proteasome. (B) Under stress conditions (excessive accumulation of ROS, electrophilic molecules and 
proteotoxic stress), Nrf2-Keap1 interaction is disrupted and Nrf2 translocates into the nucleus, wherein it heterodimerizes 
with small Maf proteins (sMaf) and binds to an enhancer sequence termed ARE that is present in the regulatory regions 
of over 250 genes (ARE genes). (C) These ARE genes, whose encoded proteins participate in diverse cellular/metabolic 
events, display significant roles in counteracting imbalances in proteostasis, redox and inflammatory control. For a de-
tailed review on the mechanisms mediating Nrf2 stability and activation, see [74]. CALCOCO2, calcium binding and 
coiled-coil domain 2; CD36, CD36 scavenger receptor; GPx, glutathione peroxidase; Gpx8, glutathione peroxidase 8; HO-
1, heme oxygenase-1; IL 17D, interleukin-17D; NQO1, NADPH Quinone oxidoreductase enzyme; PSMB7, proteasome 
subunit b type-7; TrxR, thioredoxin reductase; ULK1, unc-51 like autophagy activating kinase 1. 

Figure 1. General overview of the Nrf2 pathway. Major molecules and events modulating Nrf2 stability and activation, as
well as main downstream protein targets and their functions are shown. (A) Nrf2 structure is composed by domains (i.e.,
Neh2 and Neh6) that, after redox or signaling regulation, affect Nrf2 stability. Under homeostatic conditions, Keap1 binds
to Nrf2, directing this transcription factor to ubiquitination and subsequent degradation by the proteasome. Keap1 is a
redox sensor that, upon oxidative thiol modification, loses its capability to repress Nrf2. Glycogen synthase kinase 3 (GSK-
3)-mediated phosphorylation of Nrf2 represents an alternative mechanism, facilitating its ubiquitination and consequent
degradation by the proteasome. (B) Under stress conditions (excessive accumulation of ROS, electrophilic molecules and
proteotoxic stress), Nrf2-Keap1 interaction is disrupted and Nrf2 translocates into the nucleus, wherein it heterodimerizes
with small Maf proteins (sMaf) and binds to an enhancer sequence termed ARE that is present in the regulatory regions of
over 250 genes (ARE genes). (C) These ARE genes, whose encoded proteins participate in diverse cellular/metabolic events,
display significant roles in counteracting imbalances in proteostasis, redox and inflammatory control. For a detailed review
on the mechanisms mediating Nrf2 stability and activation, see [74]. CALCOCO2, calcium binding and coiled-coil domain 2;
CD36, CD36 scavenger receptor; GPx, glutathione peroxidase; Gpx8, glutathione peroxidase 8; HO-1, heme oxygenase-1;
IL 17D, interleukin-17D; NQO1, NADPH Quinone oxidoreductase enzyme; PSMB7, proteasome subunit b type-7; TrxR,
thioredoxin reductase; ULK1, unc-51 like autophagy activating kinase 1.
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3.2. Molecular Events Linking Ischemic Stroke and Nrf2 Pathway

In a search using the terms “Nrf2” AND “ischemic stroke” in the PubMed database
(https://pubmed.ncbi.nlm.nih.gov, accessed on 25 June 2021), it was possible to detect
molecular players that are closely related to both topics. Among these players, there
are several redox-active molecules (discussed below). Before discussing their potential
(patho)physiological roles in the interplay between ischemic stroke and Nrf2 pathway, it
is important to mention that most of the knowledge concerning molecular mechanisms
involved in ischemic stroke and Nrf2 pathway comes primarily from experimental studies,
including a great number of in vivo studies with rodents (mouse and rats). Of note,
different experimental protocols have been developed to simulate different conditions, such
as focal or global, as well as transient or permanent cerebral ischemia. Even though each of
these protocols has specific features, the increased levels of reactive oxygen species and
markers of oxidative damage are commonly observed in either focal or global, in addition
to transient or permanent models [75–78]. Of note, data on the relationship between the
Nrf2 pathway and ischemic stroke have been derived from these different experimental
approaches (for a detailed review concerning such models, see reference [79]). Nonetheless,
experimental ischemic models based on reperfusion/reoxygenation are expected to provide
increased rates of oxidative stress considering the critical role of reoxygenation for the
production of ROS [25].

As previously discussed (Section 2), increased levels of ROS are observed after either
ischemia or ischemia/reoxygenation events. Hydrogen peroxide, a ROS whose levels are
increased after ischemia/reoxygenation [27], is able to up regulate Nrf2 [80,81]. In agree-
ment with this observation, experimental studies have reported the endogenous activation
of Nrf2 following ischemic stroke, suggesting that this event represents a physiological
response to the stress to which cells are subjected in ischemia/reperfusion (IR). Based on an
IR protocol with a luciferase mouse model (a Keap1-dependent oxidative stress detector to
visualize the Nrf2 expression from brain ischemia), Takagi and collaborators [82] showed
increased levels of Nrf2 in the cerebral cortex and striatum of mice subjected to transient
middle cerebral artery occlusion. The increased levels of Nrf2 were observed in both
neurons and astrocytes and, notably, mainly in the penumbra zone. In another study based
on an experimental model of transient cerebral ischemia [83], the authors reported the
temporal and spatial distribution of Nrf2 in the nuclear and cytoplasmic compartments
in cells in the ischemic core and peri-infarct regions and contralateral hemisphere of rat.
Based on a quantitative immunohistochemical technique, these authors observed increased
Nrf2 expression in brain sections in core and peri-infarct regions after 24 h reperfusion,
with levels remaining elevated only in peri-infarct regions after 72 h. These two stud-
ies [82,83] provide evidence of Nrf2 activation following IR, suggesting that it represents
an endogenous response resultant, at least partially, from ROS produced during transient
ischemia.

On the other hand, several Nrf2-downstream proteins can mediate redox balance
by neutralizing IR-derived ROS, such as superoxide anion and hydrogen peroxide. Par-
ticularly, superoxide dismutase and catalase, which metabolize superoxide anion and
hydrogen peroxide, respectively, represent well-known Nrf2-downstream proteins [84–87].
Additional proteins, such as glutamate-cysteine ligase, glutathione peroxidase, glutathione
reductase, thioredoxin reductase, heme oxygenase-1 and NADPH:quinone oxidoreductase,
among others, are also known Nrf2-downstream molecules mediating redox balance and
mitigating oxidative stress [74]. Table 1 presents experimental studies reporting the en-
dogenous modulation of Nrf2 and/or its main Nrf2-downstream proteins after cerebral
ischemia or ischemia-reperfusion. Although several studies presented in Table 1 were
aimed at investigating protective effects of exogenously administrated Nrf2 activators
against cerebral ischemic stroke, we have initially focused only on the potential endoge-
nous modulation of Nrf2, evaluating the differences between control/sham and ischemic
animals. It is noteworthy that most of these studies, which were based on either transient
or permanent models of cerebral ischemia, reported significant increases in mRNA and/or

https://pubmed.ncbi.nlm.nih.gov
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protein expression of Nrf2 and Nrf2-downstream targets, indicating that the endogenous
upregulation of Nrf2 represents an event resulting from cerebral ischemia or ischemia-
reperfusion. Of note, some of these studies [88,89] indicated that Nrf2 knockout animals
(Nrf2−/−) are more susceptible to cerebral ischemic stroke, highlighting the significance of
this transcription factor in protecting the ischemic cerebral tissue. On the other hand, there
are some studies (less frequent) reporting decreased gene and/or protein expression of
Nrf2 and/or downstream proteins in the brain of ischemic animals, compared to controls.
Although these apparent contradictory results may result from several causes, it is likely
that the decreased gene and/or protein expression of Nrf2 and downstream proteins ob-
served in ischemic animals in some studies can be related, at least partially, to an extreme
rate of tissue damage, resulting in improper capability of performing transcription and
translation.

Table 1. In vivo experimental studies reporting the endogenous modulation of Nrf2 and/or Nrf2-downstream proteins
after cerebral ischemia or ischemia-reperfusion.

Species
(Sex; Age)

Experimental
Model

#Findings Indicating Endogenous
Modulation of Nrf2 after Ischemic Stroke

Tissue Ref.
Specific Findings General

Effect

MICE

ICR mice
(M; 8 weeks)

MCAO/R
(1 h/2, 8, 24, 72 h)

↑ Nrf2, HO-1 and Trx protein
expression

↓ Keap1 protein expression
↑ ischemic

brain tissue [90]

ddY mice
(M; 8–12 weeks)

MCAO/R
(1 h/6, 24, 48 h)

↑ Nrf2 and HO-1 protein
expression ↑

ischemic
cortex and
striatum

[82]

CD-1 mice
(M; NI)

pMCAO
(24 h)

↑ nuclear Nrf2 translocation
↑ HO-1 protein expression

↑ SOD activity
↑

ischemic
cerebral
cortex

[91]

ICR mice
(M; 8–10 weeks)

MCAO/R
(1 h/24 h)

↑ Nrf2 and HO-1 mRNA levels
↑ nuclear Nrf2 and HO-1 protein

expression
↑

ischemic
cerebral
cortex

[92]

OKD48 mice
(M, F; 11–13 weeks)

MCAO/R
(45 min/

12, 24, 72 h, 7 d)

↑ Nrf2 and HO-1 protein
expression ↑ peri-ischemic

brain tissue [93]

Mice (NI)
(M; 12 weeks)

MCAO/R
(2 h/24 h)

↑ Nrf2, HO-1, GCL protein
expression ↑ ischemic

brain tissue [94]

C57BL/6 mice
(M; 8 weeks)

BCCAO/R
(20 min/24 h)

↑ Nrf2 DNA binding activity
↑ nuclear Nrf2, HO-1 and NQO1

protein expression
↑ striatum [95]

C57BL/6J mice
(M; 8–10 weeks)

MCAO/R
(1 h/24 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [96]

ICR mice
(M; 6 weeks)

MCAO/R
(1 h/24–72 h, 7 d)

↑ Nrf2 protein expression
↓ Keap1 protein expression ↑ ischemic

brain tissue [97]

C57BL/6 mice
(M; 10–18 weeks)

pMCAO
(1 d–3 d)

↑ NQO1, HO-1, SOD2 and GPX-1
protein expression ↑ ischemic

brain tissue [89]

C57BL/6 mice
(M; 10–12 weeks)

MCAO/R
(1.5 h/7 d)

↑ Nrf2 and SOD1 protein
expression ↑ ischemic

brain tissue [98]

ddY mice
(M; 5–8 weeks)

MCAO/R
(2 h/2, 6, 22 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [99]
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Table 1. Cont.

Species
(Sex; Age)

Experimental
Model

#Findings Indicating Endogenous
Modulation of Nrf2 after Ischemic Stroke

Tissue Ref.
Specific Findings General

Effect

CD-1 mice
(M; 4 weeks)

MCAO/R
(1 h/24 h)

↑ Nrf2 and HO-1 mRNA
↑ Nrf2 and HO-1 protein
↑ HO-1 activity

↑ ischemic
brain tissue [100]

C57BL/6 mice
(M; 12 weeks)

MCAO/R
(1 h/3 d)

↑ nuclear Nrf2, HO-1 and NQO1
protein expression ↑ cerebral tissue [101]

ICR mice
(M; NI)

MCAO/R
(2 h/24 h)

↑ cytosolic Nrf2, HO-1 and NQO1
protein expression ↑ hippocampus [102]

BALB/c mice
(M; 7 weeks)

MCAO/R
(1.5 h/24–72 h)

↑ Nrf2, HO-1 and iNOS protein
expression
↓ SOD activity

↑ ischemic
brain tissue [103]

ICR mice
(M; 8 weeks)

p dMCAO
(7 d) ↑ Nrf2 protein expression ↑

ischemic
cerebral
cortex

[104]

C57BL/6J mice
(M; NI)

MCAO/R
(1.5 h/24 h)

↓ SOD 2, HO-1, NQO1 and Nrf2
protein expression
↓ SOD activity

↑ NADPH oxidase protein
expression

↓ ischemic
brain tissue [105]

C57BL/6 mice
(M; NI)

MCAO/R
(1 h/72 h) ↓ Nrf2 protein expression ↓

hippocampus
and cerebral

cortex
[106]

RATS

SD rats
(M; adult)

MCAO/R
(2 h/2, 6, 24 h)

↑ Nrf2 and HO-1 protein
expression

↑ Nrf2 and HO-1 mRNA levels
↑

ischemic
cerebral
cortex

[107]

SD rats
(M; NI)

pMCAO
(72 h)

↑ Nrf2 and HO-1 protein
expression ↑

ischemic
cerebral
cortex

[108]

SD rats
(M; adult)

pMCAO
(72 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [109]

SD rats
(M; NI)

MCAO/R
(70min/ 4, 24,

72 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [110]

SD rats
(M; 9 weeks)

MCAO/R
(1 h/24 h)

↑ Nrf2 and NQO1 protein
expression

↑ Nrf2 binding activity to ARE
↑ ischemic

brain tissue [111]

SD rats
(M; adult)

MCAO/R
(2 h/22 h)

↑ Nrf2 (nuclear) and HO-1 protein
expression ↑ cerebral

cortex [112]

SD rats
(M; adult)

MCAO/R
(2 h/24 h)

↑ Nrf2 protein expression
↑ HO-1 protein expression ↑ ischemic

brain tissue [113]

SD rats
(M; NI)

pMCAO
(24 h)

↑ nuclear Nrf2 translocation
↑ HO-1 protein expression
↑ Nrf2 and HO-1 mRNA levels

↑ ischemic
brain tissue [114]

SD rats
(M; NI)

pMCAO
(24 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [115]
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Table 1. Cont.

Species
(Sex; Age)

Experimental
Model

#Findings Indicating Endogenous
Modulation of Nrf2 after Ischemic Stroke

Tissue Ref.
Specific Findings General

Effect

SD rats
(M; adult)

MCAO/R
(1 h/ 72 h)

↑ Nrf2 and NQO1 protein
expression ↑

ischemic
cerebral
cortex

[116]

Wistar rats
(M; NI)

MCAO/R
(1 h/72 h)

↑ Nrf2, HO-1 and NQO1 mRNA
levels ↑ ischemic

brain tissue [117]

Wistar rats
(M; 6 months)

BCCAO/R
(30 min/72 h)

↑ Nrf2 and HO-1 protein
expression ↑ hippocampus [118]

SD rats
(M; NI)

pMCAO
(72 h)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [119]

SD rats
(M; 10–12 weeks)

MCAO/R
(1 h/24 h)

↑ Nrf2, Txr-1, Prdx1, Prdx2, Prdx3
and Prdx4 protein expression
↑ Nrf2, Txr-1, Prdx1, Prdx2, Prdx3

and Prdx4 mRNA levels

↑ ischemic
brain tissue [120]

SD rats
(M; NI)

MCAO/R
(2 h/24 h)

↑ Nrf2 protein expression
↑ Nrf2 mRNA levels
↓ SOD activity

↑ ischemic
brain tissue [121]

SD rats
(NI; NI)

BCCAO/R
(10 min/1–7 d)

↑ Nrf2 and HO-1 protein
expression ↑ ischemic

brain tissue [122]

SD rats
(M; adult)

MCAO/R
(1.5 h/24 h)

↑ Nrf2 and HO-1 protein
expression

↑ Nrf2 and HO-1 mRNA levels
↑ hippocampus [123]

SD rats
(M; adult)

pMCAO
(24 h)

↑ nuclear Nrf2 translocation
↑ HO-1 and SOD1 protein

expression
↑ HO-1 mRNA levels
↑ SOD1 activity

↑
ischemic
cerebral
cortex

[124]

SD rats
(M; adult)

MCAO/R
(2 h/ 72 h)

↑ Nrf2 protein expression
↑ HO-1 protein expression ↑ ischemic

brain tissue [125]

SD rats
(M; NI)

MCAO/R
(2 h/7 d) ↑ Nrf2 protein expression ↑ ischemic

brain tissue [126]

SD rats
(M; adult)

MCAO/R
(1 h/24 h)

↑ Nrf2, NQO1 and Srnx1 protein
expression

↑ Prdx 1, Prdx 2, Prdx 3, Prdx 4
protein expression

↑ ischemic
brain tissue [127]

Hannover-Wistar
rats

(M; NI)

MCAO/R
(1 h/24 h)

↑ Nrf2 protein expression
↑ SOD and GPx activity ↑ hippocampus [128]

Wistar rats
(M; adult)

BCCAO/R
(45 min/24 h)

↑ iNOS and Nrf2 protein
expression ↑ hippocampus [129]

SD rats
(M; 60–80 days)

MCAO/R
(1 h/24 h)

↑ Nrf2 and Trx1 mRNA levels
↑ Trx1 protein expression ↑ ischemic

brain tissue [130]

SD rats
(F; adult)

MCAO/R
(1.5 h/72 h)

↑ Nrf2 and NQO1 protein
expression ↑ ischemic

brain tissue [131]
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Table 1. Cont.

Species
(Sex; Age)

Experimental
Model

#Findings Indicating Endogenous
Modulation of Nrf2 after Ischemic Stroke

Tissue Ref.
Specific Findings General

Effect

Wistar rats
(M; adult)

MCAO/R
(1.5 h/72 h)

↑ Nrf2, HO-1 and NQO1 mRNA
levels ↑ ischemic

brain tissue [132]

SD rats
(M; adult)

PCI
(20 min)

↑ Nrf2 and HO-1 protein
expression ↑

cerebral
cortex

ischemic
penumbra

[133]

SD rats
(M; NI) Focal PTI ↑ Nrf2 and HO-1 protein

expression ↑
penumbra of

cerebral
infarction

[134]

SD rats
(M; 7–10 weeks)

MCAO/R
(2 h/72 h)

↑ Nrf2 and HO-1 protein
expression ↑

cerebral
cortex and
striatum

[135]

SD rats
(M; NI)

MCAO/R
(1 h/6 or 24 h)

↑ Nrf2 protein expression
↓ SOD activity ↑ ischemic

penumbra [136]

SD rats
(M; Adult)

MCAO/R
(2 h/72 h)

↑ nuclear Nrf2 protein expression
↓ cytosolic Nrf2, NQO1 and HO-1

protein expression
↓ SOD activity

↑ ischemic
brain tissue [137]

SD rats
(M; 8 weeks)

MCAO/R
(2 h/24 h)

↑ HO-1 protein expression
↓ Nrf2 and Trx protein expression ↑↓ cerebral

cortex [113]

SD rats
(M; adult)

MCAO/R
(2 h/72 h)

↓ SOD activity
↓ Nrf2, HO-1 and NQO1 protein

expression
↓

ipsilateral
ischemic

tissue
[138]

SD rats
(M; 10 months)

MCAO/R
(2 h/48 h)

↓ HO-1 protein expression
↓ SOD activity ↓

ipsilateral
ischemic

tissue
[139]

Wistar rats
(M; NI)

MCAO/R
(2 h/24 h)

↓ GPx and SOD activity
↓ Nrf2 and NQO1 protein

expression
↓ ischemic

brain tissue [140]

SD rats
(M; 3 months)

MCAO/R
(1.5 h/72 h)

↓ NQO1, HO-1 and cytoplasmic
Nrf2 protein expression ↓ ischemic

brain tissue [141]

SD rats
(M; 7–8 weeks)

MCAO/R
(1.5 h/7 d) ↓ Nrf2 mRNA levels ↓ ischemic

brain tissue [142]

SD rats
(M; NI)

MCAO/R
(2 h/7 d)

↓ SOD activity
↓ nuclear Nrf2, HO-1 and NQO1

protein expression
↓ Nrf2, HO-1 and NQO1 mRNA

levels

↓ cerebral
cortex [143]

SD rats
(NI; NI)

BCCAO/R
(10 min occlusion

+ 10 min
reperfusion +

10 min occlusion)

↓ Nrf2, NQO1 and HO-1 protein
expression
↓ SOD activity

↓ ischemic
brain tissue [144]

SD rats
(F; NI)

MCAO/R
(1 h/24 h) ↓ Nrf2 protein expression ↓ hippocampus [145]
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Table 1. Cont.

Species
(Sex; Age)

Experimental
Model

#Findings Indicating Endogenous
Modulation of Nrf2 after Ischemic Stroke

Tissue Ref.
Specific Findings General

Effect

SD rats
(M; NI)

MCAO/R
(1.5 h/14 d)

↓ Nrf2 protein expression
↑ Keap-1 protein expression
↓ SOD and catalase activities

↓ ischemic
brain tissue [146]

Abbreviations and symbols: ↑, activation. ↓, inhibition. M, male; F, female. SD rats, Sprague-Dawley rats. NI, not informed. BCCAO,
bilateral common carotid arteries occlusion. MCAO, middle cerebral artery occlusion. MCAO/R, middle cerebral artery occlusion
followed by reperfusion. PCI, photochemical cerebral ischemia. pdMCAO, permanent distal middle cerebral artery occlusion. pMCAO,
permanent middle cerebral artery occlusion. PTI, photothrombotic ischemia model. ARE, antioxidant response element. HO-1, heme
oxygenase 1. NQO1, NAD(P)H:quinone oxidoreductase 1. Prdx, peroxiredoxin. SOD, superoxide dismutase. Srnx1, sulfiredoxin-1. Trx1,
thioredoxin. Notes: # Only significant differences between control/sham and ischemic animals were evaluated. HO-1, Heme oxygenase
1: Nrf2-downstream protein catalyzing the degradation of heme, producing biliverdin, ferrous iron and carbon monoxide. NQO1,
NAD(P)H:quinone oxidoreductase 1: Nrf2-downstream protein catalyzing the two-electron reduction of quinones and a wide range of other
organic compounds. Its physiological role is partly related to the reduction of free radical load in cells and the detoxification of xenobiotics.
Prdxs, peroxiredoxins: ubiquitous family of Nrf2-downstream antioxidant enzymes involved in the reduction of peroxides (specifically
hydrogen peroxide). SODs, superoxide dismutases: enzymes catalyzing the dismutation of the superoxide radical into molecular oxygen
and hydrogen peroxide. Srnx, Sulfiredoxin: Nrf2-downstream protein member of the oxidoreductases family catalyzing reduction of
oxidative modifications (i.e., sulfinic, disulfides, etc.). Trx, Thioredoxin: class of small redox (Nrf2-downstream) proteins playing important
roles in redox signaling.

As already discussed, ROS whose levels are increased after ischemia/reoxygenation,
such as hydrogen peroxide [27], are able to upregulate Nrf2 [80,81]. On the other hand, there
are specific Nrf2 downstream proteins capable of counteracting oxidants; this highlights an
interesting interplay between ischemic stroke and Nrf2. From a Cartesian point of view,
IR leads to increased levels of oxidants that, in turn, can activate Nrf2. On the other hand,
Nrf2-downstream proteins can mitigate the deleterious effects of oxidants produced in
excess during IR (see References from Table 1). Figure 2 depicts a schematic view of this
interplay between ischemic stroke and Nrf2 pathway.
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hydrogen peroxide (H2O2), superoxide anion (O2

•−)) that, in turn, can activate Nrf2. Nrf2-downstream proteins (i.e., heme
oxygenase-1 (HO-1), superoxide dismutase (SOD)) can mitigate the deleterious effects of oxidants produced in excess
during IR, preventing oxidative stress and cell death.

3.3. Effects of Nrf2 Modulators in Ischemic Stroke: Evidence from Experimental Studies

Given the pivotal role of Nrf2 in redox balance, several studies have reported its
involvement in modulating cellular homeostasis in physiological and/or pathological
conditions [64,147]. Particularly, promising neuroprotective effects of Nrf2 have been
reported in diverse experimental models [148–150]. In the context of ischemic stroke, in
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addition to the protective effects exhibited by the endogenous activation of Nrf2 following
ischemia or IR (discussed in Section 3.1, see Table 1), protective effects resulting from
exogenously induced Nrf2 activation have also been reported, predominantly in rodent
models (see examples discussed below). Of note, some Nrf2-activating compounds have
displayed superior neuroprotective effects against IRI in wild-type compared to Nrf2−/−

animals [89,151], confirming the involvement of Nrf2 in mediating the beneficial effects of
these molecules. Although there is a large number of molecules capable of activating Nrf2
and exhibiting protective effects in ischemic stroke models (described in the last paragraph
of this section), we provide a more detailed discussion on the most frequently reported
agents, as follows.

3.3.1. Curcumin

Curcumin {1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione} (diferu-
loyl methane), a phytochemical compound extracted from Curcuma longa rhizomes, has
been extensively studied for its multiple biological activities, including anti-inflammatory,
antioxidant and anti-infective properties [152]. This polyphenol having a long history of
use in traditional medicines of China and India, has a favorable safe profile. It is able to
cross the BBB [153,154] with no toxicity, even at a high dose [155]. Curcumin has a Michael
acceptor in the form of a α,β-unsaturated carbonyl group; thus, the main mechanism, by
which it activates Nrf2, is by alkylating a protein thiol on the Keap-1-Nrf2 binding complex,
which allows Nrf2 to translocate to the nucleus to initiate antioxidant gene expression
changes [156,157]. Recently, mass spectrometric analysis revealed that curcumin binds to
Keap1 Cys151 in the BTB domain, supporting that this amino acid is a critical target for
curcumin modification of Keap1, which facilitates the liberation of Nrf2 [158]. Curcumin
has been proven to exert neuroprotective effects and to prevent ischemic stroke through
the attenuation of neurological dysfunction, infarction size, brain edema and BBB dis-
ruption [159–169] via anti-oxidant, anti-inflammatory and anti-apoptotic effects [170,171].
In vivo and in vitro [172,173], evidence demonstrates curcumin is an effective activator of
Nrf2 in cerebral IR injury. The Nrf2/ARE signal pathway plays an important role at a very
early time in rat brains subjected to middle cerebral artery occlusion (MCAO), a classic
animal model of stroke. Indeed, both Nrf2 and HO-1 raise significantly in the first 3 h and
maximize at 24 h after MCAO [174]. After systemic administration of curcumin, Nrf2 and
HO-1 are further enhanced, the infarct size decreases and the brain edema improves [174].
Wu et al. [111] have demonstrated that, after stroke, curcumin administered by intraperi-
toneal injection (300 mg/kg) in rats inhibits oxidative stress, induces the expression of
NQO1 and enhances the binding activity of Nrf2 to ARE. However, the PI3K/Akt pathway
is necessary for curcumin effects, because blocking the PI3K/Akt signaling pathway abol-
ishes the neuroprotective effects. To reduce the toxicity typically observed when curcumin
is dissolved with DMSO or NaOH, Li et al. [169] administered curcumin dissolved in corn
oil at 30 min after MCAO. The administration pre-reperfusion with curcumin reduced the
subsequent IRI in the MCAO rat model as indicated by the reduction of brain edema, BBB
disruption and neurological dysfunction at 24 h post reperfusion. The authors indicate that
curcumin has significant neuroprotective effects after cerebral IRI by activating the Nrf2
pathway and by down-regulating NF-κB and MDA levels [169].

In hemorrhagic strokes, the lysis of red blood cells produces the release of hemin, a
degradation product of hemoglobin. Hemin is a highly reactive compound and a dangerous
molecule that is quickly accumulated and slowly degraded by HO, which causes damage
in rat astrocytes and neurons [175]. The in vitro study by González-Reyes et al. [172] iden-
tifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures
of cerebellar granule neurons of rats. These in vitro data confirm that Nrf2 activation and
antioxidant response (HO-1 and GSH) play a major role in the neuroprotective effect of
curcumin. Although many experimental in vivo and in vitro studies have showed the
protective effects of curcumin via the Nrf2 pathway, currently, no high-quality evidence
showing that curcumin administration activates Nrf2 in humans is reported. The poor
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bioavailability of curcumin and its fast metabolism in humans are important factors to
consider. Several approaches have been considered, including the adjuvant, the liposomal
curcumin, curcumin nanoparticles and phospholipid complexes. The main structural modi-
fication of curcumin is to prepare the analogues without the β-diketone moiety, responsible
for the instability and weak pharmacokinetic profiles of curcumin [176]. Furthermore, there
is growing evidence that the addition of piperine may improve curcumin bioavailabil-
ity [177,178]. Future well-controlled human intervention trials are needed to corroborate
the neuroprotective effects of curcumin via the Nrf2 pathway observed in vitro and in
animal studies of IRI and to advance our current understanding in humans.

3.3.2. Fumarate

Dimethyl fumarate (DMF) is derived from the simple organic acid fumaric acid, which
is named after the earth smoke plant (Fumaria officinalis). While free fumaric acid is poorly
absorbed, DMF is rapidly metabolized to monomethyl fumarate (MMF) [179]. With a broad
efficacy, good safety and satisfying tolerability, the compound is the first-line oral drug for
multiple sclerosis disease [180] and its immunomodulatory potential is also explored in
other immune-mediated diseases [181–184]. Pleiotropic biological effects characterize DMF,
including anti-oxidative stress and anti-apoptotic and immunomodulatory properties, as
well as providing protection from microvascular dysfunction in a variety of tissues [185].
In vitro experiments have shown that MMF prevents detrimental pro-inflammatory re-
sponse promoting, in a dose-dependent manner, the polarization of T lymphocytes toward
the T-helper cell type 2 (Th2) phenotype, a T cell subset characterized by the production
of interleukin-(IL)4, IL-5 [186] and IL-10 [187]. This Th2 shift was later linked to direct
effects of fumaric acid esters on dendritic cells (DCs), thus inducing functional type II
DCs with in vivo relevant suppression of the proinflammatory cytokines IL-12 and IL-
23 [188,189]. At high dosages, fumaric acid esters were also shown to induce apoptosis
in vitro [190]. Beyond its effects on T-cells and dendritic cells, DMF may also target several
other immunologically active cell types [187,191–196].

In addition to its modulatory effects on immune cells, DMF may also possess neuro-
protective capacity. DMF inhibits the production of nitric oxide (NO), IL-1β, TNF and IL-6
in astrocytes and microglia, increases plasma levels of IL-10 and suppresses macrophage
infiltration into the brain during autoimmune encephalomyelitis (EAE) [194]. Abundant
evidence indicates that fumaric acid esters activate the Nrf2-Keap1 pathway and increase
the natural antioxidant responses in vivo and in vitro [197,198]. DMF leads to direct modi-
fication of Keap1 [188,197] and can suppress NF-κB transcription, induces detoxification
enzymes (i.e., GSH reductase, c-glutamylcysteine synthetase and GSH synthetase) in as-
trocytes and microglial cells and modulates glutathione levels in cells [199]. Recent data
indicate that systemic DMF treatment is involved in maintaining BBB integrity and im-
proving neurological outcomes in a short-term model of hemorrhagic strokes [121,200,201]
and ischemic stroke [202,203]. In all of these cases, abundant evidence indicates that
DMF/MMF act via activation of the Keap1-Nrf2-ARE signaling pathway [121,200,202].
Indeed, the beneficial effect of DMF was lost in the Nrf2-KO animals, suggesting that its
therapeutic effect is mainly through activating Nrf2. However, the long-term neuroprotec-
tive effects observed after DMF treatment are also related to its immunomodulatory ability
via an Nrf2-independent mechanism [125].

Liu et al. [204,205] have also provided evidence on the protection derived by the
pretreatment with DMF against ischemic damage in initial, acute and extended phases after
hypoxia-ischemia (HI). By using a cerebral HI mouse model and transgenic loss-of-function
of Nrf2 mice, the authors have observed that pre-treatment with DMF for 7 days prior
to hypoxia-ischemia confers robust and prolonged Nrf2-dependent neuroprotection by
involving anti-oxidative and anti-inflammatory response and the attenuation of reactive
gliosis in astrocyte and microglia. Overall, these findings support the unique protective
role of Nrf2 in the stroke field and may open a new window to utilize these endogenous
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neuroprotection mechanisms as preventive approach in the development and progression
of cerebral ischemia pathology.

3.3.3. Resveratrol

Resveratrol (3,4,5-trihydroxystilbene) is a polyphenolic compound abundantly present
in grapes and red wine [206]. It is well known for its antioxidant, anti-inflammatory and an-
tiapoptotic properties [207–211] that it exerts by influencing multiple pathways [212]. Stud-
ies performed both in vitro and in vivo have provided evidence that resveratrol has neuro-
protective effects. Resveratrol treatment of neuronal cell lines and hippocampal slice cul-
tures exposed to oxygen and glucose deprivation (OGD)—a model of hypoxia/ischemia—
promoted cell survival [213,214]. Recent studies demonstrated that resveratrol can protect
hippocampal neurons from damage caused by transient cerebral ischemia [209]. In rodent
models of ischemia, pre- and post-treatment with resveratrol determined a reduction of the
infarct volume and brain edema [107,158], thus confirming the neuroprotective effects of
this natural compound observed in in vitro models. Different mechanisms have been iden-
tified as responsible for the neuroprotective effects of resveratrol. Evidence exists demon-
strating that it down-modulates the activity of the pro-apoptotic factors caspase-3 and Bax,
promotes Bcl-2 expression and contrasts alteration of mitochondrial function [215,216],
thus exerting anti-apoptotic effects. In a rat model of brain ischemia, it has been observed
that resveratrol can induce neuroprotection by activating the PI3K/AKT signaling path-
way, that has a key role in mediating cell survival, thus preventing neuronal death [211].
More recently, Hou et al. [217] deepened the understanding of the mechanisms involved
in resveratrol-mediated neuroprotection using rats subjected to middle cerebral artery
occlusion followed by reperfusion. They observed that pre-treatment with resveratrol for
7 days was able to reduce cerebral infarct area, neuronal damage and apoptosis and this
was associated with increased expression of p-JAK2, p-STAT3, p-AKT and p-mTOR. The
authors concluded that resveratrol is able to exert neuroprotective activity on cerebral IR
by promoting the phosphorylation of key proteins of the JAK2/STAT3/PI3K/AKT/mTOR
pathway. In vitro and in vivo studies also demonstrated an anti-inflammatory activity of
resveratrol on activated microglia, as it effectively inhibits IL-1β, TNFα and nitric oxide
production, together with NF-κB signaling and p38 phosphorylation [218–221], thus con-
trasting the deleterious effects of inflammation, an important factor involved in ischemic
stroke. Another important property of resveratrol responsible for its neuroprotective ef-
fects is its antioxidant activity. It directly attenuates oxidative stress by scavenging ROS,
thus inhibiting lipid peroxidation and DNA damage. In vitro and in vivo evidence exists
demonstrating that the neuroprotective effects of resveratrol are due, at least in part, to its
ability to activate the Keap1−Nrf2 pathway, which, in turn, modulates the expression of
inflammatory mediators and of antioxidant enzymes [222,223]. Through the up-regulation
of Nrf2 activity, resveratrol promotes the expression of ARE-regulated genes involved in the
control of free radical levels [212]. In vitro experiments performed with neuronal cell lines
and primary neuronal cells demonstrated that the activation of the Nrf2/ARE pathway by
resveratrol promotes HO1 activity and the increase in glutathione and SOD levels [224,225].
The use of small interfering RNA in an in vitro oxidative stress model of endothelial cells
showed that the antioxidant activity of resveratrol was inhibited if Nrf2 was knocked
down [226]. In a recent study, Yang and colleagues [227] observed that in vitro resveratrol
treatment of rat cortical neurons at different times reduced neuronal injury, decreasing
lactate dehydrogenase and increasing SOD activity in a concentration-dependent manner.
Cells treated with resveratrol showed increased cell viability and reduced apoptosis. The
authors also observed that this treatment promoted the upregulation of Nrf2 and its translo-
cation into the nucleus and the expression of NAD(P)H, NADPH quinone oxidoreductase
1 (NQO-1) and HO1, all of which are involved in contrasting oxidative stress. Of note,
NQO-1 is able to reduce ROS levels, thus preventing cellular injury in brain ischemia and in
neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple
sclerosis [228].
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Studies conducted in rats demonstrated that pre-treatment with resveratrol
up-regulated Nrf2 expression and increased HO1 levels after cerebral IRI [107]. Moreover,
in a mouse model of cerebral ischemia, Narayanan et al. [151] showed that resveratrol-
mediated neuroprotection was reduced in Nrf2−/− mice, compared to wild type mice,
thus demonstrating that resveratrol activity was Nrf2-dependent. These observations also
confirm, in vivo, that the neuroprotective antioxidant activity of resveratrol is mediated, at
least in part, by the activation of the Nrf2/ARE pathway. All these observations obtained
using in vitro and in vivo models strongly sustain the therapeutic potential of resveratrol
in ischemic cerebral damage. However, due to its rapid clearance from the circulation,
further studies are needed to improve its efficacy in vivo.

3.3.4. Sulforaphane

Sulforaphane (4-methylsulfinylbutyl isothiocyanate) is a natural isothiocyanate de-
rived from the hydrolysis of glucoraphanin, widely present in cabbage, broccoli and other
vegetables belonging to the family Brassicaceae [229,230]. It is a pleiotropic compound
with anti-tumor and anti-microbial activities, as widely demonstrated in experimental mod-
els [231–233]. Data obtained in animal models showed a protective activity of sulforaphane
in IRI affecting different tissues, including kidney [234], retina [235] and intestine [236,237].

Evidence exists demonstrating that it has also neuroprotective effects. Studies in ro-
dents have shown that sulforaphane is able to reduce the cerebral infarct volume following
focal ischemia and cerebral edema in injured brain [238,239]. Ma and colleagues [240]
demonstrated that in vivo treatment with sulforaphane inhibited the NF-κB signaling
pathway, thus reducing the expression of pro-inflammatory cytokines, nitric oxide and
cyclooxygenase-2 in rats subjected to middle cerebral artery occlusion. Data obtained us-
ing in vitro and in vivo models evidenced that the protective effects of this compound are
mainly due to its ability to activate the Nrf2/ARE pathway [241,242]. In a neonatal hypoxia-
ischemia model, Ping and colleagues demonstrated that treatment with sulforaphane
upregulated Nrf2 and HO1 expression and reduced neurons apoptosis and brain tissue
loss [243]. Furthermore, in vitro administration of this compound in cultures of astrocytes,
before or after exposure to oxygen–glucose deprivation conditions (OGD), improved cell
survival by activating the Nrf2 pathway [244]. Sulforaphane promoted Nrf2 expression
in cardiac cells and epidermal cells by the methylation of the Nrf2 promoter [245,246]. It
also interacts with thiol groups of Keap1 cysteines, thus affecting the Nrf2/Keap1 complex
stability and contrasting Nrf2 degradation [246–248]. Sulforaphane-mediated activation
of the Nrf2 pathway induces antioxidative and detoxifying enzymes, such as glutathione
S-transferase (GST), HO1 and NQO-1, that, in turn, play a crucial role in neuroprotection.
Recently, in a rat model of vascular cognitive impairment, which involves the permanent
occlusion of carotid arteries, it was demonstrated that administration of sulforaphane
reduced ischemic injuries and improved cognitive abilities [249]. The observed neuropro-
tection was associated with increased Nrf2 activation and HO1 expression. To confirm the
role of Nrf2 in sulforaphane-mediated protective effects, the same authors set up in vitro
experiments with endothelial cells subjected to OGD conditions. They observed that, if
Nrf2 was knocked down, sulforaphane was no longer able to protect endothelial cells from
OGD-mediated damage, thus concluding that sulforaphane preserves the integrity of the
blood–brain barrier via Nrf2 activation [249].

Evidence obtained both in humans and animal models has shown that this natural
compound is rapidly absorbed and accumulated in tissues and that it is able to pass
the blood–brain barrier and to accumulate in the brain [250–254]. All these observations
suggest that sulforaphane could be a potential therapeutic molecule to treat cerebral
ischemia injury.

3.3.5. Tert-Butylhydroquinone

Tert-Butylhydroquinone (tBHQ) derives from the metabolism of the natural antioxi-
dant compound butylated hydroxyanisole [88]. Several years ago, it obtained the approval
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for its use in humans [255,256] and it is widely used as a food additive. Studies conducted
in different models of cerebral injury, including brain trauma and ischemic stroke, have
demonstrated that it has neuroprotective effects [88,257]. In a rat model of IR, Shih et al. [88]
observed that pretreatment with tBHQ reduced cerebral damage 24 h after stroke and it
was associated with the increase of cortical GSH levels. The reduction of ischemic damage
was observed even 1 month after and with both intracerebroventricular and intraperi-
toneal administration of tBHQ. Of note, tBHQ administration failed to induce cortical
GSH increase and to reduce infarct size in Nrf2−/− mice, thus suggesting that the neu-
roprotective activity of tBHQ is Nrf2-dependent [88]. These results have been confirmed
in more recent papers. In a rat model of subarachnoid hemorrhage (SAH), Wang and
collaborators [258] observed that tBHQ administration after SAH preserved blood–brain
barrier integrity, as demonstrated by its ability to inhibit the increase of blood–brain barrier
permeability evaluated by Evans blue extravasation. It also reduced cortical apoptosis and
oxidative stress levels, neuronal degeneration and clinical behavior deficits. Moreover,
significantly higher protein and mRNA expression levels of Nrf2, Keap1, HO1 and NQO1
were observed in animals treated with tBHQ, compared to those treated with vehicle [258],
thus indicating the role of Nrf2 activation in tBHQ-mediated neuroprotection. Similar
results were obtained in another recent study conducted using a rat model of neonatal
hypoxic-ischemic encephalopathy [143]. The authors observed that post-treatment of
animals with tBHQ reduced neuronal apoptosis in the cerebral cortex, infarct size and
neuronal damage. The administration of this compound also improved neurological re-
flex, motor coordination and memory deficits. Furthermore, animals subjected to tBHQ
administration showed higher levels of Nrf2 into the nucleus and increased expression of
Nrf2-regulated antioxidative genes. All these data strongly support the neuroprotective
effects of tBHQ and that these effects are mediated, at least in part, by the activation
of the Nrf2 pathway. Due to its 1,4 diphenolic structure, tBHQ is able to dissociate the
Nrf2/Keap1 complex, thus promoting the translocation of Nrf2 into the nucleus and the
expression of antioxidant genes [259–261]. However, evidence exists showing that tBHQ
also has detrimental effects [262], likely due to reactions mediated by GSH-conjugates [263].
Sun and colleagues [264] conducted a research study using a murine permanent middle
cerebral artery occlusion model and observed that tBHQ treatment was associated with a
significant increase in mortality, compared to control. They also observed that tBHQ signif-
icantly increased brain volume and impaired mitochondrial function of cerebrovascular
endothelial cells, suggesting that tBHQ, by altering the blood–brain barrier integrity, can
exacerbate stroke damage. Therefore, further studies are needed to determine whether
tBHQ is able to promote long-term neuroprotection without severe side effects [143] to
clarify its potential as therapeutic agent for stroke.

3.3.6. Carbon Monoxide

The gaseous molecule carbon monoxide (CO) is associated with central nervous
system toxicity. However, evidence also indicates that CO can be protective, depending on
its concentration. CO is endogenously produced upon degradation of heme by HO. Heme
oxygenase-1 (HO-1) participates in the cell defense against oxidative stress and is known
to be induced by Nrf2 [265]. Zeynalov and Doré provided evidence in mice that CO can be
therapeutic in IR brain injury [266] and its beneficial effect is mediated by activation of the
Nrf2/Keap l/ARE/HO-1 pathway. Indeed, 250 ppm CO exposure promoted dissociation of
Nrf2 from Keap1, increased the nuclear Nrf2 occupancy of AREs within the HO-1 promoter
and induced time-dependent increases in HO-1 expression. Although the neuroprotection
is completely lost in Nrf2−/− mice, the beneficial effects of CO were also likely caused
by the activation of other protective mechanisms. CO may also act through activation of
anti-inflammatory, anti-apoptotic and vasodilatory mechanisms [267,268]. In addition, CO
has been reported to have early thrombolytic effects after ischemia [269]. The ability to
activate the Nrf2 signaling pathway and to pass through the blood–brain barrier (BBB),



Molecules 2021, 26, 5001 18 of 31

in concert with other anti-inflammatory mechanisms, render the low concentrations of
inhaled CO an emerging good candidate for neurologic protection after stroke.

In addition to the aforementioned compounds, which represent the most studied
Nrf2 activators with neuroprotective effects in experimental models of ischemic stroke,
additional drugs (less frequently investigated compounds) have also shown beneficial
effects, such as tanshinol borneol ester [270], Apelin 13 [141], ezetimibe [271], rosmarinic
acid [100], biochanin A [272], isoquercetin [273], trilabatin [137], forsythiaside A [274],
octreotide [275], Korean Red Ginseng [89], Schizandrin A [276], leonurine [277], sinome-
nine [101], myricetin [139], diterpene ginkgolides [278], totarol [279], paeonol [91], alpha-
lipoic acid [280], omega-3 fatty acids [281], nicotinamide mononucleotide [282], chlorogenic
acid [144], eriocitrin [283], bicyclol [114] andrographolide [284], phyllanthin [285], neohes-
peridin [286], protocatechualdehyde [287], osthole [275], salidroside [288], palmatine [289],
pelargonidin [290] and britanin [291].

4. Challenges/Perspectives on the Use of Nrf2 Activators in Ischemic Stroke Patients

The scientific literature reviewed herein provides compelling evidence that Nrf2
activation is neuroprotective in ischemic stroke models. By using in vivo experimental
approaches based mainly on the induction of permanent or transient cerebral ischemia
in rodents, researchers have shown that both the endogenous and exogenously induced
Nrf2 activations display neuroprotective effects. Concerning the endogenous activation,
most of the studies presented in Table 1 (Section 3.2) clearly show the upregulation of Nrf2
and downstream targets following ischemia or IR. Of note, some studies show that Nrf2
knockout animals were more susceptible to cerebral ischemic stroke (higher infarct sizes and
more severe neurological deficits), indicating that such endogenous activation has a major
role in mitigating IR-related damage. Concerning the exogenously-induced activation
of Nrf2, several well-known Nrf2 activators (described in Section 3.3) have displayed
neuroprotective effects in ischemic stroke models and, notably, some Nrf2-activating
compounds had superior neuroprotective effects against IRI in wild-type compared to Nrf2
knockout animals [89,151]. Thus, the reviewed literature provides an optimistic scenery
and indicates that Nrf2 modulators may represent promising pharmacological strategies to
treat ischemic stroke patients in a near future.

As already discussed in Section 2, the pro-oxidative events mediating IRI are diverse
and may result from either increased production or decreased neutralization of oxidants,
which are also diverse with respect to their chemical characteristics, including reactivity.
Moreover, inflammation, which is closely related to oxidative stress, also represents a key
event resulting from IR. In this scenery, it is reasonable to suppose that the treatment of
acute stroke with Nrf2 activators could have advantages, compared to strategies based on
a unique mechanism of action, such as (i) free radical scavengers aimed to neutralize a
specific radical specie, or (ii) inhibitors of specific radical-generating enzymes (i.e., NOX).
This is based on the fact that Nrf2 activation may lead to the upregulation of diverse players
that counterbalance impairments in proteostasis, redox and inflammatory control [74]; their
combined action might simultaneously mitigate distinct deleterious events resulting from
IR.

On the other hand, there are significant drawbacks and challenges that work against
the successful translation of the preclinical efficacy of Nrf2 activators into the clinical
conditions of ischemic stroke patients. Initially, it is important to take into account the
acute nature of ischemic stroke and the relative fast cascade of events resulting from the
sudden loss of blood flow. As a consequence of the impaired delivery of oxygen and
nutrients to cells, the brain’s electrical activity and signs of awareness have been reported
to disappear within seconds after severe ischemic stroke, while energy stores seem to be
depleted within minutes [292]. In such kind of situation, the hypothetical neuroprotective
pharmacological treatment should be performed as soon as possible and, in addition, it is
essential that it has a relatively quick pharmacological result in order to minimize neurode-
generation and related sequelae. In addition to the good pharmacokinetic properties, it is
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desired that the drug has a mechanism of action that allows the occurrence of neuropro-
tection even in metabolically compromised cells. As already discussed at the beginning
of Section 3.1, Nrf2 is a transcription factor that controls the expression of cytoprotective
genes [44,58,64–68,258,293,294] and is involved in different cellular processes [69,70].
mRNA and protein syntheses represent events that depend on the proper cellular metabolic
homeostasis, which is compromised in ischemic cells [19]. In this context, although Nrf2 has
been pointed as a therapeutic target for human chronic diseases [74], it seems that the trans-
lation of the beneficial effects of Nrf2 activators, observed in preclinical models, into clinical
sceneries of ischemic stroke (an acute condition) is less probable. There are two important
separate areas of the ischemic brain, the ischemic core and the ischemic penumbra. During
a vessel occlusion, the core area is the first to be damaged, while cells from the ischemic
penumbra are predominantly damaged during the reperfusion/reoxygenation period,
thus representing a target for neuroprotection shortly after ischemic stroke episodes [295].
Taking into account that the beneficial effects of Nrf2 activators commonly depend on tran-
scription and translation, it is likely that their potential neuroprotective effects in clinical
stroke (if any) are restricted to cells located far from the ischemic center, whose metabolic
compromise is not sufficient to impair transcription and translation. In this regard, it
is important to recapitulate the experimental study by Takagi and collaborators, which
showed increased levels of Nrf2 in the cerebral cortex and striatum of mice subjected to
transient middle cerebral artery occlusion; notably, such increase was observed particularly
in the penumbra zone [82], which is less metabolically compromised compared to the
ischemic core. This experimental evidence reinforces the idea that metabolically impaired
cells located near the ischemic core are unable to properly upregulate Nrf2 and related
downstream proteins. This represents a conceivable disadvantage in using Nrf2 activators
to treat extreme acute metabolic impairments, such as severe ischemic stroke.

This supposed disadvantage of using Nrf2 activators to treat acute conditions is in
line with the idea that timing is crucial in modulating Nrf2 in disease [64]. Within this
panorama, the literature reviewed herein indicates a significant number of studies using
pretreatments when evaluating neuroprotective effects of Nrf2 activators in models of
experimental ischemic stroke. Considering the acute nature of ischemic stroke, translating
experimental results on Nrf2 activators into real clinical conditions seems to be less likely
when data are derived from protocols based on pretreatments. This seems to be particular
important considering that (i) Nrf2-derived biological effects are greatly dependent on
transcription and translation and (ii) acute ischemic stroke leads to quick cell metabolic
impairment. The design of protocols that properly mimic the real conditions of ischemic
stroke patients (i.e., post-treatment with drugs after the diagnosis of stroke) will certainly
maximize the possibility of progression of Nrf2 activators from bench to clinical conditions
if the aim is to treat (not prevent) ischemic stroke.

In summary, the literature reviewed herein has unequivocally shown neuroprotective
effects of the exogenously induced Nrf2 activation in experimental models of ischemic
stroke, providing a positive panorama and indicating that Nrf2 modulators may represent
promising pharmacological strategies to treat ischemic stroke patients in a near future.
However, the acute nature of ischemic stroke represents a challenge when using a putative
pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and
metabolically active cells. In this context, the execution of experimental protocols able to
mimic real conditions of ischemic stroke patients in order to progress Nrf2 activators from
preclinical studies to clinical practices seems crucial.
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