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Abstract: CPF (chlorpyrifos) is an organophosphate pesticide used in agricultural and veterinary
applications. Our experiment aimed to explore the effects of thymoquinone (TQ) and/or lycopene
(LP) against CPF-induced neurotoxicity. Wistar rats were categorized into seven groups: first group
served as a control (corn oil only); second group, TQ (10 mg/kg); third group, LP (10 mg/kg);
fourth group, CPF (10 mg/kg) and deemed as CPF toxic control; fifth group, TQ + CPF; sixth group,
(LP + CPF); and seventh group, (TQ + LP + CPF). CPF intoxication inhibited acetylcholinesterase
(AchE), decreased glutathione (GSH) content, and increased levels of malondialdehyde (MDA),
an oxidative stress biomarker. Furthermore, CPF impaired the activity of antioxidant enzymes
including superoxide dismutase (SOD) and catalase (CAT) along with enhancement of the level
of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β.
CPF evoked apoptosis in brain tissue. TQ or LP treatment of CPF-intoxicated rats greatly improved
AchE activity, oxidative state, inflammatory responses, and cell death. Co-administration of TQ and
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LP showed better restoration than their sole treatment. In conclusion, TQ or LP supplementation may
alleviate CPF-induced neuronal injury, most likely due to TQ or LPs’ antioxidant, anti-inflammatory,
and anti-apoptotic effects.

Keywords: thymoquinone; lycopene; organophosphates; oxidative stress; inflammatory cytokines;
caspase 3; neurotoxicity

1. Introduction

Chlorpyrifos (CPF), (O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), is
part of a wide range of chlorinated organophosphate insecticides that is ubiquitously
applied around the world to combat agricultural and domestic insects [1–3]. Alarmingly,
CPF residues can persist for extended periods on the surfaces of water, plants, cereals, and
fruits, posing sources of threat for humans and animals, mainly through dermal absorption,
inhalation, or consuming contaminated food and drinking water [1]. The indiscriminate
utilization of CPF has procured in mounting disquiet about their potential toxic impacts [4].
CPF and its metabolite chlorpyrifos oxon have the ability to prompt a variety of damaging
effects on different body organs [1,3,5]. Due to the lipophilicity of CPF, the nervous
system is a primary target for CPF; hence, it can facilely pass the blood–brain barrier and
dismantle its stability, resulting in disruption of neuronal transmission and development
of neurological disorders [5,6].

CPF has been reported to interfere with acetylcholinesterase (AchE) in central and
peripheral nervous systems, allowing acetylcholine to accumulate in the synaptic cleft,
resulting in uncontrolled cholinergic pathway activation and interrupting neuronal trans-
mission [1,7]. Moreover, a growing body of research proposes that massive creation
of damaging reactive oxygen species (ROS) is another possible mechanism implicated
in CPF-induced neurotoxicity [8–10]. Oxidative stress is known to cause potential injuries
to the cellular biomolecules including lipids, membranes, proteins, and DNA, leading to
mitochondrial perturbation and ultimately apoptosis [1,3,9]. CPF has also been shown to
enhance inflammatory responses by upregulating proinflammatory cytokines, especially
tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) [9].

Natural antioxidants have recently gained worldwide attention due to their tremen-
dous pharmacological potential and are now commonly used as alternative medicine.
Among these, thymoquinone (TQ) is the principal bioactive ingredient derived from
the volatile oil of Nigella sativa black seeds [11]. TQ has varied pharmacological benefits,
including antioxidant and anti-inflammatory properties, by which TQ exerts its neuro-
protective potential as well as treatment of many other diseases [8,11]. TQ antioxidant
activity is ascribed to its potent capability to scavenge various ROS promoting the oxidant
scavenging system by maintaining endogenous antioxidant enzyme property [12] and
inhibiting lipid peroxidation [13]. Furthermore, TQ can reinstate the abnormal matrix
metalloproteinase, lowering ROS levels [14]. TQ has also been proven to suppress proin-
flammatory mediators in various models based on inflammation, such as encephalitis,
colitis, peritonitis, and arthritis [13]. Accordingly, a mounting body of literature reported
that TQ has a neuroprotective potential against a variety of environmental chemicals such
as malathion [15], microcystin [16], lead [17], and acrylamide [18].

Lycopene (LP) is an acyclic non-provitamin A belonging to the carotenoid family.
It is abundantly found in red fruits and vegetables, including tomatoes, watermelon, pink
grapefruit, beets, and pomegranate [19,20]. The potential effect of LP is mostly owing to
its antioxidant [21], anti-inflammatory [22], and anti-apoptotic [23] effects. Because LP is
extremely lipophilic and can easily penetrate the blood–brain barrier, it is plausible that it
creates neuroprotective activity [19]. LP remediation has been found to improve oxidative
stress-mediated neurologic lesions caused by methylmercury [24], aluminum [25], bisphe-
nol A [26], and acrylamide [19]. The antioxidant power of LP is ascribed to the presence
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of conjugated double bonds with its efficacy to quench ROS. Since LP is not synthesized
inside the body and its bioavailability is reduced with age and certain medical conditions,
it is recommended to be supplemented daily [27].

There is a substantial evidence that TQ and LP can cross the blood–brain barrier and
exert neuromodulatory effects [27–29]. Ahmad et al. have measured the concentration
of TQ in brain homogenate using a UHPLC in an attempt to enhance the bioavailability
of TQ to treat epilepsy in a rat model [29]. In another relevant study, LP could cross
the blood–brain barrier and inhibit the aluminum-induced oxidative damage, inflammation,
and apoptosis in rat hippocampal tissue [25]. Moreover, both TQ and LP are reported as
safe chemicals [30–32]. Consistent with this assertion, we hypothesized that supplementing
with TQ and/or LP could reduce CPF-prompted oxidative stress, inflammation, and
promote brain tissue regeneration. Therefore, our research aimed to understand how
effective TQ and/or LP supplementation were at reducing the chronic neurotoxic effects
of CPF. Serum AchE activity, inflammatory cytokines, antioxidant activity, histopathological
modulation, and caspase 3 expression were assessed in the brain.

2. Results
2.1. AchE Activity Evaluation

As explicated in Figure 1, there were no significant changes in AchE activity in TQ
and LP treated groups compared to controls. However, CPF intoxication provoked severe
neurotoxicity presented by an outstanding decrease of AchE activity in serum. On the contrary,
preconditioning of TQ or LP to rats (1 h prior to CPF exposure) led to a partial decrease of AchE
activity. There was a noteworthy increase of AchE activity if TQ and LP were co-administrated
together with CPF when matched to their sole treatment. These observations suggest that TQ
and/or LP treatment modulate CPF-induced neurological injuries.

Figure 1. Dot plot of AchE activity and inflammatory cytokines after treatment with CPF, TQ, and LP.
AchE, acetylcholinesterase; CPF, chlorpyrifos; IL-6, interleukin-6; IL-1β, interleukin-1β; LP, lycopene;
TNF-α, tumor necrosis factor-α; TQ, thymoquinone. Values proffered as the mean ± SE (n = 7).
** p ≤ 0.01 and *** p ≤ 0.001.
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2.2. Serum Proinflammatory Cytokines Assessment

As depicted in Figure 1, neurotoxicity and brain inflammation were induced after CPF
exposure, elucidated by a substantial (p ≤ 0.05) increase in TNF-α, IL-1β, and IL-6 levels
in rat serum when compared to controls. Contrariwise, a decreased toxic impact of CPF
was spotted when CPF-intoxicated rats were treated by TQ or LP, indicated by amendment
of all proinflammatory cytokines levels. Combined CPF treatment with both remedies
(TQ and LP) could evidently labor more worthy betterment of those parameters. These
findings confirm that the amelioration of CPF-induced damage that exerted subsequent
to TQ or/and LP administration was due to their anti-inflammatory effect. Expectedly,
our data revealed the safety of TQ and LP, indicated by no alterations, were observed
in the measured proinflammatory cytokines.

2.3. Brain Lipid Peroxidation and Antioxidant Indices

Lipid peroxidation marker (MDA) and antioxidant enzyme activity (CAT, SOD, and
GSH) following CPF, TQ, or LP administration are displayed in Figure 2. As depicted, TQ
and LP groups did not show any negative impact (p > 0.05) on oxidative stress markers.
However, CPF exposure prompted marked oxidative stress indicated by drastic increases
in the MDA levels alongside an outstanding decrease in CAT and SOD activity and GSH
concentration in brain tissues with respect to the control group (p ≤ 0.05). TQ or LP
treatment notably attenuated the brain oxidative harm inflicted by CPF-intoxication. More
remarkable improvement of oxidative state in group VII (TQ + LP + CPF) in confronting
group V and VI suggests that concurrent use of TQ and LP has potent synergistic antioxi-
dant properties against CPF toxicity.

Figure 2. Dot plot of oxidative/antioxidative status after treatment with CPF, TQ, and LP. CAT,
catalase; CPF, chlorpyrifos; GSH, reduced glutathione; LP, lycopene; MDA, malondialdehyde; SOD,
superoxide dismutase; TQ, thymoquinone. Values are proffered as the mean± SE (n = 7). *** p≤ 0.001.
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2.4. Histopathological Alteration

The histopathological changes were assessed in the cerebrum and cerebellum tissue
following CPF exposure to emphasize the obtained findings. As considered to cerebral
cortex tissue specimen (Figure 3; control (Figure 3A), TQ (Figure 3B) and LP (Figure 3C)
groups) displayed normal features of histological architecture of the cerebral cortex. Con-
trariwise, the cerebral cortex following CPF intoxication exhibited severely degenerated
to necrotic neurons. Degenerated neurons had intracytoplasmic vacuoles, vague cell
boundaries, with a significant number of degraded cell residue structures associated with
inflammatory cell infiltrations, while necrotic neurons were characterized by pyknotic
nuclei with the presence of satellitosis (Figure 3D). Certain necrotic neurons showed tigrol-
ysis with central chromatolysis (Figure 3E). In addition, CPF induced severe vacuolation
in the neuropil (Figure 3F). Focal areas of malacia were observed in the cerebral cortex.
Severe congestion and hemorrhage of blood vessels were also pronounced in this group.
With concurrent use of CPF and TQ, there was a marked reduction in the number of degen-
erated and necrotic neurons compared to untreated CPF rats (Figure 3G). Moreover, there
was mild congestion of blood capillaries with no evidence of vacuolation in the neuropil.
Foci of degenerated/necrotic neurons, gliosis, and neuronophagia were still observed
in the cerebral cortex in CPF + LP treated rats (Figure 3H). The neuroprotective effect was
more distinct in the CPF + TQ + LP treated group, expounded by a great improvement
in the histopathological lesions induced by CPF. Congestion of meningeal blood vessels
and the presence of few shrunken neurons were the only findings in the cerebral cortex
in these groups (Figure 3I).
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Figure 3. Histopathology of the cerebrum in control and CPF, TQ, and LP treated groups (H&E stain). Apparently, normal
neurons were observed in control (A), TQ (B) and LP (C) treated rats with null to minimal apoptotic neurons. (D–F) Cerebral
cortex of CPF-treated rats showing neuronal degeneration (tigrolysis; black arrow) (D), central chromatolysis (red arrow)
(E) and neuropile vacuolation (black arrowhead) (F). A low number of shrunken apoptotic neurons (yellow arrows) was
observed in TQ (G), LP (H) and combination (I) groups co-treated with CPF.
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With respect to cerebellum histological screening of control, TQ and LP-treated groups
revealed normal architecture of brain tissues as exhibited in Figure 4A (control), Figure 4B
(TQ), Figure 4C (LP). Contrariwise, CPF-intoxicated rats evinced that most Purkinje cells
were shrunken with karyolitic nuclei and variable degrees of chromatolysis (Figure 4D).
Loss in Purkinje cells, satellitosis, and neuronophagia were the predominant findings
in most sections in this group (Figure 4E). Disorganization of the molecular cell layer was
also observed between the Purkinje cell layer and other layers in certain areas (Figure 4F).
Additionally, there were impoverished dendrites in certain areas of the cerebellar cortex.
On the contrary, with the concurrent use of TQ or LP with CPF intoxication, the cerebellar
architecture was relatively restored to a normal picture in comparison to untreated CPF
rats (Figure 4G, CPF + TQ and Figure 4H, CPF + LP). There was a significant decrease
in the severity and distribution of cerebellar lesions in these groups. A decrease in the num-
ber of necrotic Purkinje cell layer in the cerebellar cortex and restoration of molecular cell
layer was observed. In CPF + TQ + LP treated rats, remarkable amelioration of pathological
alterations was noticed (Figure 4I).
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5F), and TQ + LP (Figure 5H) treated groups versus LP- (Figure 5G) treated groups after 
CPF intoxication. Despite the fact that LP + CPF treated rats had less cleaved caspase 3 
activity than CPF intoxicated group, few neurons showed weak to moderate staining of 
cleaved caspase 3 (Figure 5H). Cleaved caspase 3 positivity (positive cells/total cells) was 
quantified in all groups and the data were analyzed statistically utilizing one-way 
ANOVA. Compared to CPF intoxicated group, the positivity of cleaved caspase 3 was 
significantly reduced in control (untreated and TQ or LP treated) groups and CPF rats 
cotreated with TQ, LP, or TQ + LP combination (Figure 5I). 

Figure 4. Histopathology of the cerebellum in control and CPF, TQ, and LP treated groups (H&E stain). Nearly normal
Purkinje neurons were observed in control (A), TQ- (B) and LP- (C) treated rats with null to mild degeneration of few
neurons. (D–F) Cerebellum of CPF treated rats showing Purkinje cell apoptosis (black arrows) (D), loss (black arrowheads)
(E) and disorganization with molecular cell layer (F). Marked decreases in degenerated/apoptotic Purkinje cells were
observed in TQ (G), LP (H) and combination (I) groups co-treated with CPF.

Along with the forementioned biochemical data, there were no histological alterations
detected either in the cerebrum or cerebellum after treatment with TQ or LP.
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2.5. Immunohistochemical Data

Alterations in cleaved caspase 3 expressions following treatment with CPF, TQ and/or
LP in cerebral sections are presented in Figure 5. CPF intoxication distinctly boosted
cleaved caspase 3 expressions in the cytoplasm and nuclei of neurons and glial cells
in the cerebral sections elucidated inception of the apoptotic pathways, contrary to control
group (Figure 5D,E). Co-administration of TQ (Figure 5F) or LP (Figure 5G) or both
(Figure 5H) could mitigate the CPF-prompted damage displayed by a decline in cleaved
caspase 3 protein expression. The reduction was more pronounced in TQ (Figure 5F),
and TQ + LP (Figure 5H) treated groups versus LP- (Figure 5G) treated groups after CPF
intoxication. Despite the fact that LP + CPF treated rats had less cleaved caspase 3 activity
than CPF intoxicated group, few neurons showed weak to moderate staining of cleaved
caspase 3 (Figure 5H). Cleaved caspase 3 positivity (positive cells/total cells) was quantified
in all groups and the data were analyzed statistically utilizing one-way ANOVA. Compared
to CPF intoxicated group, the positivity of cleaved caspase 3 was significantly reduced
in control (untreated and TQ or LP treated) groups and CPF rats cotreated with TQ, LP,
or TQ + LP combination (Figure 5I).

Figure 5. Immunohistochemical staining of cleaved caspase 3 in cerebral sections. (A–C) Almost all the neurons in control
(A), TQ- (B) and LP- (C) treated groups had no cleaved caspase 3 staining. (D,E) Many neurons displayed strong staining
for cleaved caspase 3 in CPF intoxicated rats. (F–H) Few neurons were weakly to moderately positive for cleaved caspase 3
in CPF intoxicated rats co-treated with TQ (F), LP (G) or both (H). (I) Bar graph represents the relative cleaved caspase
3 positivity in different groups in contrast to CPF intoxicated group. Substantial differences are exhibited as: * p ≤ 0.05,
** p ≤ 0.01.
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Alterations in cleaved caspase 3 expressions after treatment with CPF, TQ, and/or
LP in cerebellar sections are presented in Figure 6. In control, TQ and LP treated rats,
all the neurons in molecular, Purkinje and granular cell layers had no detectable level
of cleaved caspase 3 protein expression (Figure 6A–C). CPF intoxication promoted cleaved
caspase 3 expression in the cytoplasm and nuclei of numerous neurons in the Purkinje
cell layer and few neurons in the granular and molecular cell layers, and certain glial
cells were also positive to caspase 3 in the molecular cell layer, demonstrating inception
of the apoptotic pathways in contrast to control group (Figure 6D,E). Reduction in cleaved
caspase-positive Purkinje cells was observed in CPF-intoxicated rats if co-treated with TQ,
LP, or combined (Figure 6F–H). Cleaved caspase 3 staining was distinctly reduced if CPF
was concurrently used with TQ or TQ + LP compared to LP treated group (Figure 6G).
Cleaved caspase 3 positivity (positive cells/total cells) was quantified in all groups and
the data were analyzed statistically utilizing one-way ANOVA. Compared to CPF intox-
icated rats, the proportion of cleaved caspase 3 positive cells was dramatically lowered
in control, TQ, and LP groups as well as in the CPF rats co-treated with TQ or TQ + LP.
There was a tendency for cleaved caspase 3 to be decreased in LP + CPF group but was not
statistically significant (Figure 6I). In addition, the caspase 3 expression exhibited normal
levels of expression in TQ and LP groups when compared to control group.

Figure 6. Immunohistochemical staining of cleaved caspase 3 in the cerebellum. All the neurons in molecular, Purkinje and
granular cell layers displayed no caspase 3 staining in control (A), TQ- (B) and LP- (C) treated rats. (D,E) Most Purkinje
cells and many neurons in granular and molecular cell layers showed strong caspase 3 staining in CPF intoxicated rats. (F)
Most neurons in all the cerebellar layers had no caspase 3 staining in TQ + CPF treated rats. (G) Certain Purkinje cells were
vacuolated and moderately stained with cleaved caspase 3 in LP + CPF treated rats. (H) All the neurons in the cerebellar
sections were devoid of caspase 3 staining in TQ + LP + CPF treated rats. (I) Bar graph represents the relative cleaved
caspase 3 positivity in cerebellar sections of different groups compared to CPF intoxicated group. Substantial differences are
exhibited as: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.
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3. Discussion

CPF is an organophosphorus pesticide that is profoundly used to combat a vari-
ety of insects. Environmental, occupational, and dietary exposure to CPF have all been
implicated as health concerns in both animals and humans, with various deleterious out-
comes [3,6,10]. The brain is deemed the primary target for CPF toxicity; in particular, its
repeated exposure causes various extents of neuronal deterioration [33]. CPF functions
as a neurotoxic by suppressing AchE, a membrane-bound enzyme essential for acetyl-
choline (Ach) metabolism at the neuro-muscular junctions and cholinergic synapses [34].
CPF inhibits AchE irreversibly by phosphorylating the enzyme’s serine OH group, leading
to Ach buildup in the brain and hyperstimulation of the cholinergic nerve system, resulting
in a variety of clinical disorders [35]. Along with the aforementioned, the current work
affirmed that CPF induced neurotoxicity was elucidated by a substantial decrease in AchE
levels in CPF-intoxicated rats compared to controls. AchE is a pivotal enzyme in the ner-
vous system; wherefore, it is considered as a standard biomarker for organophosphate-
induced neurotoxicity [36]. These findings are congruent with those obtained by preceding
research by AlKahtane et al. [7], Fereidouni et al. [37], and Mahmoud et al. [10], who
demonstrated that CPF induces neurotoxicity associated with lowered levels of AchE.
Similarly, decreased serum levels of AchE may be a reverberation of its diminished activity
in the brain after CPF-stimulated cholinergic transmission disruption [5].

In addition to AchE suppression, other evidence proposed that excessive production
of ROS and lipid peroxidation (LPO) are other mechanisms implicated in CPF-induced
neuropathy [5,9,10]. ROS (hydroxyl radical, OH•; hydrogen peroxide, H2O2; superoxide
anion, O2

•−) and reactive nitrogen species (nitric oxide, NO and peroxynitrite, ONOO−)
are reported to be invigorated during CPF intoxication as a result of exhaustion of the en-
dogenous antioxidant molecules [5,7,35]. Verma et al. [6] has documented alterations
in the antioxidant system, including superoxide dismutase (SOD), catalase (CAT), and
reduced glutathione (GSH) in CPF-intoxicated rats. Thence, oxidative damage of the brain
is triggered by several mechanisms such as enhancement of LPO, mitochondrial disrup-
tion, DNA damage, protein unfolding, and changes in pH and the intracellular calcium
brought about the promotion of cell death [7]. Consistently, the current study expounds
that ROS contributed to the CPF-induced neurotoxicity, as indicated by a dramatic re-
duction in the enzymatic activities of SOD and CAT, as well as decreases in GSH level
detected in the brain tissue. It is well known that GSH is an essential endogenous non-
enzymatic antioxidant that boosts free radical detoxification. The cysteine residue of GSH
provides a nucleophilic thiol that is paramount in the detoxification of electrophilic metabo-
lites. Besides, GSH is important for the regeneration of the enzymatic antioxidants, GPx
and glutathione-S-transferase (GST), and is required for maintaining cellular antioxidant
competence [35,38].

Moreover, SOD is an endogenous enzyme that functions as the initial line of enzymatic
defense in mitochondria, rapidly catalyzing dismutase O2

•− to O2 and H2O2; thereafter,
CAT degrades the formed H2O2 to water in a process that helps to quench the induced
oxidative damage [39]. However, in a condition where CAT is exhausted, Fenton’s reaction
occurs and produces large amounts of OH• (the most harmful reactive radical), which
aggressively attacks the membrane lipids, triggering LPO and formation of MDA [40].
MDA, a well-known marker for LPO, indicates cell injury incurred by phospholipid break-
down. MDA can also interact with other vital subcellular molecules such as DNA and
proteins, which complicates the matters. The present investigation revealed worthy in-
creases in MDA levels, which affirms the existence of membrane injury. In consonance
with these findings are those of Aly et al. [38], who confirmed enhanced MDA production
after CPF exposure. Our oxidative/antioxidants appeared consistent with those obtained
by previous reports that revealed incompetency in the cellular antioxidants in the neu-
ronal tissue following CPF exposure [9,10]. Besides, Albasher et al. [5] has used the CPF
as a model for induction of oxidative hurt in the brain tissue. Because of the higher lipid
content of the brain, lower antioxidant levels, and rapid oxygen exhaustion, the brain
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was more vulnerable to the progression of oxidative stress compared to other body or-
gans. The high lipophilicity of CPF property plays a central role in potentiating the LPO
in brain tissue [6]. These results were confirmed by the histopathological screening, which
emphasizes the presence of LPO in the neuronal cell membrane, as indicated by brain
cell degeneration, vague cell boundaries, thin cytoplasm, and darkly spotted nuclei with
a significant number of degraded cell remnant structures.

Another finding has been spotted in the current research, remarkable enhanced levels
of proinflammatory cytokines; IL-1β, IL-6, and TNF-α, following CPF intoxication. CPF
exposure causes induction of acute-phase inflammatory reactions, resulting in genera-
tion of such cytokines, supposing another mechanism involved in CPF-induced neuronal
injuries [10]. Oxidative stress and enhanced generation of ROS are thought to trigger
an intracellular signaling cascade that increases the expression of proinflammatory genes
and the release of inflammatory cytokines, leading to a heavy inflammatory response [7].
Our histopathological examination assured this impact, which was indicated by remark-
able inflammatory cell infiltrations in brain tissues. Our findings confirm those obtained
by Albasher et al. [5], AlKahtane et al. [7], and Mahmoud et al. [10].

Increasing evidence suggests that CPF promotes apoptosis via producing ROS, which
alters mitochondrial membrane potency, resulting in the liberation of the cytochrome c into
the cytosol, triggering the cleaved caspase 3; thereby, the apoptotic cascade is initiated [41].
In consistence, the present study showed cellular apoptosis observed by an upregulated
expression of activated caspase 3 protein after CPF-intoxication in the cortical tissue.

TQ is reported to have antioxidant and anti-inflammatory activities executed by ROS
scavenging power and antioxidant boosting properties [16]. LP is also substantive to have
the same beneficial pharmacological activities. In the current study, treatment with TQ
and/or LP weakened CPF-induced neurotoxicity as shown by noteworthy restoration
of serum AchE levels, substantial reductions of proinflammatory cytokines, and amend-
ment of the oxidative/antioxidative status. In addition, refinement of neuro-histological
changes as well as reduction of apoptosis (indicated by downregulation of caspase 3 expres-
sion) was noticed in our study after TQ and LP supplementations. The physicochemical
properties of TQ and LP are pivotal in their antioxidant potentiality. Their chemical struc-
tures comprise a phenol ring formed of carbon and hydrogen atoms (H+)(LP; C40H56,
TQ;C10H12O2) with several double bonds conferring free delocalization of electrons and
offering a generous source of H+ essential for neutralization of ROS; herein, more func-
tional GSH becomes free in the cytosol, improving the antioxidant state [20]. Previous
researches proposed various implied mechanisms for the antioxidant potential of TQ,
which includes forthright interaction of TQ with GSH or NADP to form thymohydro-
quinone or glutathionyldihydro-TQ complexes that are able to quench ROS and boost
the expression of antioxidant genes [42,43].

LP is a lipophilic natural agent that has the advantage of incorporating with the lipid
bilayer in the cell membrane. Since ROS can directly interact with the cell membrane’s
unsaturated fatty acids content, causing LPO, LP can act as a substrate for the harmful ROS
instead. During this process, more H+ is abstracted from LP rather than unsaturated fatty
acids, protecting the neuronal membrane from the impact of CPF-induced LPO [44,45],
which is evidenced in this study by a substantial decrease in MDA levels. Furthermore, LP
can attenuate oxidative stress by triggering the nuclear factor-2 erythroid related factor-2
pathway, enhancing the antioxidant genes and proteins [46]. Moreover, previous researches
have shown that LP exerts its anti-inflammatory effect via suppressing the NF–κB pathway
and limiting the generation of proinflammatory cytokines, such as TNF and ILs [47].

Along with the previous reports [30–32], the present work also affirms the extreme
safety of both natural antioxidants (TQ and LP), indicated by no changes in biochemical
parameters, histopathological data, and caspase 3 expression. LD50 of TQ was recorded
at 794 and 2400 mg/kg in rats and mice, respectively, when given orally [48]. In another
study conducted by Jonker and his group demonstrated that LP is safe at high doses:
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586 mg/kg in male and 616 mg/kg body weight in female rats when administrated orally
for 90 days [30].

In this study, co-supplementation of TQ and LP offered an abundance of phenol
rings and H+ atoms by which they could distinctly amend all oxidative and inflammatory
biomarkers in an excellent way versus their discrete treatments. These mechanisms were
also reflected in the progression of cell apoptosis in the brain tissue exhibited by observ-
able downregulation of the cleaved caspase 3 expression after CPF-intoxication. Taken
all together, it is assumed that the promoted ameliorative effects of their simultaneous
administration were attributable to mainly the synergistic antioxidant activity of both
remedies. Figure 7 summarizes the mechanistic insights behind the protective potential
of TQ and LP during CPF-induced neurotoxicity.
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4. Materials and Methods
4.1. Chemicals

CPF was taken up from Egyptian Pesticides and Chemicals Company (EPIC), Cairo,
Egypt. TQ and LP were supplied from Sigma Aldrich (Saint Louis, MO, USA), purity≥ 98%
and 90%, respectively. AchE was obtained from R&D (Mannheim, Germany). Interleukin-
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1β (IL-1β) and interleukin-6 (IL-6) were gained from Glory Science Co. Ltd. (Del Rio, TX,
USA) and tumor necrosis factor-α (TNF-α) was bought from BioSource International Inc.
(Camarillo, CA, USA). Diagnostic kits for assessment of malondialdehyde (MDA), reduced
glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were gained from
Biodiagnostic Company (Cairo, Egypt).

4.2. Animals and Ethical Statement

Male Wistar Albino rats weighing 185–215 g were obtained from the Egyptian Orga-
nization for Biological Products and Vaccines. Rats were fed a conventional pellet diet
and had free access to water under a controlled environment (25 ◦C temperature, 12:12 h
light/dark cycle, and 45–55% humidity). All animal treatments and experimental proce-
dures were conducted according to the directory of laboratory animals care and use and
approved by the Faculty of Veterinary Medicine Ethical Committee of Research, Benha
University, Egypt (approval no: BUFVTM 05-03-21).

4.3. Experimental Protocol

After acclimation, experimental rats were assigned into 7 equable groups (7 rats each).
Group I (Control): rats received corn oil only as a vehicle. Group II (TQ): rats received TQ
(10 mg/kg, orally via gavage) [15]. Group III (LP): rats were given LP (10 mg/kg, orally via
gavage) [19]. Group IV (CPF): rats received CPF (10 mg/kg, orally via gavage) [10]. Group
V (TQ + CPF): rats were given TQ and CPF. Group VI (LP + CPF): rats were given LP and
CPF. Group VII (TQ + LP + CPF): rats were treated with TQ, LP, and CPF at the same doses
mentioned above. Notably, TQ and LP were administrated one hour prior to CPF. All
of the treatments were administered orally once a day for 28 sequential days.

4.4. Samples Collection and Processing

After 24 h had passed since the preceding treatment, entire groups were euthanized
by xylazine: ketamine mixture (1:1) and 0.15 mL/100 gm body weight intraperitoneally.
Blood specimen was gathered forthwith from retro-orbital venous plexus and centrifuged
for 15 min at 1200× g. Serum was collected and preserved at −20 ◦C for analysis of AchE
and proinflammatory mediators (IL-1β, IL-6, and TNF-α) levels. The brain was quickly
harvested and suffused in cold physiological saline to get rid of blood clots and RBCs,
and then wiped dry with a filter paper. Thereafter, each tissue sample was split into two
portions; one portion was kept in a 10% buffered formalin for forthcoming histoarchitecture
and immunohistochemically inspections. The other portion was processed as subsequently
mentioned for oxidative stress biomarkers assessment.

4.5. Assessment of Serum AchE Activity and Proinflammatory Biomarkers

The activity of AchE was assessed according to the guidelines set out by Ellman
et al. [46]. Proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were measured utilizing
commercialized ELISA reagents according to the manufacturer’s directives, and the ab-
sorbance estimates were assessed using an automated ELISA analyzer at 450 nm.

4.6. Assays of Oxidative Stress Parameters

One gram of tissue sample was homogenized in ice-cold buffered sol (K3PO4 50 mmol,
EDTA 1 mmol, pH 7.5) by means of an electrical homogenizer. Then, the resultant ho-
mogenate was centrifuged in a cooling centrifuge (5000 rpm till 10 min at 4 ◦C). The su-
pernatant was aliquoted and kept at −80 ◦C for assessment of MDA levels and activ-
ities of GSH, SOD, and CAT, utilizing special kits from Laboratory Biodiagnostic Co.,
Giza, Egypt.
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4.7. Histoarchitecture and Immunohistochemical Examination

After appropriate fixation (in buffered 10% formalin for a minimum of 24 h at room
temperature), the harvested brain tissue specimens (cerebrum and cerebellum) were rinsed
down the flood of faucet water for 10 min and thereafter dehydrated by immersion in sequent
ethanol dilutions. Afterward, they cleared up in xylene solution. Specimens were incorporated
into paraffin at 60 ◦C and severed (5 µm) before being stained with hematoxylin and eosin
(H&E) to examine the histoarchitectural alterations by a bright-field microscope.

For immunohistochemical assessment, the paraffin blocks were dewaxed and des-
iccated by inundations in consecutive solutions of ethanol. Afterward, antigen retrieval
was accomplished by processing tissue slices with antigen retrieval solution for 50 min
in 10 mM citrate buffer (pH 6.0) using a steamer, followed by slow cooling. The peroxidases
were repressed by utilizing a 3% H2O2 sol for 30 min and then washed in PBS 3 times
(each for 5 min). Goat serum (5%) block up solution was then added for 20 min to block
non-specific places (DAKO X 0907, Carpinteria, CA, USA) at room temperature for 2 h.
Incubation with mouse anti-rat polyclonal anti-activated caspase 3 antibody (Neomarkers,
Fremont, CA, USA; dilution 1:50) occurred overnight at 4 ◦C. Subsequently, the slide was
washed out 3 times with PBS before being incubated using biotinylated anti-mouse IgG
(DAKO LSAB 2 Kit) for 1 h at 37 ◦C. Ultimately, the brown staining was evident with
3,3-diaminobenzidine tetrahydrochloride (DAB; Dako, Tokyo, Japan) and the slide counter-
stained with Mayer’s hematoxylin. Image J software was used to record staining intensity
and positivity.

4.8. Statistical Analysis

Statistical analyses and visualization were completed using GraphPad PRISM 7.0
(San Diego, CA, USA). The significant divergence through multiple groups comparisons
were analyzed by one-way ANOVA and Duncan test as a post hoc test was used. Con-
cerning immunohistochemistry scoring, the data from whole groups were normalized
against the control group and graphed. Values are expressed as mean ± SE and considered
statistically respectable at p ≤ 0.05.

5. Conclusions

CPF evoked noteworthy neurotoxic effects in the rat brain indicated by reduced serum
AchE levels, increased proinflammatory cytokines, and alteration of the oxidative state.
TQ and LP possess the power to conserve the neurons from CPF-prompted neurotoxicity,
possibly by counteracting oxidative stress and apoptosis, which may be ascribed to their
antioxidant and anti-inflammatory properties. Supplementation with TQ or LP only
mitigates such damage in CPF-intoxicated animals. A combined treatment of both remedies
exerts more betterment than their individual administration.
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