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Exploring and mapping the universe of evolutionary
graphs identifies structural properties affecting
fixation probability and time
Marius Möller1,2,3, Laura Hindersin1,3 & Arne Traulsen 1

Population structure can be modeled by evolutionary graphs, which can have a substantial

influence on the fate of mutants. Individuals are located on the nodes of these graphs,

competing to take over the graph via the links. Applications for this framework range from the

ecology of river systems and cancer initiation in colonic crypts to biotechnological search for

optimal mutations. In all these applications, both the probability of fixation and the associated

time are of interest. We study this problem for all undirected and unweighted graphs up to a

certain size. We devise a genetic algorithm to find graphs with high or low fixation probability

and short or long fixation time and study their structure searching for common themes. Our

work unravels structural properties that maximize or minimize fixation probability and time,

which allows us to contribute to a first map of the universe of evolutionary graphs.
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How does population structure affect evolutionary
dynamics? This question is at the center of evolutionary
graph theory, since its introduction by Lieberman et al.1

and remains a flourishing research topic2–13. While the bulk of
the associated work is theoretical at this stage, there are many
potential applications: In ecology, river systems often have tree-
like structures and the spread of new ecotypes or species happens
along the branches of this tree. However, the direct applicability
of evolutionary graph theory to this ecological context is chal-
lenging, as there are many additional biological factors that could
overrule the importance of population structure14. Another
possible application is cancer initiation, where the population
structure of colonic crypts can be a decisive factor in the accu-
mulation of cancerous mutations15. However, it is unclear if
insights from evolutionary graph theory can be directly trans-
ferred to such systems, as the dynamics of cell divisions in these

crypts usually allows for more flexibility than the assumptions
that need to be made to analyze evolutionary graphs and as even
basic issues such as the distribution of fitness effects are often not
known16,17. A straightforward biotechnical application would be
the design of networks that maximize the chance that advanta-
geous mutations take over a population in experimental evolution
or biotechnological applications12. However, in that context, it is
not only important if a mutant type would take over a population,
but also how long this would take18. This is exactly the question
we address here: Which costs do we need to pay in terms of the
time to fixation if we maximize the probability of fixation?

Imagine a graph of N nodes, connected by links between them
(see Fig. 1 for some examples). In each of the nodes, there is a
single individual. We will focus on two types only, a mutant and a
resident. Mutants are assigned a relative fitness r compared to the
resident’s fitness 1. In every time step, an individual is chosen for
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Fig. 1 All graphs of size 10. Overview showing the fixation probability and mean conditional fixation time of all 11,716,571 graphs with 10 nodes as gray dots
for r= 1.25 and Birth-death updating. Certain special types of graphs are portrayed showing their structure. The dashed lines indicate the fixation
probability and time for the complete graph. We highlight in color three categories of graphs: The red graphs are generalized star graphs that provide high
fixation probability to the mutants. A subcategory of these generalized stars are coupled stars with the highest fixation times (star symbols). The blue
graphs are “detour” graphs that tend to have low fixation probability and time. The green “comet-kite” graphs represent part of the left border of the set of
all graphs. They minimize fixation probability while spanning a large range of fixation time values. All other graphs outside these three categories are gray:
Light gray shows those graphs that have a least one node with only a single neighbor, dark gray shows all remaining graphs
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reproduction and its offspring replaces another random indivi-
dual chosen for death.

More formally, we use the Moran process as a model for the
invasion of a mutant type into a resident population19. In each
time step, a single individual is selected to produce one identical
offspring individual. The offspring replaces another individual,
such that the population size remains constant. In the case with
population structure, the individuals of the population are located
on the nodes of the graph1. Different from the standard non-
spatial Moran process, replacement is not taking place among the
whole population, but only among the neighbors of the repro-
ducing individual1,2,4,20,21. Different updating mechanisms are of
interest, as they can strongly influence the results11: In Birth-
death updating (Bd), a random individual is chosen for repro-
duction with probability proportional to its fitness to produce an
identical offspring, which then replaces a random neighbor. This
is sometimes referred to as “invasion process”22. In death-Birth
updating (dB), a random individual dies and this vacant site is
immediately filled by the offspring of one of its neighbors chosen
with a probability proportional to their fitness. This is similar to
the voter model23. There are many more possible updating
mechanisms, e.g. bD and Db, where fitness is attached to the
death step, and it has been shown repeatedly that the details of
this implementation can have a major influence on the dynamics
of the process11,16,21,22,24–26. Here we are focussing on Bd
updating as the most popular version.

The complete graph, where every node is connected to every
other node, corresponds to the well-mixed population that is the
basis for the original Moran process19. It serves as a reference case
to which other graphs can be compared with respect to their
fixation probability and time. Amplifiers and suppressors of
selection are graphs that differ from the complete graph in their
fixation probability in a particular way1,4: An amplifier of selec-
tion in the most strict sense is a graph, where an advantageous
mutant (r > 1) has a higher fixation probability and a dis-
advantageous mutant (r < 1) has a lower fixation probability than
on the complete graph. A suppressor of selection is the reverse.

For weighted graphs, where the dynamics of reproduction is
also affected by properties of the links, it has been shown that
graphs that do not differ too much from the complete graph, also
have a similar fixation probability7. More recently, it has been
shown that some directed graphs can be strong amplifiers of
selection12. However, strong amplification typically comes at a
cost: Many amplifiers of selection have been found to slow down
the fixation process by increasing the time to fixation18,27–29. For
example, Frean et al. showed that the average conditional fixation
time is much higher on the star than on the complete graph18.
The simplest case are graphs such as the cycle, where all nodes
form a ring such that the graph is degree homogeneous. While
such graphs have the same fixation probability as the complete
graph, their fixation time is increased. Overall, there exist some
quite general results for the fixation probability, but the fixation
time depends on the graph structure in a very subtle way and
removing a link can either increase or decrease the fixation
time28.

Results
An exhaustive analysis is possible only for small graphs. In
ref. 11, it was shown numerically that most undirected random
graphs, where each possible link is present with the same prob-
ability, are amplifiers of selection for Bd updating and uniform
placement of the initial mutant (up to size N= 14). For each N, a
large number of Erdös–Rényi graphs30 were generated and their
fixation probability was calculated. Erdös–Rényi graphs are gen-
erated by giving every potential link the same probability to be

created. Using improved numerical methods31, it is possible to
study all graphs up to a certain size instead of looking at the
subset of random graphs and to classify them in terms of fixation
probability and time.

However, the space of all graphs increases rapidly, therefore
different approaches are necessary to search through it. Starting
from size N= 11 (more than 1 billion connected undirected
graphs32), we employ a genetic algorithm to optimize for certain
properties. The genetic algorithm is based on a small group of
graphs that are screened e.g. for a high fixation probability given a
certain mutant fitness r. Those graphs that lead to the highest
fixation probability are maintained in the group, while those with
small fixation probabilities are deleted. They are replaced by
additional graphs which maintain some of the structural proper-
ties of the graphs with high fixation probability. This new group is
screened again to filter the graphs that maximize fixation
probability, and so on. This approach allows us to infer if the
graph features suggested to optimize e.g., fixation probability are
still optimal in much larger graphs, where an exhaustive analysis
is no longer possible. For example, for low fixation time, we
would assume that the genetic algorithm will find the complete
graph, or a very similar graph with many links.

In particular, we focus on a search of those graphs with the
highest and lowest fixation probability and time for a given N
and r. We cannot guarantee that the genetic algorithm actually
finds the global optimum. But for sizes up to N= 10, we
confirm that the genetic algorithm finds exactly the same
optima that we find by systematically scanning through all
graphs. This worked for all the directions: minimizing and
maximizing fixation probability and conditional fixation time.
This serves as a proof-of-concept for the application of the
genetic algorithm and suggests that it works reasonably well for
larger graph sizes as well.

Fixation probability and time are correlated. Modifying the
graph structure to increase the probability that a mutation takes
over often comes at a cost: The modification can at the same time
increase the time it takes for the mutant to take over. To explore
this issue, we visualize all graphs of size N= 10 in the plane of
fixation probability and mean conditional fixation time for par-
ticular fitness values. Figure 1 shows that probability and time are
highly correlated. For example, in biotechnology one could be
interested in designing a system that either amplifies or sup-
presses advantageous mutants. This could be achieved by graphs
that have a high fixation probability and a low fixation time or
vice versa. In this context, the correlation between probability and
time can be seen as a kind of tradeoff.

In addition, Fig. 1 highlights special categories of graphs with
extremal properties, meaning it has either unusually high or
unusually low values in this property. We describe in Methods
how these categories are generated. Some particular graphs are of
special interest: For example, compare the coupled star, which
arises from coupling two smaller stars, and the generalized star
with two central nodes. From a structural point of view, they only
differ in that the leaves are connected to both centers instead of to
only one, respectively. In terms of fixation probability, they are
almost identical, but the coupled star has a much higher fixation
time. As another example, the generalized star with two central
nodes can also be compared to the comet-kite graphs with
relatively low fixation time. They have a similar fixation time, but
are very different in fixation probability. Structurally, they are also
quite distinct: The comet-kite graphs have a large region of fully
connected nodes, and only a few tail nodes, while the generalized
star has a very small central region. The star graphs, the comet-
kites and the detour graphs cover the boundaries in terms of
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fixation probabilities and time, but one has to keep in mind that
Fig. 1 shows only one particular value of r. Figure 2 displays all
graphs of the smaller sizes 6 and 8 in the probability-time-plane
for different fitness values r. The graphs can be clustered in
similar categories as for size 10, with changes for the extreme
graphs. For disadvantageous mutants with fitness value below 1,
here r= 0.5, the categories are roughly mirrored on the vertical
line that represents the complete graph. We also provide a
Supplementary Movie (as an animated.gif file) which shows how
the graphs move in the plane with increasing r.

While we have shown special graphs that are at the boundaries
in terms of fixation probability and time, one should add a note of
caution: If we change the update mechanism, e.g., from selection
at birth and random death (Birth-death) to random birth and
subsequent local selection for birth (death-Birth), the results can
be very different, see Supplementary Figure 1.

The strongest undirected suppressors of selection. Let us now
focus on graphs suppressing selection, i.e., reducing the fixation
probability compared to the fully connected case. With our
numerical algorithm, we can systematically search for the graphs
with the lowest fixation probability for particular values of r.
Studying all graphs up to size N= 10, we find that similar graphs
are the strongest suppressors for different values of r. Fig. 3a
shows these strongest suppressors for sizes 5 through 10. Their
structure is characterized by a “core” part connected by a

“detour”. They resemble a mixture of a completely connected part
with a cycle part. Interestingly, their mean conditional fixation
time lies between the complete graph and the cycle as well. It is
also notable that for weaker selection (r ≈ 1) some kite-like graphs
can become the strongest suppressors.

For larger population sizes, we must resort to a genetic
algorithm, as an exhaustive analysis of all graphs is no longer
feasible (see Methods). The genetic algorithm is based on three
main steps: Competition, recombination and mutation. First, we
start with fully randomly generated graphs. In the competition
step, we choose those graphs with a property we want to optimize
for, like highest fixation probability, as the parents of the next
generation. Then, we recombine two of those parents into a new
graph, and also mutate a small number of links per individual
fully at random. This approach is a mix of deterministically
optimizing for a property while still adding in enough random-
ness to make it less likely to get stuck in a local extremum. Using
this genetic algorithm to search for minimal fixation probability
of the graph sizes 6–10 and r= 1.25 leads to the same graphs as
by systematically searching through all graphs, validating our
approach.

For larger sizes of 11–15, similar structures remain the
strongest suppressors for r= 1.25, but some details change. For
example, at size 15 the connection between the core and the
detour becomes smoother by having more intermediate nodes
which belong to neither group, see Fig. 3b. Moreover, the genetic
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Fig. 2 Changing graph properties with changing fitness. Overview showing the fixation probability and mean conditional fixation time of all graphs with
6 nodes (in total 112 graphs) and 8 nodes (11,117 graphs) as gray dots for different fitness values. The dashed lines indicate the fixation probability and time
for the complete graph. Special graph categories are again shown in colors (cf. Fig. 1.) Light gray shows those graphs that have a least one node with only a
single neighbor, dark gray shows all remaining graphs. It turns out that this distinction can capture the separation of all graphs into two regions to some
extent. In the Supplementary Movie, we show an animated.gif of this figure for changing r
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algorithm also reveals that the optimum can change with r. While
the overall characteristic of a dense core with a detour remains
important for a low fixation probability, additional detours can
appear for r= 2.0, cf. Fig. 3b.

The strongest undirected amplifiers of selection. We can
employ the same approach and search for the highest fixation
probability instead. For small N, a systematic search shows that
the star has the highest fixation probability. For sizes of 11−16,
the star is identified again as the strongest amplifier. Of course,
stronger amplifiers of selection are already known1, but they are

all directed or weighted graphs. Pavlogiannis et al. found a class of
undirected graphs that they call comets which can have a higher
fixation probability than stars for certain graph sizes of more than
100 nodes33. Comet-graphs consist of a complete graph with a
star attached to one of the nodes.

Optimizing the fixation time. Instead of focussing on the
probabilities of fixation, we can also consider the time to fixation.
This time is randomly distributed, with a theoretical lower bound
of N time steps from the emergence of the mutant to fixation. We
focus on the average conditional fixation time here. In our sys-
tematic search, the complete graph always emerged as the graph
with fastest average time to fixation. However, the formal proof
that the complete graph represents the global minimum for the
average fixation time for any undirected and unweighted graph of
size N is still an open challenge. Counterexamples exist for
directed graphs29 and frequency dependent selection27.

Alternatively, we could search for the graphs that maximize the
time to fixation. These are typically star-like structures, which
offer many weakly connected nodes where the type of the node
remains unchanged for very long time. The precise structure of
this graph depends on both the size of the graph N and the fitness
advantage r. For example, for N= 10 and r= 1.25, we find a
coupled star as the slowest structure, cf. Fig. 1.

The optimal graphs change with the selection strength r. For
our numerical approach, we must naturally focus on particular
values of r and particular graph sizes. Classifying a graph
numerically as an amplifier or suppressor of selection in this way
can never be a proof, as only a finite number of r values can be
tested. In a previous numerical study, we used five values of r11 to
classify graphs, as for those graphs a higher number of values for r
did not change the results in any way. A recent paper confirms
the large proportion of amplifiers with exact symbolical calcula-
tions for size 6 and 7 and numerics with small step size in r for
sizes up to 1034. The vast majority of graphs falls into the fol-
lowing three classes of (i) regular graphs (which have the same
fixation probability as the complete graph1), (ii) amplifiers and
(iii) suppressors of selection. But some interesting exceptions
exist, e.g. graphs that reduce the fixation probability for both
advantageous and disadvantageous mutants17, and graphs that
exhibit transitions from being a suppressor to being an amplifier
for increasing r34. In our context, we cannot be entirely sure that
the graph properties stay the same when the fitness value r is
changed: A graph could reduce the fixation probability for certain
values of r, but increase it for others. It turns out that there are
several graphs that are neither a true amplifier nor a true sup-
pressor of selection34. For example, it has been shown that the
cotton-candy graph of size N= 10 (a kite with tail length 1) is a
piecewise suppressor35. Cuesta et al. found a class of graphs called
l-graphs, which are suppressors of selection for size up to N= 10
and for all r36. The associated mathematical proof becomes
challenging for larger N, but it is complemented by a numerical
exploration that indicates that the same result holds for N up to
24. These l-graphs are structurally similar to the graphs in Fig. 3,
their “detour” is simply a link connecting two nodes that are each
connected to half of the “core”.

Figure 4 shows that the detour graphs are actually piecewise
suppressors of selection. They are very strong “suppressors” up to
a certain r and then they transition into being an “amplifier”. We
put this in quotation marks, because these graphs fulfill neither
the original definition of a suppressor, nor the original definition
of an amplifier. The l-graphs on the other hand are true
suppressors of selection, their fixation probability is below the one
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Fig. 3 Graphs with the lowest fixation probability under Birth-death
updating. a For small N, we can exhaustively search through all graphs of
the respective size and find that for r= 0.5 (where we look for high fixation
probability, because of the definition of supressors of selection), r=
1.25,1.5, and 1.75, the strongest suppressors are always identical, but even
for N= 11, such a systematic search is no longer feasible, as there are more
than 109 undirected connected graphs (1,006,700,565). b For larger N, we
thus employ a genetic algorithm to minimize the fixation probability. To
reduce the probability to end up in a local minimum, we performed 5
independent runs of the genetic algorithm and took the graph with the
lowest fixation probability between them. The strongest suppressors found
in this way for r= 1.25 are – as expected – identical for N smaller than 9. For
strong selection, here r= 2.0, the structures are slightly altered, as seen for
N= 7 and N= 9. For larger N, the graphs are structurally very similar to the
smaller structures depicted in (a), but they can still change with r
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of the complete graph for all r > 1 and above the complete graph
for all r < 136.

Discussion
Any application of evolutionary graph theory will need to con-
sider not only the probability of fixation, but also the associated
average time: There is no point in using a perfect amplifier of
selection that makes sure the mutations with highest fitness reach
fixation when the time to achieve this increases to extreme values
simultaneously. Thus, it seems to be crucial to address how
fixation probability and time are related. So far, the focus has
mostly been on the probability of fixation: Recently, there have
been proposals to optimize graph structures to amplify selection
in favour of fit mutants. Pavlogiannis et al. have shown that
arbitrarily strong amplifiers of selection can be constructed from
almost any graph, as long as self loops and weighted links are
allowed12. For undirected and unweighted graphs, there is much
less freedom to construct strong amplifiers. However, the sim-
plicity of undirected and unweighted graphs allows us to ask
which structural properties make a graph a strong amplifier of
selection. For random graphs, it has been shown that the het-
erogeneity of a graph, given by the variance between the average
speed at which nodes are replaced, is strongly correlated with the
fixation probability37. In Supplementary Table 1, we show that
this correlation also holds for all graphs of smaller size, whereas
Supplementary Table 2 and Supplementary Figure 2 show that it
also holds for Erdös–Rényi samples of larger graphs. To construct
strong amplifiers of selection, it thus makes sense to start from
graphs that are highly heterogenous.

However, despite the subtle effects of the graph structure on
fixation time28, as we can see in Fig. 1, there is a conspicuous
correlation between the fixation probability and the average
fixation time. A naive optimization of fixation probability on the
space of all possible undirected and unweighted graphs without
self loops always yields the star (for the sizes and fitness values
above 1 we studied), which also happens to be one of the slowest
fixating graphs. We considered both properties at once, to discern

what properties lead to a graph fixating slowly or fast, or being a
strong amplifier or suppressor. In particular, we found some
categories of graphs that optimize both the fixation probability
and the fixation time simultaneously. Tkladec et al. call the graphs
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Fig. 5 Examples for the graph generator algorithms. a The three steps of the
comet-kite-algorithm. First the fully connected region (in black) is
generated, then the “roots” of the “tails” (in green), then the random
additions to the tails (also in green). b The three steps of the detour-
algorithm. First the fully connected region (in black) is generated, then the
outer region (in blue), then the detour (also in blue). c The steps of the
general star-algorithm. First the bipartite graph (first partition shown in
black) is generated, then connections between the nodes in the first
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where the fixation probability cannot be increased without
increasing the fixation time “Pareto-optimal”29, motivated by the
economic idea of a Pareto optimum where no further improve-
ment is possible without impairing another property.

When maximizing fixation probability and minimizing fixation
time, we found the category of the generalized star38, to which the
star belongs as well. However, all the other graphs in this category
have a much lower fixation time than the star, making certain

ones possibly better when constructing an environment where
mutants with higher fitness are expected to fixate both fast and
reliably.

On the other hand, when minimizing fixation probability and
maximizing fixation time, we obtain the “comet-kites”. They look
like kites with a few extra, comet-like tails. When maximizing
fixation time alone, we obtain coupled stars instead.

Depending on which property is considered more important,
a wide variety of different graphs can be optimal. Furthermore,
we showed how a genetic algorithm can be used to optimize for
certain properties. Not only was the genetic algorithm capable
of finding the graphs for the lower sizes, which we already knew
to be optimal, it could also find interesting graphs for higher
sizes. This approach can be expanded to look for a combination
of fixation probability and time, or in completely different
directions. With the fast computational method we use for
computing fixation probability and time, we are limited to sizes
roughly up to N= 2331. There are many interesting findings for
larger graphs, e.g., that the star is not the strongest amplifier for
all sizes, but that comets can have an even higher fixation
probability33. Our genetic algorithm can be easily combined
with other methods of computation or simulation to tackle
larger graph sizes.

Many open questions remain in the field of evolutionary graph
theory. Our approach of looking at both the probability and the
time of fixation reveals interesting graphs at the edges of
optimality. With such approaches, the construction of a map of
all evolutionary graphs can be envisioned.

Methods
Computing fixation probabilities and times. In order to compute the fixation
probabilities and times, we use the adjacency matrix based approach published in
ref. 31. Note that this approach does not exploit any symmetries of the graphs and
is thus limited by the population size to N ≈ 23.

Generating all graphs. To numerically generate all possible graphs up to a certain
size, we use the software geng from the package “nauty”39. In particular, we can
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generate all connected, undirected graphs of a certain size with the command “geng
size -c”, which can be converted to a more easily readable format with a program
from the same package, showg.

The output can then be used for a shell script or a python script.

Drawing the graphs. We use the Kamada-Kawai force-directed algorithm to plot
graphs40. This algorithm draws graphs in a manner which clearly presents struc-
ture, we use the iGraph implementation41.

Defining special graph categories. Here we describe how we define the special
categories of graphs for Figs. 1 and 2. Our goal is to find those graphs that are
extreme in terms of their fixation probability and time and to identify common
themes in them that allow to define a whole group of graphs, see Fig. 1. For our
purposes, it is easiest give a method on how to construct these graphs.

Comet-kites
Input parameters:

N: Number of nodes in the graph (integer)
c: Number of central, fully connected nodes (integer)
t: Number of comet-like tails connected to one of the central nodes (integer)

Algorithm:

1. Fully connect the first c nodes to generate a complete sub graph (clique) of
size c.

2. Attach a number of t nodes to node number c in a star-like fashion.
3. Iteratively add one link respectively from every one of the remaining N−c−t

nodes randomly somewhere to the tails.

This process shown in Fig. 5a generates a single “comet-kite” graph. For the
figures, we varied c= 1, 2, ..., N−1 and t= 1, 2 for a given N. Higher numbers of
tails resulting in more comet-like graphs were less extreme in terms of fixation
probability and time. Additionally, the standard kites are added, which are the
graphs with a fully connected region and just a single line connecting to one of the
nodes. This is done because it is unlikely to generate them by chance.

Detours
Input parameters:

N: Number of nodes in the graph (integer).
c: Number of central, fully connected nodes (integer).

Algorithm:

1. Fully connect all nodes up to node c to generate a complete sub graph of size c,
which forms the inner region of the graph.

2. Generate a random integer o∈ {2, min(c, N − c − 1)}, which is the number of
outer region nodes. This range of values is chosen to avoid that the outer
region is larger than the inner region and to ensure that there are enough
remaining nodes for the detour.

3. Generate the detour. This means adding links from the remaining N − c − o
nodes randomly somewhere to the outer region or other nodes in the detour
until all nodes in the detour have at least 2 connections.

4. Check whether the outer region nodes are connected with the detour. If not,
repeat.

This generates a single “detour” graph, the algorithm is depicted in Fig. 5b. We
vary c from c= {2, 3, ..., N − 4}. In addition, we add the “standard” detour graphs,
which are those graphs, where o= 2 and where the detour is connected in a ring-
like fashion from one of the outer region nodes to the other.

General stars
Input parameters:

N: Number of nodes in the graph (integer).
a: Number of nodes in the first partition (integer).
p: Likelihood of the nodes in the first partition to be connected to each other

(real number, 0 ≤ p ≤ 1). If p= 0, we have a standard bipartite graph. If p= 1, the
first partition is fully connected.

1. Generate a bipartite graph with a nodes in one partition and N−a nodes in
the other, where all nodes in one partition are connected to all nodes in the
other partition.

2. Randomly connect the nodes within the first partition with probability p.

This generates one “generalized star” graph. We vary a ∈ {1, …, (N/2)} and
p ∈ {0.01, 0.02, …, 1} for a given N.

This process is shown in Fig. 5c.

Coupled stars
Input parameters:

N: Number of nodes in the graph (integer)
a: Number of nodes connected to the first center of the coupled star (integer)

1. Connect the first two nodes to each other. These are the central nodes.

2. Connect a nodes to the first node and N−a−2 nodes to the second node.

We vary a ∈ {0, 1, …, (N − 2/2)} for a given N.

The genetic algorithm. For small N, when looking for extreme graphs, we simply
generated all graphs for a given size and then chose the ones with interesting
properties. This, however, is not possible anymore for increasing sizes, since not
only does the wall time per graph increase exponentially, but so does the number of
graphs.

Using the Erdös–Rényi algorithm to generate a huge number of graphs and
search through them, as in11, also does not seem promising, since, as seen in Fig. 1,
the extreme graphs have very special degree distributions, while the Erdös–Rényi
algorithm strongly tends towards binomial degree distributions42. It is therefore
very likely to miss them entirely.

We thus propose a heuristic approach based on a genetic algorithm. This
algorithm uses a small group of graphs and selects those which optimize a
certain property, such as the fixation time, as parents of the group in the next
time step. As shown in Fig. 6, the offspring graphs that are generated through
recombination and mutation. The procedure is shown in Fig. 6 and can be
summarized as follows:

Parameters:

m: Number of random graphs, here chosen as 120.
k: Number of parents per generation, here chosen as 20.
b: Number of mutations per individual per time step, here chosen as 1.
n: Number of iterations, here chosen as 5000.

1. Generate m random Erdös–Rényi graphs.
2. For all graphs, calculate the property to be optimized.
3. Choose the best k graphs, based on the property, as parents for the following

generation.
4. Generate m new graphs, each with two parents, by recombination. Every link

can be inherited from either parent with a probability of 50%. If a resulting
graph is not connected, it gets recreated until it is.

5. Mutate these graphs with an average of b mutations per individual. A
mutation means here that a random link is either eliminated or created. Since
every possible mutation is a Bernoulli trial, this results in a Binomial
distribution.

6. Repeat steps 2. to 5. n times.

Every link has a (low) likelihood of either being mutated or not, independently.
Since this is effectively a Bernoulli trial, the resulting sum, the number of mutations
per reproduction event, is binomially distributed.

With this approach we only need to look at some relevant graphs for the
property we aim to optimize, as opposed to looking at a huge number of graphs. To
lessen the likelihood of getting stuck in a specific local minimum, the genetic
algorithm can be run multiple times independently and the results can be
compared. In addition, we have tested that this genetic algorithm recovers the
optima for small graph sizes found by systematically scanning all graphs. Those
graphs used by one run of the genetic algorithm to find the graphs with the lowest
fixation probability are shown in Fig. 7.

Note that not all graphs are sampled with the same probability: The genetic
algorithm randomly generates and deletes links. This means that graphs with a
high number of possible representations based on the adjacency matrix are more
likely to be generated, while graphs with a low number of possible
representations have a lower likelihood to be generated. For example, there is
just one representation for the complete graph (every link needs to be present),
while there are N representations for the star graph (every node can be the
center). In general, the more complex a graph is, the more representations it has.
It is difficult to asses whether this has a preference towards extremes or towards
the center of the probability-time plane. Some extreme graphs, such as the
complete graph, and the coupled or generalized star, are quite simple, while the
kite-like and detour graphs can be quite complex. But there are also non-extreme
graphs that can be simple, such as the line graph. This problem could in
principle be remedied by canonically labelling graphs, which would imply that a
unique labelling is used for every graph43. However, there are still many open
mathematical and computational questions concerning such canonical labels44

and it is also not clear how to implement mutation and recombination given
such labels. Moreover, graphs similar to the complete graph in terms of graph
structure usually have similar fixation probabilities7, which is a good attribute
for a genetic algorithm since it assumes that a graph with a higher fixation
probability, for example, is a better primer for the graph with the highest fixation
probability. It is unclear so far how true this would be for a potential canonical
labeling.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availablility
The data underlying our figures is available at https://github.com/m-moeller/
graph_universe.
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Code availabilty
The simulation code is available at https://github.com/m-moeller/graph_universe.
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