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SUMMARY

The network approach is increasingly being applied to the investigation of normal brain

function and its impairment. In the present review, we introduce the main methodological

approaches employed for the analysis of resting-state neuroimaging data in Parkinson’s dis-

ease studies. We then summarize the results of recent studies that used a functional net-

work perspective to evaluate the changes underlying different manifestations of Parkinson’s

disease, with an emphasis on its cognitive symptoms. Despite the variability reported by

many studies, these methods show promise as tools for shedding light on the pathophysio-

logical substrates of different aspects of Parkinson’s disease, as well as for differential diagno-

sis, treatment monitoring and establishment of imaging biomarkers for more severe clinical

outcomes.

Introduction

Parkinson’s disease (PD) is a chronic progressive neurological pro-

cess. Clinically, PD is mainly characterized by motor symptoms

derived from the severe loss of dopaminergic neurons in the sub-

stantia nigra pars compacta. PD is not, however, merely a motor

disease. Cognitive, neuropsychiatric and autonomic manifesta-

tions are highly prevalent and may precede the onset of motor

symptoms [1].

For any given task, a host of distributed, functionally specialized

brain areas work in concert to integrate sensorial inputs with pre-

viously stored information, as well as with executive and motor

regions to generate an appropriate behavior. The set of brain

regions that interact in this manner make up large-scale func-

tional networks [2]. A network perspective of brain function,

accounting for the interactions between regions, offers a poten-

tially useful framework for the study of normal functioning and

also for the identification of relevant intermediate pathological

phenotypes [3]. Despite being in its early stages, the network

approach applied to PD has shown potential clinical usefulness as

a tool for differential diagnosis, monitoring disease progression,

and treatment response, and also for the development of biomar-

kers for complications such as dementia. Noninvasive in vivo neu-

roimaging techniques also offer an unprecedented opportunity to

characterize the pathophysiological substrates underlying differ-

ent manifestations of the disease.

In the past decade, seminal studies [4–7] showed that coherent

patterns of spontaneous neural oscillations are observed during

“rest”. The analysis of these oscillations reveals regions with corre-

lated and anticorrelated activity, organized into large-scale intrin-

sic connectivity networks (ICNs). These networks display a highly

robust pattern of connectivity, with high test–retest reliability

[8–10], and a high correspondence with task-related networks

[11]. Taken together, these data suggest that task-free or resting-

state techniques are a useful tool to probe the brain’s intrinsic con-

nectivity architecture [12] with potential clinical applications. Of

note, it has recently been demonstrated that the sites where inva-

sive (i.e., deep-brain) stimulation and those where noninvasive

(transcranial magnetic stimulation or transcranial direct current

stimulation) are effective in PD can be shown to belong to the

same brain networks through the analysis of resting-state data

[13].

The number of studies addressing resting-state functional con-

nectivity has increased considerably in the last few years, and the

clinical impact of this type of analysis is currently being estab-

lished. For these reasons, in this review we describe recent neuroi-

maging studies addressing alterations in PD through a network

approach, mainly focusing on resting-state functional connectivity
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studies. We put special emphasis on studies that searched for con-

nectivity changes underlying cognitive deficits in PD, as there are

currently no validated biomarkers for predicting or following

these highly frequent and disabling complications. The studies

included employed different methodologies, from the analysis of

individual circuits or subsystems to whole-brain approaches, both

through the assessment of ICNs and graph-theoretical techniques.

Cognitive Deficits in PD

Despite considerable interindividual variation, the vast majority of

patients with PD develop cognitive impairments over time. By

20 years of disease duration, up to 80% of patients develop

dementia [14], with a mean time from onset of PD to dementia of

10 years [15]. PD-related cognitive deficits are heterogeneous

[16], mainly affecting attention and executive functions [17–20],

memory [19,21], psychomotor speed [19,21], and visuospatial/vi-

suoperceptual abilities [18,21,22]. Clinical presentations, response

to therapy, and prognostic implications indicate the existence of

two overlapping cognitive syndromes in PD: frontostriatal deficits,

mainly related to dopaminergic imbalances [23]; and a posterior

cortical syndrome, not related to dopamine deficiency. As the name

implies, the latter syndrome is characterized by impairments with

a putative posterior cortical basis, such as semantic fluency and vi-

suospatial/visuoperceptual deficits [18]. Importantly, the posterior

cortical syndrome, possibly related to gray matter synucleinopathy

and/or Alzheimer’s disease-type pathology [24], is associated with

a higher risk of dementia [18,25,26]. Neuroimaging is probably

the best tool to try to disentangle the neural underpinnings of

both syndromes, with potential impact on risk stratification once

disease-modifying treatments become available.

Resting-State Connectivity Analyses

Resting-state fMRI (RS-fMRI) connectivity methods are based on

the temporal correlations of spontaneous blood oxygen level-

dependent (BOLD) signal fluctuations between different brain

areas [27–29]. Figures 1 and 2 describe two of the most frequently

used approaches for connectivity analyses in RS-fMRI studies:

seed-based analysis and independent component analysis (ICA).

Given that dopamine plays a prominent role in striatal connectiv-

ity [30] and that dopaminergic deficits are responsible for many of

PD’s main clinical manifestations, the majority of RS-fMRI studies

in PD have focused on the connectivity of striatal networks. More

recently, other ICNs have also been evaluated [31,32].

Results from RS-fMRI studies in PD are not always consistent;

this may be related to the inclusion of small study samples and

variable use of methodological approaches, including image pre-

processing steps such as global signal regression [33]. Additionally,

head motion is often insufficiently reported and controlled for.

Motion artifacts can bias connectivity estimates, and standard pre-

processing methods may not be enough to correct them [34,35]. A

discussion of state-of-the-art procedures to reduce these artifacts

is beyond the scope of this review, but this issue is especially rele-

vant when studying patients with movement disorders. Also,

dopaminergic neurotransmission influences ICN functional con-

nectivity [36,37] as well as network topology [38]. Consequently,

medication status (i.e., on-state, off-state, or drug-na€ıve patients)

certainly contributes to the variability in study findings. Finally,

the manifestations of different clinical phenotypes of PD appear to

have different functional substrates [39,40]. Clinical heterogene-

ity can therefore account for some of the variability in study

findings.

Figure 1 Seed-based correlation techniques are straightforward and easily interpretable methods in functional connectivity analysis [96] that necessitate

a priori hypotheses for seed definition. Briefly, the mean time courses of regions of interest (ROI)—representing structures or circuits of interest, or the

main nodes of ICNs—are extracted. In seed-to-seed (or node-to-node) techniques, the mean time course of each ROI is correlated with the mean time

courses of every other ROI, limiting the analysis to the circuits of interest. Alternatively, in seed-to-whole-brain analyses, ROI time courses are used as

regressors against the time courses of all voxels in the brain. Whole-brain r-correlation maps—in which the value assigned to each voxel is given by the

correlation coefficient between its time series and the time series of the ROI in question—are thus generated, corresponding to the functional

connectivity maps of each ROI. Subsequently, Fisher’s r-to-z transformation is typically applied to ensure that the correlation coefficients are

approximately normally distributed. The resulting connectivity maps are then analyzed using voxelwise statistical testing.
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Striatal Functional Connectivity in PD

Studies using seed-to-whole-brain approaches have found

reduced connectivity between the striatal nuclei, especially the

putamen, and diffuse cortical/mesolimbic areas in patients with

PD off medication [41–43]. In patients on medication, reduced

connectivity with subcortical regions and increased connectivity

with motor/premotor cortical areas have been described [43–45].

Baudrexel et al. [46] focused on subthalamic nucleus (STN) con-

nectivity in off-state patients with PD. The authors found

increased connectivity between the STN and primary sensorimo-

tor cortical regions. A recent study confirmed these findings in

early, drug na€ıve as well as in off-state moderate patients with PD

[47].

A study by our group recently investigated frontostriatal con-

nectivity changes associated with the presence of apathy in PD.

Patients were assessed on medication. We found apathy to be

associated with connectivity reductions, mainly involving the left

limbic frontostriatal circuit (i.e., ventral striatum and orbitofrontal

cortex) [48].

Using ICA and dual regression, Szewczyk-Krolikowski et al.

[49] described reduced connectivity between the basal ganglia

network and widespread frontal, temporal, parietal cortical as well

as striatal and brainstem regions in patients off medication com-

pared with healthy controls as well as with patients on medica-

tion. These connectivity changes yielded an accuracy of 85% in

differentiating patients from controls.

Finally, Kahan et al. [50] recently used a different approach

to the study of resting-state connectivity in corticostriatal–tha-

lamic pathways in PD. The authors assessed a sample of patients

who had undergone STN deep-brain stimulation (STN-DBS),

acquiring RS-fMRI data both with and without active

Figure 2 Independent component analysis (ICA) is a data-driven procedure that identifies coherent spatial signal fluctuation patterns in the dataset,

extracting maximally independent components associated with the underlying signal sources—such as ICN and spatially structured artifacts—while

avoiding the potential biases in the a priori selection of ROIs [105,107]. The number of components estimated in ICA (i.e., its dimensionality reduction) is a

possible source of variability in study results as there is no single best approach for characterizing the complex hierarchy of ICN neurobiology [104].

Performing between-subject ICA analysis is not a straightforward procedure, as it is difficult to establish a direct, one-to-one correspondence of ICNs

identified with individual-level ICAs [108]. Most current resting-state fMRI approaches involve performing group-level ICA on the temporally concatenated

datasets of all subjects—allowing the extraction of subject-specific time courses and group-common spatial maps [108]. This is followed by the

reconstruction of individual ICN maps through procedures such as dual regression or direct back-reconstruction techniques [104,108–110]. These

methods minimize the problem of intersubject ICN correspondence and takes advantage of the higher signal-to-noise ratio offered by analyzing several

subjects conjointly [104].
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stimulation. Instead of functional connectivity, authors investi-

gated the effects of STN-DBS on effective connectivity (which

describes the causal influences of a region over another [51]),

estimated through dynamic causal modeling [52]. They found

STN-DBS to reduce the strength of effective afferents and effer-

ents of the STN and to increase the sensitivity of the striatum to

cortical afferents, the sensitivity of the cortex to thalamic affer-

ents, and the connectivity of the direct pathway. Furthermore,

strengthening of the direct pathway explained the most benefi-

cial effects of STN-DBS.

Taken together, these study results indicate that dopamine defi-

cits in PD lead to reduced overall functional corticostriatal connec-

tivity and to increased connectivity in specific basal nuclei.

Connectivity reductions mainly involve the portions of the stria-

tum most affected by dopaminergic nigrostriatal denervation (i.e.,

the posterior putamen). Besides being related to the motor symp-

tomology, functional connectivity changes are associated with

nonmotor manifestations of PD such as apathy.

Default Mode Network Functional Connectivity
in PD

The most studied cognitively relevant ICN in PD has been the

default mode network (DMN). The DMN is mainly comprised of

the precuneus/posterior cingulate cortex as well as medial pre-

frontal, inferior parietal and medial and lateral temporal cortical

regions [53]. Initially described by Shulman et al. as a group of

areas with reduced activity during active tasks and increased

activity during passive conditions [54], the DMN is hypothe-

sized to be related to self-referential processing [55]. The deacti-

vation of DMN regions during encoding is related to subsequent

retrieval of learned information [56]. Furthermore, DMN con-

nectivity is relevant for externally directed attention and work-

ing-memory task performance [57]. Importantly, the overlap

between DMN anatomy and the regions of hypometabolism in

Alzheimer’s disease (AD) led some authors to investigate patho-

logical changes in this network. Subsequent studies showed

patients with AD to have altered patterns of DMN activation/

deactivation and abnormal functional connectivity between this

network’s main nodes [58–60]. Data from such studies in

healthy and pathological populations led to the hypothesis that

the DMN can be used as a predictive tool in neuroscientific

research [61,62].

In PD, changes in the patterns of activation and deactivation

of the DMN have been observed in task-based analyses [63,64].

Also, a positive effect of dopaminergic medication on intra-

DMN connectivity has been suggested [65]. Gorges et al. [66]

used a seed-to-seed approach to RS-fMRI DMN analysis and

observed reduced functional connectivity between the medial

PFC and the posterior cingulate cortex (PCC), as well as

increased connectivity between left and right hippocampi. Com-

paring healthy controls and on-state PD patients with and with-

out visual hallucinations through ICA followed by dual

regression, Yao et al. [67] found reduced intra-DMN resting-

state functional connectivity in both PD groups. Patients with

hallucinations displayed connectivity increases in the right fron-

tal pole and in the precuneus/PCC, compared with patients

without hallucinations.

Other Large-Scale Intrinsic Connectivity
Networks in PD

The analysis of resting-state data reveals the existence of other

ICNs thought to be related to a broad range of neural functions,

from sensory/motor to higher order cognition. Although the net-

works described are similar across studies, a uniform nomencla-

ture has not yet been proposed. The dorsal attention network (DAN)

is postulated to subserve externally directed cognition—more spe-

cifically, top-down allocation of attention [53,68]. The DAN is

formed by the dorsolateral prefrontal cortex (PFC), frontal eye

fields, inferior precentral sulcus, superior occipital gyrus, middle

temporal motion complex, and superior parietal lobule [4,69].

The frontoparietal network (FPN) includes the lateral PFC, precu-

neus, inferior parietal lobule, medial superior PFC, and anterior

insula. The FPN can flexibly connect to the DMN or the DAN

depending on task nature and is hypothesized to mediate the

dynamic balance between these networks [53,70]. Another net-

work, the salience or cingulo-opercular network, mainly comprised of

the anterior insula, the dorsal anterior cingulate cortex (ACC) and

subcortical limbic structures, is believed to be related to reward/

motivation processing [71].

Shine et al. assessed a sample of patients with PD on medica-

tion, divided according to the presence or absence of visual hallu-

cinations, using a seed-to-seed approach and without a healthy

control group. Patients with hallucinations displayed reduced rest-

ing-state connectivity between the ventral attention network and

the DAN, and this reduction was associated with worse perfor-

mance in the perceptual task. Patients with hallucinations also

showed reduced functional connectivity between a DAN node

(right dorsal ACC) and a DMN node (described as the left anterior

interparietal lobule) [72]. Additional task-based fMRI analysis

revealed that, when viewing monostable or bistable (ambiguous

images that can be interpreted in two main ways) images, patients

with hallucinations had reduced BOLD activation in areas belong-

ing to the DAN. Furthermore, lower activation in the right frontal

eye field (part of the DAN) was associated with increased misper-

ceptions.

Recent studies have assessed the relationship between

changes in ICN connectivity and cognitive measures. Using

ICA, Tessitore et al. [32] found decreased intra-DMN resting-

state connectivity in cognitively unimpaired patients with PD,

assessed on medication, namely in the medial temporal lobe

(associated with worse memory performance) and inferior pari-

etal cortex (associated with visuospatial scores). In a study by

our group [31], patients with PD on medication and a healthy

control group were evaluated using seed-to-seed analyses as

well as ICA and dual regression to assess changes in intra- and

internetwork resting-state functional connectivity. Seed-to-seed

analyses showed that worse cognitive status was associated

with reduced connectivity within the DAN and the DMN and

reduced DAN-FPN coupling. In ICA/dual regression analyses,

PD patients with mild cognitive impairment (PD-MCI) were

seen to have reduced connectivity between the DAN and right

frontoinsular regions; these connectivity reductions correlated

with impairments in attention/executive functions. The anterior

insula is increasingly being recognized as a brain hub involved

in processes of network switch that are relevant for attention

796 CNS Neuroscience & Therapeutics 21 (2015) 793–801 ª 2015 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

Functional Brain Networks in Parkinson’s Disease H. C. Baggio et al.



and executive functions [53,73,74]. Importantly, recent studies

found that patients with PD-MCI have reduced insular dopami-

nergic D2 receptors and that this reduction correlates with

impairments in executive functions [75]. In PD patients with

visual hallucinations, reduced insular gray matter (GM) density

associated with reduced functional connectivity between

regions of the ventral attention network and the DAN has been

described [72]. Combined with evidence that dopamine modu-

lates resting-state patterns of coupling between cognitively rele-

vant networks such as the DAN, the DMN, and the FPN [76],

and these data seem to indicate that ICN changes (likely medi-

ated by insular dopaminergic denervation) play a role in dopa-

mine-related frontostriatal deficits in PD [77].

The association between changes in resting-state DMN connec-

tivity and cognitive functions not related to dopamine imbalances

(e.g., visuospatial) described by Tessitore et al. [32] suggests that

the posterior cortical syndrome (related to global cognitive

decline) also has detectable resting-state ICN correlates. Two

recent studies seem to corroborate these findings [31,78]. In one

study, we found that patients with PD-MCI had changes in occipi-

to-parietal regions—namely cortical thinning, reduced connectiv-

ity with the DAN and loss of the pattern of anticorrelation with

the DMN—which correlated with visuospatial deficits [31]. In

another study, Olde Dubbelink et al. [78] used synchronization

likelihood as a measure of coupling, assessing patients with PD on

medication in a longitudinal design. The authors describe resting-

state functional connectivity reductions, mainly involving poster-

ior cortical regions, in association with global cognitive decline.

They also describe a relationship between lower global mean con-

nectivity levels and worsening cognitive status.

The observed association between posterior connectivity

changes and structural degeneration [31] might indicate that dis-

connection is the result of primary cortical pathology. Nonethe-

less, axonal degeneration might antecede neuron cell body death

in PD [79–81]. In this context, neuroimaging techniques such as

diffusion-weighted imaging (DWI), which offers an in vivo indirect

measure of microstructural white matter (WM) properties, have

the potential to shed light on important aspects of PD-related

pathological process.

Alterations in WM microstructure have been consistently

described in PD through neuroimaging, often involving diffuse

brain areas [82–89]. Agosta et al. [89] found widespread WM

fractional anisotropy (FA—a marker of WM microstructural

organization that tends to be reduced in pathological processes)

reductions in PD-MCI subjects compared with healthy controls.

Similarly, Melzer et al. [84] found that patients with MCI and

dementia had diffuse FA decrements and mean diffusivity (MD

—a microstructural parameter that tends to increase in WM

disease) increments. Current evidence regarding the relation-

ship between topographical WM changes and specific cognitive

manifestations in PD is limited. Using a small patient sample

and no control group, Zheng et al. [86] found that executive

functions and language correlated with FA and, inversely, with

MD in frontal WM tracts; attention was associated with DTI

measures in widespread regions. Future studies, combining

structural and functional connectivity techniques, could help

clarify the role played by structural disconnection in the func-

tional network alterations observed in PD.

Whole-Brain Topology

Current neuroimaging techniques allow a complete, whole-brain

mapping of structural and functional interregional connections,

that is, the connectome (Figure 3A) [90]. The comprehensive

study of large, complex datasets such as the human neuroimaging

connectome necessitates systematic analytical approaches that

provide quantifiable and biologically meaningful measures. In the

context of complex network analysis, graph theory is a robust

mathematical framework that can characterize the functional or

structural properties of the brain by modeling it as a single net-

work [91]. Within this framework, functional neural networks—

the graphs—are a collection of anatomical brain regions (nodes).

In a functional graph, the connection (described in a graph as an

edge) between a pair of nodes is defined by the temporal depen-

dency of these nodes’ signal variations.

Nodes are the basic elements of a network assumed to represent

its functional units. As neuroimaging methods can only probe the

macroscalar organization of the connectome, network nodes

should be defined by regions as functionally homogeneous as pos-

sible, with a coherent connectivity pattern [91]. There is currently

no consensual approach to define brain nodes through neuroi-

maging. As different parcellation strategies can yield different

topological properties [92], networks obtained through different

schemes are not quantitatively comparable [91]. To further com-

plicate the interpretability of graph theory studies, the neuroimag-

ing modality employed and other methodological aspects—such

as the use of binary or weighted graphs and the thresholding

approach used—can influence the topology of the reconstructed

networks [93–96]. Graph theory metrics inform on different glo-

bal and local network properties; basic network measures are

described in Figure 3B.

To this date, very few studies have evaluated patterns of rest-

ing-state connectivity in PD using graph theory approaches, and

most used RS-fMRI. Lebedev et al. assessed drug-na€ıve patients

with PD through RS-fMRI as well as with Ioflupane (123I) (DaT-

SCAN) imaging in a subsample. Worse performance in executive

function tests was associated with lower nodal strength (sum of

individual strengths of a node’s links) in dorsal frontal and parietal

regions. Additionally, this pattern correlated with nigrostriatal

dopaminergic function. Memory performance, on the other hand,

correlated with strength in prefronto-limbic regions and was not

associated with dopaminergic innervation [97]. Assessing patients

on medication, G€ottlich et al. used different parcellation schemes

and applied a density threshold range of 10–35% to construct bin-

ary networks. The authors found significantly higher normalized

clustering coefficients and characteristic path lengths in the PD

group at 10 and 15% density. No correlations, however, were per-

formed between network parameters and clinical variables [98].

In a study by our group, assessing on-state patients and using a

weighted network approach, no topological differences were

found between healthy controls and the total PD sample. Stratify-

ing the patient group according to cognitive status, patients with

PD-MCI were seen to have increased non-normalized clustering

as well as modularity and small-world coefficients. In the overall

PD sample, these measures correlated negatively with cognitive

performance, namely in memory and visuospatial/perceptual

functions. Additionally, network hubs displayed reduced
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(A)

(B)

Figure 3 Panel A: Definition of functional brain networks. In its simplest form, the functional connectivity between a given pair of nodes is defined by the

Pearson correlation between their respective time series. An adjacency matrix representing all internodal correlation coefficients is subsequently

thresholded to discard weak, possibly noise-related connections. There is no universally accepted approach for thresholding, however. The use of fixed

strength thresholds can result in graphs with different connection density, making intersubject comparisons difficult [94]. Fixed density thresholds, on the

other hand, can be inappropriate in the presence of significant overall connectivity differences [94]. The resulting graphs will be weighted if correlation

strength is taken into account. Otherwise, binary graphs are generated. Panel B: Global and nodal network metrics. In the small network shown, the red

line indicates the shortest path between nodes d and e. The characteristic path length of a node informs about how closely connected this node is to all

other network nodes. It is given by the average shortest path length between itself and every other node, or, in its binary form, the average number of

edges that need to be traversed in order to get from this to any other node [95]. Network integration is given by the global characteristic path length

(average of the characteristic path lengths of all nodes). The clustering coefficient of node a is represented by the number of triangles formed with its

neighboring nodes (b, c, and d) [111]. Only one triangle (green, a-b-c) is present out of three possible triangles (dashed lines, a-b-d and a-c-d), yielding a

clustering coefficient of 1/3. The clustering coefficient describes how interconnected a node’s neighbors are. The global clustering coefficient, given by the

average of the clustering coefficients of all nodes in a network, is a measure of local connectedness or network segregation. A balance between global

characteristic path length and clustering coefficients defines small-world networks, characterized by high local specialization and some global shortcuts,

allowing fast information transfer [111,112]. The human connectome displays small-world topology in both functional and structural networks [112,113].

The degree of a node (number of input or output connections linked to it) describes this node’s accessibility within the network [114]. Degree in neural

networks follows a heavy-tailed distribution, indicating the existence of a set of highly connected or hub nodes [115]. Hubs are hypothesized to be

relevant for overall information transfer [116] and appear to be preferentially affected in several disorders [117]. Finally, the measure of modularity

indicates how well a network can be subdivided into well-defined modules or communities made up of densely interconnected nodes with few

intermodular connections, possibly representing the network’s functional subcomponents. The small network shown contains two modules, connected

by two connector hub nodes.
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centrality in patients with PD-MCI, suggesting a reorganization of

functional network traffic away from these brain regions [99].

Assessing connectivity through wavelet correlation and using a

weighted network approach, Skidmore et al. [100] found reduced

local and global efficiency in a small sample of patients with PD off

medication compared with controls. No correlations were per-

formed with measures of disease severity.

In contrast with the RS-fMRI studies described above, Olde

Dubbelink et al. [101] used MEG to assess topological changes

over time in a longitudinal design. Patients with PD were evalu-

ated on medication, and baseline assessments included a drug-

na€ıve subsample. Longitudinal analyses revealed progressive

reductions in normalized clustering coefficients at multiple fre-

quency bands and reductions in normalized characteristic path

lengths at the alpha2 band in the patient group. The apparent dis-

crepancy observed between these clustering coefficient reductions

and the increases described in RS-fMRI studies may be related to

the differential sensitivity to local connectivity displayed by differ-

ent imaging modalities [102,103].

Conclusions

The studies discussed in the present review show that resting-state

connectivity techniques, under a network perspective, are capable

of identifying changes related to different clinical aspects of PD. In

broad terms, these findings indicate that PD is accompanied by

dopamine-dependent functional connectivity disruptions in corti-

costriatal–thalamic–cortical networks that underlie both motor

and nonmotor symptoms. The pattern of connectivity of other

ICNs is also altered in PD. Within- and between-network disrup-

tions involving the DMN, the DAN, the FPN, and the ventral

attention network seem to be associated with cognitive deficits

and visual hallucinations. Dopaminergic and structural changes in

the insula, a region involved in network switch, appear to be

involved in these network abnormalities. General cognitive

decline is also accompanied by long-range functional connectivity

reductions, possibly with a differential involvement of posterior

cortical regions. Future studies combining structural and func-

tional techniques should investigate whether alterations in struc-

tural connectivity contribute to these functional changes.

In graph-theoretical analyses, the entire network organization

is condensed into abstract topological parameters. The biological

interpretation of the corresponding metrics, however, is often not

straightforward. The combined use of methods that assess topo-

graphical changes, such as those discussed in the previous

paragraph, can provide a more complete depiction of the reconfig-

uration of functional networks underlying clinical deficits in PD.

The study of the connectome as a complex network is a recent

field, and the relationship between different measures of network

communication and brain function is only beginning to be

unveiled. Advances in connectomics, including the use of multi-

modal approaches, the development of standardized procedures to

reconstruct biologically consistent networks, as well as of mathe-

matical models to interpret brain networks in physiologically

meaningful ways, will determine the extent to which graph the-

ory approaches become reliable tools from a clinical standpoint.

It is also clear that there is considerable variability in study

results. Appropriate interpretation demands that sample charac-

teristics be taken into account, especially with regard to treatment

status and disease severity. Discrepant results are certainly due in

part to the use of different methodological approaches, sensitive to

different features of the pathological process and to different

aspects of the complex interactions between functional networks.

Susceptibility to confounds also varies according to the methodol-

ogy used. Univariate approaches such as seed-based correlation

are insensitive to the statistical relationship between data points

and are more susceptible to structured noise or to be confounded

by spatial network overlap than multivariate methods such as ICA

[104,105]. Seed-based correlation is still useful, however, to

answer specific research questions. Likewise, the potential effects

of confounding factors such as motion artifacts on computed

graph theory network metrics cannot be overstated. In light of

recent publications, it is critical that new studies apply rigorous

measures to control the effects of head motion and other non-

neural sources of signal variation, from subject exclusion to

“cleanup” fMRI preprocessing procedures [35,106].

In conclusion, neuroimaging network approaches are a promis-

ing tool in the study of PD, with the potential to shed light on rele-

vant aspects of the neurodegenerative process and to provide

useful biomarkers for more severe disease progression.
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