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ORIGINAL ARTICLE

Pathogenic Variants Associated With Dilated 
Cardiomyopathy Predict Outcome in Pediatric 
Myocarditis
Franziska Seidel , MD; Manuel Holtgrewe , PhD; Nadya Al-Wakeel-Marquard, MD; Bernd Opgen-Rhein , MD;  
Josephine Dartsch , MSc; Christopher Herbst , PhD; Dieter Beule , PhD; Thomas Pickardt , PhD; Karin Klingel , MD;  
Daniel Messroghli , MD; Felix Berger , MD; Stephan Schubert , MD; Jirko Kühnisch , PhD*; Sabine Klaassen , MD*

BACKGROUND: Myocarditis is one of the most common causes leading to heart failure in children and a possible genetic 
background has been postulated. We sought to characterize the clinical and genetic characteristics in patients with myocarditis 
≤18 years of age to predict outcome.

METHODS: A cohort of 42 patients (Genetics in Pediatric Myocarditis) with biopsy-proven myocarditis underwent genetic 
testing with targeted panel sequencing of cardiomyopathy-associated genes. Genetics in Pediatric Myocarditis patients were 
divided into subgroups according to the phenotype of dilated cardiomyopathy (DCM) at presentation, resulting in 22 patients 
without DCM (myocarditis without phenotype of DCM) and 20 patients with DCM (myocarditis with phenotype of DCM).

RESULTS: Myocarditis with phenotype of DCM patients (median age 1.4 years) were younger than myocarditis without 
phenotype of DCM patients (median age 16.1 years; P<0.001) and were corresponding to heart failure–like and coronary 
syndrome–like phenotypes, respectively. At least one likely pathogenic/pathogenic variant was identified in 9 out of 42 
patients (22%), 8 of them were heterozygous, and 7 out of 9 were in myocarditis with phenotype of DCM. Likely pathogenic/
pathogenic variants were found in genes validated for primary DCM (BAG3, DSP, LMNA, MYH7, TNNI3, TNNT2, and 
TTN). Rare variant enrichment analysis revealed significant accumulation of high-impact disease variants in myocarditis 
with phenotype of DCM versus healthy individuals (P=0.0003). Event-free survival was lower (P=0.008) in myocarditis with 
phenotype of DCM patients compared with myocarditis without phenotype of DCM and primary DCM.

CONCLUSIONS: We report heterozygous likely pathogenic/pathogenic variants in biopsy-proven pediatric myocarditis. 
Myocarditis patients with DCM phenotype were characterized by early-onset heart failure, significant enrichment of likely 
pathogenic/pathogenic variants, and poor outcome. These phenotype-specific and age group–specific findings will be useful 
for personalized management of these patients. Genetic evaluation in children newly diagnosed with myocarditis and DCM 
phenotype is warranted.
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Myocarditis is a common cause of childhood heart 
failure.1 Although myocarditis and idiopathic 
dilated cardiomyopathy (DCM) are considered 

distinct entities, myocarditis frequently presents with a 

phenotype of new-onset DCM.2 The diagnosis is chal-
lenging due to the heterogeneity of clinical presenta-
tions.3 A definite diagnosis requires endomyocardial 
biopsy (EMB), which is often still not part of routine 
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practice.4 A marked disparity has been reported in out-
comes in children with a new-onset DCM phenotype 
associated with myocarditis compared to those with 
idiopathic DCM.5,6 Specifically, pediatric patients with 
myocarditis had lower rates of heart transplantation 
(HTx) and death compared to individuals with idiopathic 
DCM.7 This implicates that differentiating these dis-
eases is an important part of the initial diagnostic and 
treatment plan.5–8

Evidence that viral infection can influence the sever-
ity and penetrance of DCM has long been recognized.9 
A molecular mechanism through which enteroviral 
infection contributes to the pathogenesis of secondary 
forms of DCM was identified.10 Dystrophin deficiency in 
mice markedly increased enterovirus-induced DCM.11 
Recently, it has been shown that 12% of children with 
acute myocarditis carried pathogenic autosomal reces-
sive variants in cardiac disease genes.12 It was pro-
posed that genetic defects in structural proteins may 
cause the myocardium to become vulnerable and pre-
disposed to myocardial inflammation with mutation in 
genes associated with arrhythmogenic cardiomyopathy 
(AC) or arrhythmogenic right ventricular cardiomyopathy 
(ARVC).13,14 In adult myocarditis, in association with AC/
ARVC, pathogenic variants in desmoplakin (DSP) were 
identified in small case series.14–17 Most of the studies 
included cases of suspected myocarditis, some cases 
were reported in children, and myocarditis was rarely 
biopsy-proven. In none of these studies, age group–spe-
cific genetic findings were reported. Also, no study sys-
tematically divided the cohort into subgroups according 
to the presence or absence of DCM at presentation.

The objectives of the present analysis, therefore, were 
to (1) determine pathogenic genetic variants in a cohort 
of EMB-proven pediatric myocarditis, (2) assess clini-
cal and genetic differences in pediatric myocarditis with 
and without DCM phenotype, and (3) explore the pos-
sible value of genetic diagnosis for outcome in pediatric 
myocarditis. We hypothesized that children with definite 

myocarditis would have pathogenic variants in structural 
cardiac genes predicting acute or chronic cardiac dys-
function and clinical outcome.

METHODS
Study methods can be found in the Data Supplement. The 
study was approved by the institutional ethics committee 
Charité - Universitätsmedizin Berlin following the Declaration 
of Helsinki. All parents/guardians of patients <18 years gave 
written informed consent. The data that support the findings 
of this study are available from the corresponding author upon 
reasonable request. A subset of the data generated for this 
study are available at the ClinVar database (https://www.ncbi.
nlm.nih.gov/clinvar/).18

RESULTS
Clinical Characterization Genetics in Pediatric 
Myocarditis Cohort
The Genetics in Pediatric Myocarditis (MYCPEDIG) 
cohort was composed of patients with biopsy-proven 
myocarditis who underwent clinical and diagnostic 
assessments including laboratory parameters and car-
diac imaging (Figure 1). The major clinical characteristics 
of the MYCPEDIG cohort are presented in Table 1.19,20 
Forty-two unrelated patients with biopsy-proven myocar-
ditis and a median age at diagnosis of 10.0 (interquar-
tile range, 1.1–16.4) years were included in the study. 
A total of 17 patients were female and 25 were male. 
All individuals underwent the same standardized genetic 
analysis with targeted panel sequencing. The cohort 
was divided into 2 subgroups, patients presenting with 
DCM phenotype (myocarditis with phenotype of DCM 
[MYC-DCM], n=20) and patients without DCM phe-
notype (myocarditis without phenotype of DCM [MYC-
NonDCM], n=22; Table 1). The subgroup MYC-DCM 
contained significantly younger patients with a median 
age of 1.4 (interquartile range, 0.3–4.1) years compared 
to the MYC-NonDCM patients with a median age of 
16.1 (interquartile range, 11.5–17.1) years (P<0.001). 
MYC-DCM patients more often presented with higher 
New York Heart Association classes (P<0.001), dys-
pnea (P=0.005), gastrointestinal symptoms (P=0.018), 
and signs of cardiac decompensation (P=0.001). The 
MYC-NonDCM subgroup was characterized by higher 
frequency of chest pain (P<0.001) and fever within the 
last 6 weeks before admission (P=0.011). Troponin 
was elevated in both subgroups without statistical dif-
ference, with 86% in the MYC-NonDCM and 81% in 
the MYC-DCM subgroup. Further characteristics of the 
2 subgroups in laboratory findings, ECG, echocardiogra-
phy, CMR, and medication are listed in Table 1. In-depth 
phenotyping revealed that these subgroups were cor-
responding to coronary syndrome–like (MYC-NonDCM) 
and heart failure–like phenotype (MYC-DCM).

Nonstandard Abbreviations and Acronyms

EMB endomyocardial biopsy
HTx Heart transplantation
LP/P likely pathogenic/pathogenic
MYC-DCM  myocarditis with phenotype of 

dilated cardiomyopathy
MYC-NonDCM  myocarditis without phenotype of 

dilated cardiomyopathy
MYCPEDIG Genetics in Pediatric Myocarditis
RIKADA  Risk Stratification in Children 

and Adolescents With Primary 
Cardiomyopathy

RIKADA-DCM DCM cohort of the study RIKADA
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All patients presented with lymphocytic myocarditis 
(Table I in the Data Supplement). The MYC-DCM sub-
group showed higher prevalence of necrosis (P=0.04) 
and mononuclear cell infiltrates (P=0.007). Specifically, 
the CD3+ lymphocyte or CD68+ macrophage counts 
were significantly elevated in the MYC-DCM subgroup 
(P=0.003 and 0.002, respectively). Viral genome detec-
tion was 29% in the MYC-NonDCM subgroup and 58% 
in the MYC-DCM subgroup and did not differ between 
the two subgroups (P=0.109). Thus, MYC-DCM patients 
had more severe signs of inflammation compared to the 
MYC-NonDCM patients.

Genetic Analysis
Within the MYCPEDIG cohort, we identified 9 likely 
pathogenic/pathogenic (LP/P) variants in 42 (22%) 
patients (Table 2). Pathogenic variants were detected 
in 2 patients, LP variants in 7 patients, and variant 
of uncertain significance in 13 patients. Eight of 9 
LP/P variants were heterozygous, and one variant 
was homozygous. Seven out of 20 (35%) LP/P vari-
ants were in MYC-DCM, and 2 out of 22 (9%) were 
in MYC-NonDCM (P=0.062). None of the patients 
carried 2 LP/P variants. Details of individual variants, 
classification according to The American College of 
Medical Genetics and Genomics (ACMG), complex 
genotypes, classification with myocarditis subgroup, 

and the genetic family context are available in the 
Data Supplement (Table II through IV in the Data Sup-
plement). Functional clustering revealed LP/P variants 
most frequently in genes associated with sarcomere, 
Z-Disc, and desmosome function. In a patient with the 
BAG cochaperone 3 (BAG3) LP frameshift variant 
p.Tyr205Thrfs*6 reduced BAG3 protein levels and a 
disturbed sarcomere organization were found in EMB 
(Figure II in the Data Supplement).

To further evaluate the findings of the MYCPEDIG 
cohort, we compared the MYC-DCM and MYC-NonDCM 
subgroups with primary DCM patients from the RIKADA 
(Risk Stratification in Children and Adolescents With 
Primary Cardiomyopathy) cohort (RIKADA-DCM [DCM 
cohort of the study RIKADA]).21 The main clinical charac-
teristics of RIKADA-DCM patients are available in Table 
V in the Data Supplement. Four RIKADA-DCM patients 
revealed an LP/P variant (Tables II, VI, and Table VII in 
the Data Supplement).

To validate our genetic findings in a control cohort, 
we selected the data sets from 503 healthy individuals 
of European descend from the International Genome 
Sample Resource (IGSR) data depository and performed 
automatic annotation followed by enrichment analysis 
(Figure 2). After filtering for variants in 89 cardiomyop-
athy-associated (CMP) genes, 264 IGSR and 39 MYC-
NonDCM/MYC-DCM/RIKADA-DCM heterozygous 
rare variants were classified according to their Combined 
Annotation Dependent Depletion (CADD) score (Fig-
ure 2A). Nonparametric testing of the CADD score distri-
bution revealed no significant difference of the medians 
(23.65 IGSR, 25.30 MYC-NonDCM/MYC-DCM/
RIKADA-DCM, P=0.058; Figure 2B). Applying a thresh-
old of CADD >30, indicative for high-impact disease vari-
ants, identified 27 variants in the IGSR and 9 variants in 
the MYC-NonDCM/MYC-DCM/RIKADA-DCM cohort. 
The MYC-NonDCM/MYC-DCM/RIKADA-DCM cohort 
showed a significant relative enrichment of rare variants 
with CADD >30 compared with healthy IGSR individu-
als (Wilcoxon test P=0.0023, Fisher P=0.007). Com-
parative analysis for enrichment of CADD >30 variants 
in respective subgroups revealed significant accumula-
tion of high-impact disease variants in the MYC-DCM 
compared with IGSR individuals (P=0.0003; Figure 2C). 
In addition, also the combined myocarditis group MYC-
DCM/MYC-NonDCM and MYC-DCM/RIKADA-DCM 
showed significant accumulation of high-impact disease 
variants. No significant enrichment of CADD >30 vari-
ants was observed in the MYC-NonDCM and RIKADA-
DCM cohort compared with IGSR individuals. Moreover, 
we performed gene-based burden testing for the MYC-
DCM, MYC-NonDCM, and RIKADA-DCM subgroups. 
This burden analysis identified significant enrichment of 
truncating variants in DSP and BAG3 for the MYC-Non-
DCM and MYC-DCM subgroups, respectively (Figure III 
in the Data Supplement).

Figure 1. Study flow chart.
Study design of the Genetics in Pediatric Myocarditis cohort, 
including only patients with biopsy-proven myocarditis, the 
performed diagnostics, and follow-up. CMR indicates cardiovascular 
magnetic resonance imaging; LV, left ventricular; NT-proBNP, 
N-terminal pro-brain natriuretic peptide; and PCR, polymerase 
chain reaction. *In 2 patients with a previous diagnosis of primary 
dilated cardiomyopathy, myocarditis was subsequently proven by 
endomyocardial biopsy (EMB).
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Table 1. Clinical Characteristics

 All MYC-NonDCM MYC-DCM P value

General patient parameter

 Patients 42 22 20  

 Female individuals 17 (41) 8 (36) 9 (45) 0.754

 Median age, y 10.0 (1.1 to 16.4) 16.1 (11.5 to 17.1) 1.4 (0.3 to 4.1) <0.001*

 BSA, kg/m2 1.2 (0.5 to 1.9) 1.8 (1.3 to 2.0) 0.6 (0.3 to 0.7) <0.001*

 Follow-up time (month) 16.1 (7.1 to 41.0) 8.0 (3.3 to 17.2) 32.0 (17.3 to 43.2) <0.001*

Symptoms

 NYHA class I 15 (36) 14 (64) 1 (5)

<0.001*

 NYHA class II 8 (19) 4 (18) 4 (20)

 NYHA class III 1 (2) 0 (0) 1 (5)

 NYHA class IV 12 (29) 3 (14) 9 (45)

 NYHA n.a. 6 (14) 1 (5) 5 (25)

 Chest pain 18 (43) 16 (73) 1 (5)
<0.001*

 Chest pain n.a. 3 (7) 0 (0) 6 (30)

 Dyspnea 18 (43) 6 (27) 12 (60) 0.005*

 Fatigue 37 (88) 18 (86) 18 (90) 1.000

 Feeding intolerance 9 (21) 2 (9) 7 (35) 0.065

 Gastrointestinal symptoms 8 (19) 1 (5) 7 (35) 0.075

 Decompensation 18 (43) 4 (18) 14 (70) 0.001*

 Infection (<6 wk) 21 (50) 14 (64) 7 (35) 0.121

 Fever (<6 wk) 15 (36) 12 (55) 3 (15) 0.011*

ECG

 ST-elevation 20 (48) 16 (73) 4 (20) 0.001*

 T-inversion 15 (36) 9 (41) 6 (30) 0.531

 Arrhythmias† 16 (38) 11 (50) 5 (20) 0.121

Laboratory

 NT-proBNP, pg/mL 6465.5 (235.3 to 26358.0) 406.0 (137.5 to 2679.0) 24198.0 (8294.0 to 53520.0) 0.001*

 Troponin Ihs, pg/mL 386.1 (137.1 to 1736.2) N=10 909.6 (38.6 to 1704.8) N=4 386.1 (243.7 to 11209.3) N=6 0.610

 Troponin Ths, ng/L 556.0 (49.0 to 1162.0) N=25 565.0 (493.0 to 1516.0) N=15 191.5 (11.0 to 771.5) N=10 0.129

Echocardiography

 Z score LVIDD, mm 3.7 (0.1 to 5.7) 0.3 (−0.8 to 1.6) 5.9 (4.4 to 7.8) <0.001*

 LVEF, % 39.5 (22.0 to 60.0) 59.0 (55.0 to 64.3) 22.0 (18.3 to 33.8) <0.001*

CMR‡ 

N=23 N=19 N=5

 LVEDVi, mL/m2 86.5 (74.0 to 109.0) 78.6 (64.3 to 94.8) 149.5 (117.8 to 167.0) 0.001*

 LVEF, % 55.0 (39.0 to 64.0) 56.0 (53.3 to 65.5) 23.0 (16.5 to 34.5) <0.001*

 Edema 11 (48) 10 (56) 1 (20) 0.317

 LGE positive 17 (74) 14 (78) 3 (60) 0.576

Medication

 Heart failure medication 34 (81) 14 (64) 20 (100) 0.004*

 Inotropic medication 19 (45) 4 (18) 15 (75) <0.001*

MCS and complications

 MCS 14 (33) 2 (9) 12 (60) 0.001*

 Weaned from MCS 7 (50) 1 (50) 5 (42) 0.437

 Resuscitation 8 (19) 1 (5) 7 (35) 0.018*

 HTx 6 (14) 0 (0) 6 (30) 0.007*

 Death 4 (10) 2 (9) 2 (10) 1.000

If not otherwise stated values are given as n (%) or median (interquartile range). BSA indicates body surface area; CMR, cardiovascular magnetic resonance imaging; DCM, dilated 
cardiomyopathy; HTx, heart transplantation; LGE, late gadolinium enhancement; LVEDVi, indexed left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVIDD, left 
ventricular end-diastolic diameter; MCS, mechanical circulatory support; MYC-DCM, myocarditis with phenotype of dilated cardiomyopathy; MYC-NonDCM, myocarditis without phenotype 
of dilated cardiomyopathy; n.a., not applicable; NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association; Troponin Ihs, Troponin I measured in high sensitivity; 
and Troponin Ths, Troponin T measured in high sensitivity.

*Statistically significant values (P<0.05).
†Arrhythmias were recorded with ECG or Holter-ECG and contained AV block II/III, nonsustained ventricular tachycardia, supraventricular tachycardia.
‡CMR criteria used to diagnose myocardial inflammation were in accordance with the initial and revised Lake Louise criteria.19,20
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Outcome
MYCPEDIG patients were followed for a median time of 
16.1 (interquartile range, 7.1–41.0) months. The follow-
up time and overall mortality were not different between 
the 2 subgroups MYC-DCM and MYC-NonDCM 
(Table 1). According to their clinical symptoms, patients 
of the MYC-DCM subgroup were more frequently resus-
citated (P=0.018), had higher need for mechanical cir-
culatory support (P=0.001), and underwent HTx more 
often (P=0.007) compared with the MYC-NonDCM sub-
group (Table 1). At follow-up, 91% (20/22) in the MYC-
NonDCM subgroup presented without DCM (Figure 3). 
In contrast, at follow-up only 40% (n=8) in the MYC-
DCM subgroup presented without DCM, 30% (n=6) still 
had DCM, and 30% had been transplanted or had died 
(HTx: n=5; death: n=1; HTx and death: n=1; Figure 3).

In the MYCPEDIG cohort, the overall event-free survival 
of the combined end point mechanical circulatory support, 
HTx, or death was 54% after 5 years (Figure 4A). Sex had 
no significant impact on the occurrence of the combined 
end point (P=0.458; Figure 4B). The highest event-free 
survival was in the MYC-NonDCM subgroup with 85%, 
followed by the RIKADA subgroup with 55%, and the 
MYC-DCM subgroup with 32% (P=0.008; Figure 4C).

DISCUSSION
With this study, we systematically evaluated patho-
genic variants in CMP genes in EMB-proven pediatric 
myocarditis with implications for clinical outcome. A 
unique feature of our study is that all patients under-
went a standard regimen of EMB-proven diagnosis 
and genetic evaluation. According to the presence of 

a DCM phenotype, the MYCPEDIG cohort was divided 
into a subgroup without DCM (MYC-NonDCM) and a 
subgroup with DCM (MYC-DCM), respectively. In-depth 
phenotyping revealed that these subgroups were cor-
responding to coronary syndrome–like (MYC-NonDCM) 
and heart failure–like phenotype (MYC-DCM). Patients 
with a heart failure–like phenotype were significantly 
younger compared to patients with a coronary syn-
drome–like phenotype. At least one pathogenic genetic 
variant was identified in 9 out of 42 patients (22%), 8 
of them were heterozygous. The yield of LP/P variants 
was substantially higher in MYC-DCM (35%) compared 
to MYC-NonDCM (9%). Genetic disease variants with 
a CADD score >30 were significantly enriched in the 
MYC-DCM but not the MYC-NonDCM cohort compared 
to IGSR control individuals. Event-free survival was 
lower in MYC-DCM patients compared to MYC-Non-
DCM and primary DCM. We suggest that heterozygous 
DCM causing genetic variants are critical to predict out-
come in myocarditis. These phenotype-specific and age 
group–specific findings will be useful for personalized 
management of these patients.

Genetic Predisposition to Myocarditis
Myocarditis accounts for 30% to 35% of children 
with DCM phenotypes in pediatric CMP registries.5,6 
The incidence of pediatric CMP is significantly higher 
in the first year of life than at older ages.22 We show 
that myocarditis with a DCM phenotype (MYC-DCM; 
median age 1.4 years) peaks around infancy, which is 
comparable to overall pediatric CMP.22 It has remained 
unclear if children with primary CMP are misdiagnosed 
with myocarditis, or whether genetic variants increase 

Table 2. Pathogenic and Likely Pathogenic Genetic Variants

Variant ID Gene Transcript
cDNA  
position Protein position Genotype Consequence

gnomAD 
frequency

Patho-
genicity

CMP-100-01† BAG3 ENST00000369085, NM_004281.3 c.608delG p.Tyr205Thrfs*6 het frameshift, protein 
truncation

0 LP

CMP-99-01† BAG3 ENST00000369085, NM_004281.3 c.925C>T p.Arg309* het stop gained 0 P

CMP-105-01‡ DSP ENST00000379802, NM_004415.2 c.2200A>del p.Arg734Glufs*31 het frameshift, protein 
truncation

0 LP

CMP-81-02‡ DSP ENST00000379802, NM_004415.2 c.4372C>T p.Arg1458* het stop gained 0.000004 LP

CMP-89-01† LMNA ENST00000368300, NM_005572.3 c.868G>A p.Glu290Lys het missense 0 P

CMP-87-01† MYH7 ENST00000355349.3, NM_000257.2 c.644C>T p.Thr215Ile het missense 0 LP

CMP-84-01† TNNI3 ENST00000344887.5, NM_000363.4 c.204delG p.Arg68Argfs*9 hom frameshift, protein 
truncation

0.000038 P

CMP-83-03† TNNT2 ENST00000455702.1, 
NM_001276345.1

c.460C>T p.Arg154Trp het missense 0.000036 LP

CMP-90-01† TTN ENST00000342992, NM_133378.4 c.25889_ 
25892del

p.E8630Gfs*28 het frameshift, protein 
truncation

0.00003 LP

CMP indicates cardiomyopathy; gnomAD, The Genome Aggregation Database; Het, heterozygous; Hom, homozygous; LP, likely pathogenic; MYC-DCM, myocarditis 
with phenotype of dilated cardiomyopathy; MYC-NonDCM, myocarditis without phenotype of dilated cardiomyopathy; and P, pathogenic.

*Represents termination codon.
†MYC-DCM.
‡MYC-NonDCM.
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a child’s susceptibility to myocarditis. In the MYC-DCM 
subgroup, we do not know whether and how long this 
phenotype or condition existed before admission. Was 
the DCM phenotype preexistent before myocarditis or 
did we see a secondary deterioration due to the inflam-
mation, viral or nonviral triggered? Four of the detected 
9 LP/P variants in our study were in DSP (twice) 
and BAG3 (twice). Potentially pathogenic variants in 
desmosomal genes (DSP, PKP2) and in the thin fila-
ment gene troponin I (TNNI3) were found in children 
with suspected myocarditis.12 In addition, alterations 
in BAG3, encoding a key modulator of autophagy and 
protein homeostasis, were associated with myocarditis 
in the same study. DSP mutation may cause advanced 
DCM with the pathological characteristics in explanted 
organs undergoing cardiac transplantation.23 Obvi-
ously, variants in DSP cause a unique form of CMP 
with left ventricular (LV) phenotype and may increase 

the susceptibility to superimposed acute myocarditis 
in ARVC.15,16,24–26 Episodic myocardial injury in DSP-
CMP contributes to disease progression and precedes 
systolic dysfunction.17,27 The 2 DSP truncating variants 
were found in MYC-NonDCM and were the only LP/P 
variants in this older pediatric subgroup. This finding fur-
ther suggests DSP to be responsible for a distinct clini-
cal phenotype described in connection with AC/ARVC 
and coronary syndrome–like myocarditis in adults.14–17 
In a recent report, 56% of patients with suspected myo-
carditis and the additional features, sustained ventricu-
lar arrhythmias or RV abnormalities carried an LP/P 
variant, predominantly in ARVC-associated genes.14 
Comparable to our study, none of these patients had a 
history of CMP before myocarditis. Our genetic study 
of unselected pediatric patients with lymphocytic myo-
carditis showed a lower overall genetic yield (22%) with 
LP/P variants in DCM-associated genes.

Figure 2. Accumulation of high-impact disease variants in pediatric myocarditis.
A, Enrichment of high-impact disease variants with a Combined Annotation Dependent Depletion (CADD) score >30 was analyzed in 
myocarditis without phenotype of dilated cardiomyopathy (MYC-NonDCM), myocarditis with phenotype of dilated cardiomyopathy (MYC-DCM), 
RIKADA-DCM (DCM cohort of the study Risk Stratification in Children and Adolescents With Primary Cardiomyopathy) patients compared to 
healthy controls from the International Genome Sample Resource (IGSR) data respiratory. IGSR controls were of European descend. Genetic 
variants detected in 89 cardiomyopathy (CMP) disease genes were filtered with a minor allele frequency (MAF) of 0.0001%. B, Classification 
of automatically filtered heterozygous variants was performed according to their CADD score of MYC-NonDCM/MYC-DCM/RIKADA-DCM 
patients and IGSR control individuals. High-impact variants with a CADD score >30 are highlighted with a gray background. C, Enrichment of 
CADD >30 variants was tested for MYC-NonDCM, MYC-DCM, MYC-DCM/MYC-NonDCM, RIKADA-DCM, and MYC-DCM/RIKADA-DCM 
groups compared to the IGSR cohort with the Wilcoxon rank-sum test and Fisher exact test. Significant enrichment was observed in the MYC-
DCM, MYC-DCM/MYC-NonDCM, and MYC-DCM/RIKADA-DCM subgroups.
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Genetic Screening in Pediatric Myocarditis
We systematically screened pediatric EMB-proven myo-
carditis patients for defects in CMP disease genes. The 
detected LP/P variants, which appeared most frequently in 
a heterozygous state, were detected in genes validated for 
primary DCM.28,29 Of note, there is complete overlap of the 
12 genes described by Mazzarotto et al30 as having robust 
disease association with DCM, and the genes with heterozy-
gous LP/P variants in MYCPEDIG and RIKADA subgroups. 
In addition, in our previous analysis, we could show that no 
TNNI3 (Troponin I3, cardiac type) protein is detectable in 
heart tissue of patients with this homozygous TNNI3 trun-
cation.31 We identified one heterozygous LP variant in titin 
(TTN), a gene previously not associated with myocarditis, but 
considered to be a major disease gene in adult DCM.28,29 
In suspected acute viral myocarditis, mostly not biopsy-
proven, rare recessive or compound heterozygous alleles 
altering genes previously associated with typically dominant 
genetic CMP may underlie myocarditis.12 In another study, 

dominant as well as recessive inheritance was observed in 
some cases of acute pediatric-onset heart failure.32 Interest-
ingly, the more pronounced inflammatory infiltrates within 
the EMB of the MYC-DCM subgroup compared to MYC-
NonDCM were present without concomitant fibrosis, which 
would be a hallmark of primary DCM. Of note, significant 
relative enrichment of rare variants with CADD >30 com-
pared with healthy IGSR individuals in our study was found 
in MYC-DCM but not MYC-NonDCM patients. Moreover, 
the difference in LP/P yields between the 2 subgroups 
are substantial, although statistically not significant due to 
the small sample sizes. This underlines the strong genetic 
impact of heterozygous DCM variants for early-onset, severe 
MYC-DCM in children. The diagnostic value of genetic test-
ing seems high in this specific subgroup of patients.

Outcome and Implications for Treatment
In our study, the event-free survival of the MYC-DCM 
subgroup was lower than in patients with primary DCM 

Figure 3. Outcome in a cohort of 
childhood biopsy-proven myocarditis 
(Genetics in Pediatric Myocarditis 
[MYCPEDIG]).
Patients from the MYCPEDIG cohort 
were subdivided into myocarditis with 
phenotype of dilated cardiomyopathy 
(MYC-DCM) and myocarditis without 
phenotype of dilated cardiomyopathy 
(MYC-NonDCM) groups according to 
the phenotype at time of admission. 
Phenotype at follow-up was recorded, 
with DCM or without DCM (NonDCM). 
Patients receiving or heart transplantation 
(HTx) or died were listed separately (HTx/
death).

Figure 4. Event-free survival of the Genetics in Pediatric Myocarditis (MYCPEDIG) and RIKADA-DCM (DCM cohort of the study 
Risk Stratification in Children and Adolescents With Primary Cardiomyopathy) cohorts.
Kaplan-Meier curves illustrate the event-free survival to the combined end point of death, heart transplantation, and mechanical circulatory 
support. Event-free survival (A) in the overall MYCPEDIG cohort, (B) between female (red) and male patients (blue; P=0.458, log-rank 
test), and (C) between the myocarditis without phenotype of dilated cardiomyopathy (MYC-NonDCM), RIKADA-DCM, and myocarditis with 
phenotype of dilated cardiomyopathy (MYC-DCM) subgroups (P=0.008, log-rank test).
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(RIKADA-DCM). Reported outcomes and prognostic fac-
tors for childhood DCM vary considerably. The Pediatric 
Cardiomyopathy Registry and the National Australian 
Childhood Cardiomyopathy Study5,6,8 established that 
children with a new-onset DCM phenotype have a better 
prognosis if they are diagnosed with myocarditis than with 
idiopathic DCM. Congestive heart failure is severe among 
children with DCM, and lymphocytic myocarditis is an 
important cause. Although early mortality in myocarditis 
is high, the clinical status of long-term survivors is good.6 
In children with myocarditis who had impaired LV ejec-
tion fraction at presentation, rates of echocardiographic 
normalization were greater in those without LV dilatation.7 
MYC-DCM patients had LV dysfunction and LV dilatation, 
fulfilling all DCM echocardiographic criteria. This pediatric 
subgroup of patients with myocarditis (MYC-DCM) might 
be distinct from adult patients with acute myocarditis that 
typically present with LV dysfunction but without LV dilata-
tion.33 Therefore, we can only speculate that primary DCM 
was present in these children with <2 years of age before 
myocarditis of whatever cause occurred and lead to myo-
cardial decompensation and heart failure.

Our findings suggest that MYC-DCM patients have 
a higher risk for mechanical circulatory support or HTx 
compared with individuals with myocarditis presenting 
without DCM phenotype. A risk group of children with 
myocarditis <2 years of age and an LV ejection frac-
tion <30% at presentation could already be defined.34 
As they become increasingly available, ventricular assist 
devices, such as the Berlin Heart for infants and children 
are used as a bridge to recovery.35 Mechanical circulatory 
support represents an important and lifesaving therapeu-
tic option in children with myocarditis with high weaning 
rates.34 In summary, our study suggests that outcome is 
worse in children diagnosed with myocarditis and DCM 
phenotype. Children with myocarditis, but without DCM, 
have a high recovery rate. We suggest that heterozygous 
DCM causing LP/P variants are critical to predict out-
come in myocarditis.

Study Limitations
We systematically performed targeted panel next-gen-
eration sequencing (NGS) analysis of cardiac genes in 
pediatric myocarditis. The study would benefit from larger 
numbers in each subgroup which are difficult to obtain 
in the pediatric population; therefore, registries and mul-
ticenter studies are urgently needed.33,36 As we were 
unable to recruit the parents of several families, segre-
gation analysis of the identified variants was limited. This 
underestimates the detection of de novo variants and 
limits classification of LP/P variants according to ACMG. 
Genetic analysis by targeted NGS of CMP genes does 
not detect genetic defects modulating the innate or adap-
tive immune response.37 However, a study using whole-
exome sequencing did not identify genetic variation in 

immune-modulatory genes.12 Finally, we do not know 
whether and how long the DCM phenotype existed before 
admission in the MYC-DCM subgroup.

Conclusions
We report heterozygous pathogenic genetic variants in 
biopsy-proven pediatric myocarditis. Myocarditis patients 
with DCM phenotype were likely to suffer from early-onset 
heart failure, with significant enrichment of rare genetic 
CMP variants, and poor outcome. These phenotype-
specific and age group–specific findings will be useful 
for personalized management of these patients. Genetic 
evaluation in this subgroup of children, newly diagnosed 
with myocarditis and DCM phenotype is warranted.
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