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Computing with molecules is at the center of complex natural phenomena, where

the information contained in ordered sequences of molecules is used to implement

functionalities of synthesized materials or to interpret the environment, as in Biology. This

uses large macromolecules and the hindsight of billions of years of natural evolution.

But, can one implement computation with small molecules? If so, at what levels in the

hierarchy of computing complexity? We review here recent work in this area establishing

that all physically realizable computing automata, from Finite Automata (FA) (such as logic

gates) to the Linearly Bound Automaton (LBA, a Turing Machine with a finite tape) can

be represented/assembled/built in the laboratory using oscillatory chemical reactions.We

examine and discuss in depth the fundamental issues involved in this form of computation

exclusively done by molecules. We illustrate their implementation with the example

of a programmable finite tape Turing machine which using the Belousov-Zhabotinsky

oscillatory chemistry is capable of recognizing words in a Context Sensitive Language

and rejecting words outside the language. We offer a new interpretation of the recognition

of a sequence of chemicals representing words in the machine’s language as an

illustration of the “Maximum Entropy Production Principle” and concluding that word

recognition by the Belousov-Zhabotinsky Turing machine is equivalent to extremal

entropy production by the automaton. We end by offering some suggestions to apply the

above to problems in computing, polymerization chemistry, and other fields of science.

Keywords: oscillatory chemical systems, chemical computing languages, computing automata, thermodynamics

of computation, Turing machine, maximum entropy principle, chemical computing paradigm, Belousov-

Zhabotinsky oscillatory reaction

INTRODUCTION. WHAT IS A COMPUTATION? AND HOW DOES
CHEMISTRY DO IT?

Computation is about information and its transformation. Given (Evans, 2011) some input
information during a computation this information is suitably transformed and output in a way
that can be used for some functional purpose. We can input into some machine the number of
hours worked by employees, input information for an hourly rate and, if so instructed, the machine
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will give the dollar amount for each employee which is then
communicated to payroll . . . which, hopefully, will issue a funded
paycheck! In a general sense a computation consists of the (a)
input, (b) transformation, and (c) output of information that can
then be used for some useful purpose (Feynman, 2000; Evans,
2011). For the above to take place, one needs to have some
available information and a means of transforming it into some
different form which is then output.

The “transformation” of the information must be (Feynman,
2000) “mechanical,” i.e., same input information gives same
output information. “Information” above is understood as “what
is conveyed or represented by a particular arrangement or
sequence of things” (Simpson and Weiner, 1994). The “things”
can be any collection of objects, letters, numbers, or shapes,
to mention just a few instances. Information, therefore, can be
encoded into a sequence of symbols.

Let us now consider the general features of chemical reactions
(Pauling, 1947, pp. 12, 95) in parallel to the previous description
of a computation. In a chemical reaction, substances in the
correct proportions get together, react according to a reaction
mechanism, and generate a particular output. We can think of
the reactants and the sequence in which they are brought into
the reaction as input information. If we are at a scale where
we can ignore the effects of fluctuations, we can think of the
reaction mechanism as a means for mechanically transforming
the reactants into some output products. We can immediately
see that there is a clear parallel between a computation and a
chemical reaction.

Therefore, in principle we can establish an analogy between
chemistry and computation and unlock the power of chemistry
to do some form of computational work. This, however, requires
that we understand how to represent information in a form that
can be (mechanically) processed by chemistry.

In chemistry, information resides in the relative positions
of atoms in molecules, in the bonds, electron densities, and
a long etc. of the properties of molecules and atoms (Sienko
and Lehn, 2003). We can also take inspiration from natural
life and represent information using chemistry following the
way in which genetic information is represented with DNA: by
means of an alphabet constructed with the purine and pyrimidine
molecular bases, arranged in a certain order to represent and
carry information which is (mechanically, i.e., systematically)
processed in the cell’s ribosomes. By analogy we can think
of using a sequence of chemicals as a means to represent
information with chemistry. The chemicals in the sequence could
be the reactants for some reaction; the chemical transcription of
the symbols would consist of the assignment of specific aliquots
of the reactants to each symbol. Then the sequence in which
the aliquots are fed to the reaction would represent the chemical
transcription of the original symbolic sequence (cf. Figure 1).

The various aliquots of the reactants could represent “letters”
in an abstract alphabet and some of their ordered sequential
groupings would represent “words” in a language which is
generated by an underlying grammar. If the aliquots correspond
to chemical substances that react, we then have a parallel
between letters/symbols, words in a language, and a “mechanical”
processor of their information which is the chemical reaction

(and the pathways contained in its mechanism). The products
of the reaction in quantity and quality (including radicals) and
the corresponding values of the state functions of the chemical
system after it reaches some stable regime (not necessarily
equilibrium) are the (chemically autonomous) material and
physico-chemical “result” of the computation! We call this form
of computation “native chemical computation” to emphasize
the fact that it is only unassisted chemistry carrying out all the
computation autonomously once the information has been input
to the “machine.” All the computation is done by molecules
and atoms participating in the reaction. Note that “chemical
computation” is a very broad topic and there are different
approaches, most of them making use of reaction-diffusion,
geometrical aids, and other types of hybrid approaches (Tóth
and Showalter, 1995; Adamatzky and Costello, 2002; Gorecki
et al., 2003; Ross et al., 2006; Wang et al., 2016). For an
excellent review see Adamatzky (2019). Another interesting form
of chemical computation uses chemical reactions to implement
Fuzzy logic (a form of logic that deals with approximate modes of
reasoning) and provides an approach to applications of chemical
computation related to those of Fuzzy logic (Gentili, 2018 and
references therein). Here, however, our focus is strictly on the
“Native Chemical Computation” approach as defined above
(In the remainder of the text whenever we talk of chemical
computation we thus refer to Native Chemical Computation).

A chemical computation can involve of the order of
Avogadro’s number of molecules all of which contribute to the
computation taking place in the reactor. This is indeed a very
large level of parallelism but, unfortunately, it is offset by the huge
level of correlation and synchronization of the molecules, so that
effectively there seems to be a waste of the potentially available
computational power in the molecules. In this paper, we will
review some steps taken recently in the direction of harnessing
this “waste” by making it more efficient.

After this brief Introduction, we will continue with a
discussion of “How computations are performed,” followed
by a discussion of “What chemistry brings to computing;”
these will be followed by sections devoted to “How Chemistry
Computes,” to a discussion of “Oscillatory Chemistry and Native
Chemical Computation” then there is a section devoted to
“The Interpretation of word acceptance in a native chemical
Turing Machine” and on to a final section covering the
necessary details for “Building a Turing machine using the BZ
reaction Chemistry.” We finalize with a brief Discussion and
Conclusions section. The review is complemented by a basic
bibliography where further references can be found, a list of
Nomenclature and Definitions used in the review and four more
technical Appendices.

HOW COMPUTATIONS ARE PERFORMED

We can imagine a computation (in a mathematical sense) as the
application of a sequential series of operations, or procedure,
on some data which are carried out in order to solve some
mathematical problem. For example, to solve a differential
equation describing the time evolution of some substance
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FIGURE 1 | Schematic representation of native chemical computation. Each alphabet symbol is assigned a corresponding reactant, and the sequence of aliquots of

these symbols represent the input word to be processed. The processing is carried out autonomously by the reaction mechanism and produces a distinct chemical

signature that depends on the sequence and represents the output of computation (adapted from Figure 1 in Dueñas-Díez and Pérez-Mercader, 2019a).

participating in a chemical reaction. Such a systematic procedure
is called an algorithm, and the execution of an algorithm by
a human “computer” was essentially the way in which Turing
(1936) envisaged the “mechanization” of a computation back
in the 1930s. The result of these studies was the introduction
of an automaton1 capable of implementing any algorithm,
even though the automaton might take a very long time to
solve the problem. The class of automata capable of doing any
computation constitute the class of “Turing Machine” automata.
In this latter class there are automata which require an infinitely
long tape and are therefore not accessible to representations
with real material components, which can only use a bounded
amount of energy and translates into a class of finite tape-length
automata (Minsky, 1967; Linz, 2012). In what follows, we will
restrict ourselves to automata which do not require any infinitely
long tapes or unbounded amounts of energy for their operation.

1An “automaton” is an abstract computing machine. Its plural is “automata”.

The idea behind these automata is that a mathematical
problem involving computations can be reduced to a (perhaps
very large, but always finite) number of steps involving linear
and non-linear (Sheffer, 1913; Lloyd, 1992) operations. The
linear and non-linear operations can be performed using various
approaches: analogical and digital, sequential or in parallel, and
combinations thereof. The computing machinery can be of many
types: geometrical, mechanical, electronic, or chemical.

In the case of analog computation numbers are represented
by some continuous property, for example, lengths in a slide rule
(Stoll, 2006) or chemical concentrations, and wemeasure another
length to obtain the “result.” For example, in the case of the slide
rule, there is an analogy (or correspondence) between adding
lengths and the addition of the logarithm of numbers. In this way
we can represent the basic arithmetic operations on numerical
quantities by analogy: we input some continuous physical
quantities and measuring another (analog) physical quantity
gives us the result of some operation. Analog computation
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depends specifically on the analogy between a physical property
and its mathematical formulation, which therefore limits the
application of an analog machine. Another incarnation of
analog computation considers a particular physical phenomenon
and the differential equations that represent it. Then, by
physically implementing one instance of the phenomenon whose
differential equations are known one can, in principle, establish
an analogy with any other phenomenon that follows the
same differential equation. A standard example of this is the
relationship between RCL electrical circuits and damped springs
(Truitt and Rogers, 1960).

Alternatively, we could operate directly with numbers (digits)
in the same way we do with pencil and paper, and therefore
generate an approach that can be used to tackle any problem
solvable by arithmetic procedures. Digital computation is of
course closely connected to Boolean logic and the immensely
important (unpublished) 1880’s work by Peirce on the functional
completeness of the NOR Boolean function (see Nahin, 2013)
and the completely independent 1913 Sheffer’s (Sheffer, 1913)
result that the NAND Boolean function is also functionally
complete (i.e., any of the other Boolean functions can be
represented with combinations of the NAND or the NOR
gates). This together with the representation of data using
a binary system, the fast switching capabilities available with
electrons in electronic devices, especially solid state, and the
direct electrical interconnectability of logic gates are some of
the fundamental bases for today’s dominance of electronic
computers. Indeed, using this approach one can carry out both
linear and non-linear operations in general and, sometimes, also
energetically efficiently.

But there are many other equivalent possibilities for digital
computing. For example (Lloyd, 1992), if one has only gates that
produce a constant output, that multiply their input by constants,
plus gates that add these inputs together and which can be
interconnected by wires and fanouts then one can carry out any
linear operation. However, to be able to do general computation
which involves both linear and non-linear operations, one needs
to supplement the above with a means to perform non-linear
operations. Indeed, it can be seen that any non-linearity on top
of the above linear gates is sufficient to enable non-linear general
computation (Lloyd, 1992). That is, the presence of a switch is a
fundamental enabler of general computation.

In summary then, to carry out a general digital computation
using logic gates we need input information which must be
fed in a timely fashion to some appropriate array of linear
gates, non-linear switches and fan outs and, finally, in the end
presented as the result of the computation. In other words,
if we are computing with gates we will need to be able to
transport information from the location of the output of a gate
at one particular spatial location, to another location where the
input to the next gate is located. The process of switching and
feeding of the digital sequence to the gates must be timed very
precisely. This information transportation process requires that
the traveling information be unaffected during the actual travel
of the information carriers (electrons in electronic computing).
Otherwise, noise will reduce the accuracy of the computation,
perhaps to intolerable levels.

For any interesting computation this implies that the
information must be shuttled between interconnected gates and
the various events and their timing carefully synchronized.
Except because of thermal dissipations this is, in general, not a
problem for electronic computers, where the digital information
(written in 0 and 1 s) is carried by electrons moving at speeds
close to 30,000 km/s, and can be directed by means of cables
and multiplexing circuits. This state of affairs of course changes
dramatically when one needs to deal with millions of gates and
the computation is not reversible (Landauer, 1961).

Unfortunately, when using gates for chemical computation
this becomes a serious problem because the shuttling of
information by mass transport necessarily involves molecular
transport by diffusion, convection, or molecular migration
all of which degrade information. For example, diffusion in
chemistry not only brings into play the “Arithmetic demon”
(Ireland, 1969; Serratosa, 1990; Gilbert and Martin, 2016)
of chemistry hindering conversion, selectivity, and reaction
yields but diffusion, per se, increases entropy and consequently
efficiently and irreversibly information is destroyed as it travels
and time elapses (Similar statements can be made about
convection or unguided molecular migration). Separately or
together due to the rapid and prohibitive accumulation of errors
during these processes, the above makes very difficult (if not
quickly impossible) the use of gates when both the information
carrier and the information processing machine are chemical in
nature. This makes the strategy of using gates in native chemical
computation even more difficult if one intends to use chemistry
for relevant computations and information processing at any
level of meaningful complexity.

However, not all is lost, as there is another way to solve
computational problems and implement the mechanics of the
computation required by the algorithm which does not require
the use of arrays of linked Boolean logic gates. Other automata
exist in computer science which are more advanced than gates
and are capable of performing the computational equivalent
of many gates together and classifying the results of the input
information as either Accepted or Rejected (Adamatzky and
Costello, 2002; Rich, 2008). This provides a powerful workaround
to the problems with gates in chemistry and enables chemical
computation in a framework where chemistry is both carrier
and processor of the information. Interestingly, the resulting
computing architecture inextricably integrates both processor
and memory via the chemical reaction (i.e., it is a non-von
Neumann architecture).

COMPUTING WITH AUTOMATA

As mentioned in the Introduction, a basic element in a
computation is the matching of information, just as it happens
with molecules in a chemical reaction when under certain
conditions some molecules react (the information in the reacting
molecules matches) or do not react (the information in the
molecules does not match). The fact that anything can be
represented by a string of symbols is a very powerful concept and
it is because of this that sequence recognition can be naturally
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translated into chemistry. Of course, this requires a particular
encoding of the object (the “thing”) using symbols belonging
to an alphabet. And to be successful one needs to encode
the problem to be solved we wish to solve as a string which
would then be presented as a “word” in some language that an
automaton could recognize as belonging to this language. At
first sight the above sounds like an intractable problem: there
could be so many languages! But today the important question
of defining the right language for a problem is a standard task in
Computer Science and is discussed in many modern textbooks
(e.g., Sudkamp, 2006; Rich, 2008).

Work on languages and computation done during the 1950s
and 1960s proved the remarkable fact that all languages could
be classified according to their complexity into a four-level
hierarchy of languages. This hierarchy of languages is known
as the Chomsky Hierarchy of Languages (Chomsky, 1956)
after the linguist Norman Chomsky who proposed it and
made major contributions to its development. The hierarchy is
shown and described in Table 1 (cf. Dueñas-Díez and Pérez-
Mercader, 2019a, 2020). Equally remarkably, accompanying this
classification and hierarchy of languages, there is a parallel
hierarchy of automata which have the appropriate structures to
identify one or more languages at their level in the hierarchy
and languages at all the levels below its own. Because of this,
the hierarchy of automata and languages is inclusive, which is a
fundamental property of the hierarchy and has deep implications
for programmability. Furthermore, languages and automata go
up in complexity as we go to higher orders in the hierarchy. That
is members at lower levels are simpler constructs.

The simplest languages are called “Regular Languages” and
they are accepted also by the simplest automata, the Finite
Automata (FA) class which includes all the Boolean logic gates.
These automata do not have memory. The FA can be extended
by incorporating in them a memory of the last-in-first-out type
(LIFO) so that the automaton can store and retrieve information.
This memory is called the stack. The class of FA endowed with the
rules necessary to operate the memory are called the 1-stack Push
Down Automata (1-stack PDA) because they have one memory
stack of the LIFO type: information can be stored by putting it at
the top of the stack while pushing down the stack any previously
stored information items.

So, one may ask, can we give more power to the 1-stack PDA
by adding more stacks? The answer is yes, but surprisingly 2-
stacks is all one needs in order to achieve maximum physical
computing power (Hopcroft et al., 2007). That is, these systems
will be limited in their computational power by the amount of
memory (which obviously cannot be infinite for any physical or
for that matter, chemical realization) available to them. With just
two stacks and appropriate calls to them as a memory, one can do
a lot. These 2-stack PDAs are called Linearly Bounded Automata
(LBA) and can, in principle, resolve all strings of bounded length
in the Chomsky Hierarchy of Languages. They belong in the class
of the Turing machines (Harrison, 1978).

The above implies that in addition to computations performed
with gates there is an alternative approach to computation
which uses non-trivial generalizations of the Boolean gates. This
alternative is based on the fact that any computation can be posed

as statements of Acceptance/Rejection of a string of symbols
representing words in a language. The language will be a member
of one of the language classes in the Chomsky hierarchy. This,
combined with the knowledge that anything can in principle be
represented by a string (Rich, 2008) gives us the possibility of
recasting any computational problem soluble with many gates as
a collection of problems soluble with fewer but more advanced
automata. The automata, however, are more complex than the
Boolean gates [An actual example of the latter is provided in
a very complex fashion and in ways that still are not fully
understood (Searls, 2002, 2012) by natural life and its central use
of genetic information].

In the case of chemistry where the use of Boolean gates,
even for reasonably error-tolerant computational problems
is prohibitive, having access to automata provides a clear
advantage. Thus, access to chemical automata then offers the
potential to open new horizons for chemical computing. Recent
breakthroughs along these lines demonstrate that there exists
a direct correspondence between chemical reactions and the
automata in the Chomsky hierarchy in Figure 2 (Pérez-Mercader
et al., 2017; Dueñas-Díez and Pérez-Mercader, 2019a).

Any materially realizable automaton with a tape is bounded
in tape length, as any infinite tape requires an infinite amount of
energy to operate. Because of this, the top automaton that can be
physically realized with actual matter (chemical or otherwise) is
the class of the finite tape-length Turing machines (the LBAs).
Furthermore, for an automaton to be configurable and used
as a finite tape-length Turing machine the automaton must be
capable of handling non-linearity and have access to at least two
memory stacks. These requirements are satisfied in chemistry by
oscillatory chemical reactions and bring us to the subject of non-
linear chemical oscillators (Epstein and Pojman, 1998) which will
play a major role in native chemical computation and allow us to
take full advantage of the above in chemical computation.

OSCILLATORY CHEMISTRY AND NATIVE
CHEMICAL COMPUTATION

As we have seen, to implement the most powerful (physically
realizable) automaton we need to have access to non-linearity, for
example as provided by a switch, and at least two memory stacks.
To translate the above into a chemical computing automaton, we
have to ask which chemical reactions offer those two capabilities.
If correctly implemented we should then be able to build a
chemically operated LBA-Turing machine automaton for the rest
of this introductory review, and in the interest of conciseness,
we will not consider examples of chemical FA or 1-stack PDAs;
for full details on these chemical automata, the interested reader
can consult (Pérez-Mercader et al., 2017; Dueñas-Díez and Pérez-
Mercader, 2019a,b; Dueñas-Díez and Pérez-Mercader, 2020).

A chemistry where the presence of a switch is essential
is oscillatory chemistry: a chemical switch, together with
autocatalysis and feedback, is a basic component of the
mechanism that underlies oscillatory behavior in chemical
reactions (Volkenshtein, 1983; Epstein and Pojman, 1998). We
can then think of chemical oscillations as adequate providers
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TABLE 1 | The Chomsky hierarchy.

Grammars Languages Accepting automata

Type 0 grammars,

phase-structure grammars,

unrestricted grammars

Recursively enumerable Turing machine,

non-deterministic

Turing machine

Type 1 grammars,

context-sensitive grammars

Context-sensitive Linear-bounded automata

(bounded tape-length Turing machine)

Type 2 grammars,

context-free grammars

Context-free 1-Stack pushdown automata

Type 3 grammars,

regular grammars,

left-linear grammars,

right-linear grammars

Regular Deterministic finite

automata,

non-deterministic finite

automata

Languages are generated by grammars. By gradually imposing restrictions on them (Hopcroft et al., 2007), grammars are categorized into an inclusive four level hierarchy, the Chomsky

hierarchy. Type-0 are unrestricted grammars and Type-3 the most restricted. Type-1 grammars correspond to Type-1 Languages which are also called Context Sensitive Languages

(CSL). Type-2 and Type-3 correspond to Context Free (CFL) and Regular (RL) languages, respectively. Each class of languages in the Chomsky hierarchy has been characterized as the

languages generated by a family of grammars and accepted by a type of machine. The relationships developed between generation and recognition are summarized in this table which

is adapted from p. 338 of Sudkamp (2006). Type 0 and Type 1 grammars are accepted by Turing machines, hence the horizontal line in the Table that separates them from Types 2 and

3. Reprinted from Dueñas-Díez and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Press.

FIGURE 2 | Correspondence between the automata hierarchy, the Chomsky hierarchy of languages on the left, and the experimental realizations of native chemical

automata on the right side of the figure. All these hierarchies are inclusive, e.g., the BZ reaction can be shown (Dueñas-Díez and Pérez-Mercader, 2019a, 2020) to

recognize not only a context sensitive language (L3) but also a context-free language (L2) and a regular language (L1). Reprinted from Dueñas-Díez and

Pérez-Mercader (2020) Copyright (2020) with permission from Nature Scientific Reports.

of the non-linearity required by fully fledged computation.
But, remarkably, chemical oscillations bring with them another
feature useful for enabling chemical computation. Indeed,

chemical oscillations, like any other oscillatory phenomena, are
characterized by two interdependent (which for the particular
case of linear oscillators are independent) physical variables: the
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frequency and the amplitude of oscillations. Furthermore, since
the instantaneous state of a chemical reaction taking place in a
reactor is the result of adding aliquots of the reacting substances
to the reaction, we see that one can think of the frequency
and amplitude and their value in the reactor at a given time as
directly related to two stacks of memory. These “stacks” are of
course dynamically interconnected by the non-linear oscillatory
reaction, and their time dependent values are correlated with the
internal reaction pathways visited in the course of the reaction.
These will change upon addition of reactants or other modifiers
of reaction intermediates, such as changing the pH or the
concentrations of reaction catalysts in the reactor.

The above indicate that oscillatory chemical reactions contain
the necessary components for the native chemical representation
of a 2-stack Push-Down Automaton: the 2-stacks and the on-
off switch which control the pathways that are visited upon
the addition of substrates to the reactor. That is, the oscillatory
behavior that would start upon the addition of substrates in
the adequate order and concentrations, is the manifestation of
the internal state and rules for the operation of the chemical
automaton (cf. Figure 3).

The operation of a chemical oscillator brings with it another
basic ingredient of chemical computation: aliquots of the
substrates and the modifiers of the reaction conditions can
be used to translate abstract symbols in a symbolic alphabet.
Additionally, the order in which the aliquots are fed to the reactor
matters, which is a direct consequence of the non-linear nature
of the chemical reaction [non-linear operations do not commute,
exp (sin x) is not the same as sin (exp x)]. Therefore, it follows that
we can represent meaningful information using aliquots of these
substances as the letters of an alphabet. In other words, just as
we can represent anything by strings of symbols we can represent
information by means of a sequence of aliquots fed to the core,
i.e., the chemicals not entering into the abovementioned category
of “substrates” and modifiers of an oscillatory reaction.

All the canonical languages and their grammars that enter
in the Chomsky hierarchy can be represented by finite size
alphabets. And they can be further transformed (without getting
out of their level in the hierarchy) by means of some encoding.

The languages that can be handled by oscillatory chemistry
are all the languages at the level of the LBA-TM in the Chomsky
hierarchy and below (cf. Table 1, The Chomsky hierarchy). These
are the Regular Languages (RL), the Context Free Languages
(CFL), and the Context Sensitive Languages (CSL).

Useful examples of the simpler languages in the hierarchy are
provided by the following languages. A particularly simple RL is
the language L1 of all words using a two symbol alphabet, a and b,
with the words containing at least one instance of symbol a and at
least one instance of symbol b. Words in this language would be
“ab,” “aab,” “baa,” or “aaabbbb” sequentially fed to the automaton
from left to right. This language [like any regular language
(Hopcroft et al., 2007)] does not require counting or memory in
order to identify its words. Regular languages are recognized by
FA and other automata above them in the Chomsky hierarchy.

For a CFL there is the need for counting and a prototype
language is L2, the language of well-balanced pairs of brackets.
The symbols here are “(“ and “)” which brings with it a notion

of order: while the sequence “()” is well-balanced, the sequences
“)(”or “))” or “((“ are not well-balanced. The words in this
language are called Dyck words (Weisstein, 2009), examples of
which are “(())” or “(()())” etc. To implement this language, one
needs one memory stack, and its accepting automata belong to
the 1-stack PDA class or above in the Chomsky hierarchy.

In a CSL the grammar is more structured than for a CFL
(note the “S” for sensitive and the “F” for free in the language
type) and this requires the presence of two stacks in the automata
that can identify CSLs, one more stack than what is necessary in
the cases of CFLs. A typical example of a CSL is L3, made up
of words of the form anbncn which require at least a 3-symbol
alphabet. These words are strings containing n a’s followed by n
b’s and then by n c’s. A few examples of words in L3 are “abc,”
“aabbcc,” or “aaaaabbbbbccccc.” The reader can easily check that
by grouping letters one can restrict the more complex languages
to provide instances of languages with a lower complexity. The
physically realizable automata in the Chomsky hierarchy that
recognize CSLs are the LBAs. There is no 1-stack PDA or FA that
can recognize them.

Of course, to perform a “native chemical computation” the
letters in the alphabet themselvesmust be chemically represented.
This is achieved by the translation of the letter symbol say, a, b,
or c into an aliquot of a suitably chosen and reacting chemical
species. The aliquot corresponding to each letter in the word is
sequentially added to a one pot reactor which will process each
letter during a fixed time τ . This time must be long enough so as
to get the aliquot thoroughly mixed with the rest of the chemicals
already in the reactor.

The result of the computation, that is, whether the input word
is or is not in the language for whose recognition the automaton
(chemical reaction) was engineered, can be a physico-chemical
signature produced by the reaction at the end of the computation.
In this context, it is important to notice that, just as in the
theory of abstract automata, we need a beginning and end of
word symbol, which following the tradition of automata theory
we will denote by “#.” For example, in the LBA-Turing machine
described in Section Building a Chemical Turing Machine

Using the BZ Reaction Chemistry, this symbol is chemically
translated as an aliquot of the BZ ruthenium catalyst. The #
symbol is fed to the automaton before the first and also after the
last symbol in the word being processed. After the # is processed
the two oscillator variablesD and f (see at the end of this review a
list with Nomenclature and Definitions for their definitions) will
have specific values. These values reflect the state of the reactor
after the preceding symbols have been chemically processed in
the course of the computation.

That is, once the aliquots for the symbols and the composition
of the rest of the reaction components are formulated, the
result of processing any words (in the language accepted by the
automaton or not in that language) is represented by the values
of the system’s state variables at the end of the computation. The
values of these variables characterize the relationships between
automaton, language, chemical representation of the alphabet,
and details of the word processing carried out by the automaton.
There is a characteristic and systematic response for the words in
the language recognized by the automaton. It is experimentally
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FIGURE 3 | Oscillatory reactions contain the necessary components for computation. These relaxation chemical oscillations not only show the key non-linearity, but

also have two stacks, i.e., two oscillatory features (e.g., frequency and amplitude or equivalent measure). Note that the oscillatory features vary depending on the

order of the sequence. Each sequence experiment was repeated three times, from whose results the plotted error bars were calculated. Reprinted from Dueñas-Díez

and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Press.

verified that the locus of these values is a smooth convex upwards
curve that connects words in the language and discriminates
the words not in the language by dividing the (D,f)-plane into
two disjoint regions of rejected words. How do we interpret
these? What “state variable” can be associated with the sequence
recognition process and its physical interpretation? Answering
these questions will lead us to identify some profound properties
of native chemical computation, its use and about the similarities
and some differences between chemical computation and other
forms of general computation.

It should not come as a surprise that a chemical automaton
will produce correlated values of some physical variable for
a computation ending in acceptance. This is so because the
result of the computation of a submitted sequence will be either
acceptance or rejection, and whereas in general there could
be many types of rejection, the acceptance only happens for
sequences sharing the pattern (order) of words belonging to the
identified language. Since a computation is a process of molecular
recognition, we expect that recognition would entail some form
of “optimization” or reduction in uncertainty. That is, a reduction
in the entropy of the system. Therefore, given an automaton with
its chemical recipe for language recognition (including the recipe
for the symbols), in chemical space the recognition process will
be equivalent to following “paths” in the reaction mechanism for
free-energy dissipation during the computation (Landauer, 1961;
Notice that this implies that a chemical computation of sufficient
complexity can enable, for example, “if-then-else” rules and other
basic constructs related to programmability. In this regard, cf.
also Landauer, 1961).

Thus, we expect that (as is actually observed) for words in
the language recognized by the automaton, accepted words, there
will be a locus connecting the automaton’s outputs for the words
once all the symbols in the words have been fully processed.
Depending on the actual details of the sequence of letters making
up the rejected words, the words will fall into one or the
other disjoint areas (subspaces). That is, the particular order
of the symbols in the sentence being computed determines the

manifold on which they will “land” at the end of the computation.
Mathematically this can be related to the non-commutativity
of non-linear operations, but chemically this is a manifestation
of the fact that each aliquot will excite a particular subset of
pathways within the reaction mechanism (Figure 4). In other
words, thinking of aliquots as “chemical fuels” for these non-
equilibrium systems, the total energy dissipated (or consumed)
by the system in recognizing or rejecting words will depend on
both the internal reaction pathways excited in a particular order
by the chemicals representing the word sequence, and on the
total length of time these specific pathways are visited and remain
excited. In fact, we can follow the kinetics and roughly trace the
pathways within the reaction mechanism that are visited by the
substrates in the course of a computation (This, of course, leads
to the notion that word recognition by a chemical automaton is
associated to some kind of optimization).

For example, in the extended FKN model of the Belousov-
Zhabotinsky redox reaction (Field et al., 1972; Dueñas-Díez
and Pérez-Mercader, 2019a), Figure 4, we display the “traffic”
patterns in the reaction pathways that are generated when each
of the species BrO−

3 , MA, Ru catalyst, or H+ are added. (In
what follows we will be using the stoichiometry and level of
chemical mechanism fine-graining described by the FKN model
of the BZ reaction). One can then understand how there may
exist energy optimized pathways and how certain combinations
of the pathways (i.e., sequence of # followed by a’s, b’s, and c’s and
ending with #) would be more suitable than others to balance
the respective contributions of the oxidized and reduced states
of the reaction. These, in turn, are connected to the previously
introduced physical variables D and f which in the case of the
TM are stored in the two stacks. For later reference, we note that
their respective dimensionalities are inverse time and energy per
unit charge as they are a voltage and a frequency.

The final values of these variables are at the top of the
stacks at the end of the computations. As argued above, their
values are remarkably correlated (cf. Figure 5) at the end of the
computations for words in the accepted language.
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FIGURE 4 | Effects on the dominant pathways in the extended FKN model of the BZ reaction mechanism, as well as on the oscillatory metrics f and D due to the

specific assignment of alphabet symbols in the implementation of a chemical Turing machine built using the BZ oscillatory chemistry, Here the aliquots for the symbols

are (a) Sodium Bromate, (b) Malonic Acid, (c) NaOH, and (#) Catalyst Ru(II). The colored areas represent the set of reaction pathways affected by each of the

alphabet symbols. In the case of (a,b,#) the highlighted reactions are enhanced, whereas in the case of (c) the highlighted reactions are slowed down. Reprinted from

Dueñas-Díez and Pérez-Mercader (2019a). Copyright (2019) with permission from Cell Press.

FIGURE 5 | [D, f ] plot at the end of computation. Panel (A) shows experimental results (each sequence experiment was repeated three times from which the plotted

error bars were calculated) while panel (B) shows simulation results based on a modified FKN model (cf. Appendices 1 and 2). The locus of accepted words divides

the plane in two disjoint regions of rejected words. The relative position of accepted and rejected sequences is reproduced qualitatively by the simulations. Panel (A) is

Reprinted from Dueñas-Díez and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Press.
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FIGURE 6 | Experimental readout of Area(word) from the redox potential plot from a given processed word in a native automaton based on Belousov-Zhabotinsky

oscillatory chemistry. Shown in this figure is the plot for a word made up by the sequence of one aliquot of (a), followed by one aliquot of (b), then one of (c) and finally

the end of word symbol, (#). Note how the frequency and amplitude of oscillations vary depending on the sequence, thus in turn determining the value of Area(word).

Time is in seconds. Reprinted from Dueñas-Díez and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Press.

Of course the values of D and f have evolved as we added
the chemical realization of the symbols (letters) making up the
words. This means that they are a function (actually a functional)
of the reaction extents, ξ (i), of the various reactions that have
been visited during the processing of the words. This suggests
that instead of looking directly at the values ofD and f, we look at
them in a way where the use of the extents is explicit, while we still
examine the final state of the reaction (Experimental numerical
values for the process can be obtained if we consider the evolution
of the reaction redox profile as a function of time). The processing
of the beginning-of-sequence and end-of-sequence symbol, #,
will give us a read out of the relative weights of the reduced and
oxidized extents of reaction at the end of the computation. To
implement experimentally the above procedure, we consider in a
Vredox vs. tseq plot the fraction of the initial area that has remained
during the computation in the oxidized state after the addition of
the first symbol to the Turing machine reactor. This fraction is
equal to the area in the V–t (voltage vs. time) plane representing
the evolution of the redox potential after processing of the first
symbol has taken place ∼ Vmax × t, minus the area below the
redox voltage spanned by the experimental trace of the Vredox (t)
curve during the processing of the final # (see Figure 6). Time
units are seconds.Wewill call this difference the processed word’s
“area,” A(Word). It is given by

A(Word) ≡ Vmax · (τ − 30)−
∫ t#+τ

t#+30 Vosc (t) dt (1)

where Vosc has dimensions of energy divided by electric charge
and the 30 s added to the lower limit of the integral are introduced
to allow for any potential transients to settle. If multiplied by e,
the charge of the electron, this quantity [i.e., e times A(word)] has
the dimensions of the action in physics which, as we will describe
below, plays an important role providing a physico-chemical
interpretation of a native chemical computation.

Using Nernst’s law and a model for the kinetics of the
oscillating reaction one can readily compute the integrand of
Equation (1) which can then be used (see Section Building a

Chemical Turing Machine Using the BZ Reaction Chemistry
describing the construction and formulation of the BZ TM)

to calculate the values of the area for the word processed by
the chemical automaton. Remarkably, one finds that the area
for words in the language accepted by the Turing Machine,
plotted as a function of the total time it takes to process all the
symbols in the word (including the two instances of the end of
sequence symbol # at the beginning of the word and at word
end), follows a straight line in the A(Word) vs. t plane. We also see
that the words not in the language follow different paths which
depend on how or when in their symbol sequence they come
out of the automaton’s accepted language. They are not on the
same straight line as the words in the language, which indicates
that some (global, internal, and autonomous) optimization takes
place during the course of the native chemical computation being
carried out by the automaton. Moreover, the slope of this straight
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line can be made to vanish by suitably adjusting the molarity
of the aliquots representing some of the alphabet symbols. This
implies2 that for words in the language, the quantity A(Word) does
not change (is invariant) under changes in the total time spent
by the automata performing the computation (Dueñas-Díez and
Pérez-Mercader, 2019a). That is,

δA(Word)|Word in Language = 0 (2)

But A(Word) is a integral over time, and therefore Equation (2)
represents at least a piece for the formulation of a variational
“principle,” as in the cases of the principle of least action
in mechanics (cf. Feynman et al., 1965; Goldstein et al.,
2002; Lanczos, 2012) or of entropy generation in chemistry
(cf. Prigogine, 1955; Yourgrau and Raw, 1957). Paraphrasing
Feynman, we can say that words in the language follow paths
in the area-sequence length plane that keep A(Word) at a
constant value.

Let us further explore what is at work behind these
observations. FromNernst’s law we have that for a redox reaction

Vosc = V0 +
RT
νF ln

(
[

Ru(bpy)
3+
3

]

[

Ru(bpy)
2+
3

]

)

(3)

where Vo is a reference voltage
[

Ru
(

bpy
)3+

3

]

and
[

Ru
(

bpy
)2+

3

]

are the (instantaneous or time dependent) concentrations of
catalyst in the oxidized and reduced states, ν is the number
of electrons involved in the redox reaction, and F is Faraday’s
constant. Equation (3) multiplied by ν and Faraday’s constant,
is the Gibbs free-energy G (t) for the oscillating redox reaction
(Kuhn and Försterling, 2000), which inserted into Equation (1)
tells us that for isothermal and isobaric conditions

δA(Word) = δ
∫ t# +τ

t#+30 G (t) dt (4)

The function G (t) has a support restricted to the substances
involved in the electrochemical sector of the redox reaction, Ru3+

and Ru2+. It is a functional of the extents of reaction, ξ (i) (t), for
the reactions i involved in the changes in concentrations between
the two redox states of the catalyst. In the FKN model of the
BZ reaction (Dueñas-Díez and Pérez-Mercader, 2019a; see also
Appendices 1 and 2 in this review) we have that

[

Ru
(

bpy
)3+

3

]

=

[

Ru
(

bpy
)3+

3

]

input
+ ξ (6) − 6ξ (9) − 4ξ (10) (5)

and
[

Ru
(

bpy
)2+

3

]

=

[

Ru
(

bpy
)2+

3

]

input
− ξ (6) + 6ξ (9) + 4ξ (10) (6)

From Equations (2)–(5) we see explicitly that the Gibbs free
energy can be a function of the form

G (t) ≡ G
(

ξ (i) (t) , dξ (i)/dt;t
)

(7)

2It also implies that the two-dimensional distance between points in the area

vs. time plane that represent words in the language is the shortest (minimum)

distance.

And the area variation becomes,

δA(Word) = δ
∫ t# +τ

t#+30 G
(

ξ (i) (t) , dξ (i)/dt, t
)

dt. (8)

INTERPRETATION OF
WORD-ACCEPTANCE IN A NATIVE
CHEMICAL TURING MACHINE

We have seen above that an appropriate phenomenological
reformulation of the aliquots for the symbols representing
the words in the language accepted by the native chemical
Turing Machine reveals three important aspects of the chemical
computation. First that for every word not in the language
recognized by the TM, the TM automaton classifies them in
the amplitude-frequency plane as being either below or above
a path in that plane which connects the machine’s response
points corresponding to words in the language for which it was
programmed. Secondly, that one can transform the previous
response in the (D,f) plane into an equivalent response in an
“A(Word)” vs. word-symbol count plane where the words in the
language fall in a straight line. And thirdly, that this straight
line can be rotated into a horizontal straight line in the (D,f)
plane by an additional chemical concentration adjustment of the
aliquots translating the word in the language of the automaton
to new (chemical concentration reformulated) alphabet symbols.
It is important to note that these reformulations involve the
concentrations but not, necessarily, changing the nature of their
molecules [The latter can be shown to be due to some invariance
or symmetry in the chemical kinetics (cf. Noether, 1918; Nicolis
and Prigogine, 1977; De Groot and Mazur, 2011) which will not
be discussed in this review].

Let us concentrate on the third remark above. Put succinctly,
it is saying that there is a chemical equivalent of the “action” in
physics which can be used to account for the evolution of the state
of the chemical automaton as it processes symbols, and that this
equivalence is such that (1) gives the same value of the action
(area) for any accepted word, (2) this value is independent of
the word length so long as it accepted, (3) the distance between
consecutive accepted words is a constant, and (4) that after a
“rotation” in chemical space, the distance between consecutive
accepted words is the shortest possible in a two dimensional space
[i.e., the brachistochrone, or “curve down which a bead sliding
from rest and accelerated by gravity will slip (without friction)
from one point to another in the least time“ (cf. Goldstein et al.,
2002) in this action vs. time plane is a straight line].

Indeed, the value of the area after processing the # symbol
provides a direct measure of how much the extents of reaction
have progressed during their visits to the oxidized and reduced
states. That is, this action gives us information on how the
changes in the concentrations of Ru3+ and Ru2+ have evolved
during the full course of the computation. Its values and
functional evolution clearly involve the Gibbs relationship for
entropy production (cf. Baierlein, 1999) with the reaction extents
ξ (t) (which reflect changes in concentrations as a function
of time) as reaction coordinates. It is interesting to note that
the constant area/action functional harkens the presence of
some optimal dynamical evolution of the BZ chemistry when
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configured to operate as a TM and fed with words in the
language it recognizes. In other words: some physical quantity
must be optimal when the TM processes and accepts words in
its language.

As motivated earlier in the review, a quantity that can
naturally reflect what occurs during a chemical computation
is the non-equilibrium entropy which is produced by the
“flow” of the i-th reaction, dξ (i)/dt, driven by its conjugate
force, the activity for that reaction A(i) (cf. Aris, 1999; De
Groot and Mazur, 2011; Yourgrau et al., 2013). One expects
that the events of molecular recognition taking place in a
chemical automaton will translate into corresponding out-of-
equilibrium changes in the entropy. These cannot be arbitrary
and will depend on the sequence of chemicals (word) fed
to the automaton for its computation. They are constrained
by the entropy balance for an out-of-equilibrium system (cf.
Martyushev and Seleznev, 2006; De Groot and Mazur, 2011;
Yourgrau et al., 2013; Kondepudi and Prigogine, 2014), given by
the equality

∂s
∂t +∇ · Js = σ (9)

Here, s is the specific entropy, ∂s
∂t represents the net entropy

production, Js is the flow of entropy across system boundaries,
and σ is the entropy production density. At constant pressure
and temperature the above becomes

ds
dt

= σ + 1
T
dQ
dt
. (10)

Upon using the first law of thermodynamics together with the
definition of the Gibbs free energy G = U + PV - TS Equation
(10) implies that

σ = − 1
T
dG
dt
. (11)

In other words, the entropy production in the above conditions
is the negative of the change in time of the Gibbs free energy
[Furthermore, Equation (11) also says that if dG/dt is aminimum,
σ is a maximum, and vice versa, that is if σ is a minimum then
dG/dt is a maximum].

Our in vitro experimental measurements (made at constant
pressure and temperature) together with Equations (8) and (2)
imply that for words in the language accepted by the Turing
machine using the realization where the composition of aliquots
is such that δA(word) = 0 and the distance is the shortest between
words in the language,

∂G
∂t = 0 (12)

and (after using the techniques of the calculus of variations) this
implies that

∂G
∂ξ

= 0 (13)

We conclude from Equation (11) (cf. Yourgrau and Raw, 1957)
that when processing those words, the entropy production by the
Turing machine is zero. That is,

δσ |Word in Language = 0 (14)

Applied to the results of our experiments concerning the area
for accepted and not accepted words, this expression tells us
that words in the language for which the Turing Machine was
designed, generate a constant entropy in the redox sector of the
reaction. In other words, the process of word acceptance in a
chemical Turing machine brings its entropy to an extremum.

Since the path joining the words in the [Sequence Length,
A(word)]-plane is a horizontal straight line, we can also say
that the paths for words in the Turing machine all occur
for their minimum separation, i.e., they are processed by the
Turing machine following the shortest path. Chemically, these
σ = 0 paths are accompanied by the presence of specific
quantities of radicals and reaction intermediates produced
during the process of word recognition. Since these radicals
can be used, for example, to induce RAFT polymerization of
amphiphilic block copolymers (ABC) followed by their out-
of-equilibrium self-assembly (cf. Bastakoti and Pérez-Mercader,
2017a,b; Hou et al., 2019), we infer that the self-organization
and dynamical self-assembly properties of such amphiphiles can
be linked to the collective properties of the ABC dissipative
self-assembly. The above, in turn implies that these properties
can be controlled/programmed by a chemical automaton and
in particular by a chemical Turing machine. Such applications
showcase interesting and suggestive scenarios where the hybrid
analog-digital nature of the computation plays an intriguing
and suggestive role. For example, one can think of autonomous
programmed dynamical self-assembly of functional materials or
supramolecular structures (Pearce and Perez-Mercader, 2020).

The experimental and analytical results presented above can
be recast as the statement of a variational principle just as in
classical mechanics or in non-equilibrium thermodynamics (cf.
Goldstein et al., 2002; Lebon et al., 2008) where the action
functional (cf. Goldstein et al., 2002; Lanczos, 2012) integrated
along the paths of actual physical motion are extremal, and
a minimum in the case of Hamilton’s principle. The above
translates to our case by simply substituting action for our
“area” and the extremal path corresponds to paths that include
only words in the language of the Turing machine. Applying
Prigogine’s result on entropy production in the course of a
chemical reaction we then conclude that language recognition in
the chemical automaton generates, cf. Equation (11), a minimum
amount of entropy if the change of the free energy is a maximum
and viceversa.

The above provides an interesting view of acceptance states
in chemical Turing machines (and arguably for other automata).
Interestingly this extremum can be adjusted in the interest of
efficiency by making use of the digital-analog nature of native
chemical computation and selecting an appropriate aliquot
recipe for the symbols. Theoretically, this adjustment can be done
with a precision of a few parts in 1021−23 and opens an intriguing
set of questions related to the reversibility of computations done
by chemical automata.

In summary, we have seen that a native chemical computation
at the Turing machine level can be understood in terms of
extremal entropy production. This is accompanied by the release
of radicals by the TM in specific proportions which can then be
used as chemical inputs to subsequent chemical processes and,
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therefore, enable the fully chemical and autonomous control of
complex systems. This we will explore in the following section
which is devoted to the specific example of a BZ-based native
chemical Turing machine in the LBA-class.

BUILDING A CHEMICAL TURING MACHINE
USING THE BZ REACTION CHEMISTRY

We are now ready to discuss how an actual chemical Turing
machine is built using the oscillatory Belousov-Zhabotinsky
reaction to recognize CSL L3 (Dueñas-Díez and Pérez-Mercader,
2019a). We will discuss the design and operation of the Turing
Machine in both batch mode and flow mode, specifically in a
continuously stirred tank reactor (CSTR) mode.

Chemical Turing Machine in a Batch
Reactor
First, the alphabet symbols in the language to be recognized need
to be assigned to their counterpart chemical species. Language
L3 has a, b, c, and # as symbols. Therefore, four different
chemical species need to be identified that affect in distinct
ways the dominant pathways in the reaction mechanism, and,
in turn, the observed oscillatory features. The assignment can
be done empirically, or preferably, guided by the knowledge
on the reaction mechanism and kinetics (cf. Dueñas-Díez and
Pérez-Mercader, 2019a, and Appendices 1 and 2). As a rule of
thumb, the reactants, the catalysts, and the most interconnected
intermediates or chemical species interacting with them, are
the best candidates for assignment. Here, the reactants sodium
bromate and malonic acid were successfully assigned to a and b,
respectively, and sodium hydroxide, a species affecting the most
interconnected intermediate H+, to c. The catalyst was assigned
to #. The mapping between the symbols and their effects on the
oscillatory features (f andD) and dominant pathways in the FKN
model is discussed in the previous reference.

Next, we need to quantify the alphabet recipes and
initial conditions that ensure a proper operation envelope
of the automaton, i.e., keeping the reaction mixture within
the oscillatory regime and simultaneously leading to
observable/measurable changes in the oscillatory features
whenever a symbol is read and processed. Recipe quantification
typically involves optimization, which can be carried out
experimentally or aided by kinetic simulations (cf. Appendices 2
and 3). In the first experimental realization, the recipe was
optimized experimentally to minimize the gas production that
interferes with the redox potential monitoring, and to ensure
reliable accept/reject outputs for sequences up to n = 5 both
in the [D, f ] (cf. Figure 5) and A(word) accept/reject criteria
(cf. Figure 7). The time interval between aliquots is a design
parameter of the chemical automaton that influences the speed
and performance of the machine. It was chosen long enough
to ensure that the system gives two full oscillations (after the
induction period) once both an a and b are in the system.

The [D, f ] accept/reject criterion is non-linear, while the
A(word) shows a linear dependence with respect to the sequence
length. Such linearity motivated the further optimization of

the recipes to achieve a simpler accept/reject criterion: a
constant A(word) regardless of sequence length (for words
in the language). This was implemented using model-based
mathematical optimization and a subsequent experimental fine-
tuning (cf. Appendix 3 and Figure 8).

The inclusiveness of chemical automata and their
reconfigurability have been proven experimentally (cf. Dueñas-
Díez and Pérez-Mercader, 2020 and Appendix 4 of this review).
Indeed, the batch chemical Turing machine was reconfigured
to recognize the context-free language of balanced parentheses
L2 (Dyck Language) by adjusting the recipe of aliquot b. It was
also reconfigured to recognize a simple regular language L1, the
language of all sequences that contain at least one a and one b.
The choice of time interval guarantees adequate performance
without requiring further recipe adjustment.

Extension of Chemical Turing Machine to
CSTR Operation
The extension to continuous operation (CSTR) is appealing
for several reasons: the autonomous resetting of the machine
to process a new input, the potential for faster computations
since the machine is already in an oscillating regime at the
onset of computation, the availability of a wider range of
periodic and aperiodic oscillatory regimes (cf. Hou et al.,
2019) to be eligible for accept/reject signatures, and the
straightforward ability to reconfigure and to connect several
automata such that new computations can be carried out
(cf. Cohen, 1991; Hopcroft et al., 2007).

The autonomous resetting of the automaton for running a
new input means that the input is “erased” from the reactor
after a certain resetting time Tresetting that can be estimated
from the residence time distributions (RTD) mean µRTD and
standard deviation σRTD, which for an ideal CSTR combine to
give (Levenspiel, 1999):

Tresetting ∼ µRTD + 2 · σRTD ∼ 3 · τres (15)

Which aspects of the design remain the same, and what
additional conditions need to be considered when extending
native chemical computation in CSTR mode? The choice
of alphabet assignment would still be based on the same
principles, and the aliquot amount design would follow the
same considerations of keeping the system within the oscillatory
regime while simultaneously providing a measurable change in
the oscillatory features whenever an alphabet symbol is read.
The time interval would still be limited by the slowest symbol-
pathway pairing, but the effect of flow in reaction needs to be
considered as well. The ratio between the resetting time Tresetting

and the computational time interval τ influences the maximum
length of input sequence that can be processed without erasure of
information during the processing of the sequence:

lmax ∼
Tresetting

τ
∼

3·τres
τ

. (16)

Hence, τ and τres would need to be carefully chosen to try to
maximize the processable sequence length.
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FIGURE 7 | A(Word) vs. word-symbol count accept/reject criteria. Panel (A) shows experimental results (error bars are based on three repetitions of each sequence

experiment) while panel (B) shows simulation results based on a modified FKN model (cf. Appendices 1 and 2). The locus of accepted words is now linear (in

experimental results) and divides the plane in two disjoint regions of rejected words. The relative position of accepted and rejected sequences is reproduced

qualitatively by the simulations. Reprinted from Dueñas-Díez and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Press.

FIGURE 8 | A(Word) vs. word-symbol count accept/reject criteria after model-based optimization (cf. Appendix 3) and experimental fine tuning. Panel (A) shows the

experimental results achieving a linear criterion with zero slope with the fine-tuned recipe (error bars are based on three repetitions of each sequence experiment), and

panel (B) shows the simulation results for the recipe given by the mathematical optimization (prior to fine tuning). The relative position of accepted and rejected

sequences is reproduced qualitatively by the simulations. Reprinted from Dueñas-Díez and Pérez-Mercader (2019a) Copyright (2019) with permission from Cell Pres.

The experimental setup for running a native computation in
CSTR is more complex than that for a native batch computation,
but the only additional required equipment would all be standard
to continuous operation.

Another difference with the batch implementation is the
initial conditions. In CSTR, the reactor would be in a stationary
out-of-equilibrium oscillatory regime before processing the

input, and once the sequence is fully processed the oscillations
would evolve toward the initial oscillatory features, thus
automatically resetting the automaton for a new computation.

Finally, since the machine’s operation would start in an
oscillatory regime, Vmax would never be reached in the
CSTR, thus the A(word) criterion needs modification. A
possible extension of the previous definition of the area for
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a batch reactor is

A(word) =
∫

2 oscillations VCSTRdt −
∫

2 oscillations V# intervaldt (17)

where the first term integrates the area below the two last
complete oscillations before the beginning-of-sequence # (in the
stationary CSTR regime) and the second integral gives the area
below the two last complete oscillations within the time interval
corresponding to the end-of-sequence #.

CONCLUSIONS

In this paper, we have reviewed recent work on native
chemical computation: computations performed exclusively by
the molecules involved in chemical reactions without involving
constructs external to the chemical reaction mechanism.
Oscillatory reactions turn out to play a central role in this area
of computation.

A computation is a process in which some available
information is input, systematically (“mechanically”)
transformed in prescribed ways and output into a form
suitable for the implementation of some function. Computations
are carried out by computing automata. Abstractly, these are
machines that do some computations. Some of these abstract
automata require access to infinite lengths of tape for their
operation and cannot therefore be practically realized. For
the practically realizable automata, both a conceptual and
technical parallel can be established with the way in which
chemical reactions occur. The information to be processed
can be transcribed into aliquots of the reactants for a chemical
reaction, translated (transformed) by the reaction and output
as the molecular products of the reaction or as the values of
some physico-chemical quantities which include entropy, redox
potential, or pH. Thus, chemical reactions can be viewed as
a kind of chemical automata which operate on information
represented with chemistry.

Computation with chemistry is central to biology enabling the
beautiful phenomena of life, from the synthesis of proteins, to the
life cycle of bacteria, to the workings of the human brain. During
the last 50 years or so, many workers (Adamatzky and Costello,
2002; Adamatzky, 2019) have worked on the implementation
of computation with chemistry but whenever automata were
used in laboratory realizations, they used only a few Boolean
gates and, due to the intrinsically noisy nature of the transport
of information in chemical form, the computations relied on
external constructs to take advantage of effects induced by
molecular transport, such as waves or externally made shapes
to guide the appropriate chemicals during the computation.
With native chemical computation, the information processing
takes place within the reaction itself making available for the
computation the full reaction mechanism. Not surprisingly,
this enables the application of chemical computation to more
complex problems. These additional potential applications
include the interconnection of automata into networks or
architectures such as chemical perceptrons and neural networks
which, due to the access of chemistry to more complex
automata in the various layers of these neural processors, can

see enhancements of their capabilities and the nature of the
problems that can be tackled with them when using native
chemical computation and other forms of chemical computation
or their combination.

It is a well-established notion in computer science that any
computing problem can be cast as a sequence of language
recognition problems. Computer languages can be classified
according to their complexity into an inclusive hierarchy known
as the Chomsky hierarchy. In parallel with the language hierarchy
there is a hierarchy of automata; that is automata capable of
recognizing languages according to their complexity. It can be
seen that for the case of chemical computation there is a parallel
correspondence of computing automata with classes of chemical
reactions. At the top of the materially implementable (i.e., not
requiring infinite amounts of energy for their operations) are the
Linear Bounded Automata (LBA) which correspond to bounded
(finite) tape length Turing machines. These automata require
their memory to hold at least two variables and are represented by
(non-linear) oscillatory chemical reactions, such as the Belousov-
Zhabotinsky reaction, where the two variables correspond to the
frequency and amplitude of the redox oscillations. These two
observables are non-linearly interrelated in a way that depends
on the nature and order of the sequence of reactants being fed
to the reaction. The reaction recipe can be formulated so as to
recognize languages that only LBAs and automata at their level in
the Chomsky hierarchy can recognize.

We have also seen how these LBAs can be reprogrammed
and how they recognize other languages below their level in the
hierarchy. This opens a window for the simulation of chemistry
with chemistry, i.e., without any intermediary translation (cf.
Feynman, 1982) and brings us closer to attempt unlocking
the power of 1023 processor per mol, but whose effectiveness
is seriously hindered by the very strong correlation among
the computing molecules in the bulk reaction solution at
room temperature.

The results of the computation, for example, in the case
of the BZ-finite tape length Turing machine, are in the form
of radicals, relative concentrations of reaction products, and
physico chemical signatures. These can be used to connect
with other automata down the line and enable more complex
operations, or to use in other chemical processes such as in
polymerization reactions (Washington et al., 1999) and even
enable the chemically controlled, out-of-equilibrium synthesis
of complex molecules from small molecules to self-assembled
amphiphilic structures, such as micelles or vesicles (Bastakoti
and Pérez-Mercader, 2017a,b). The physico-chemical signatures
associated with language acceptance offer an experimental
glimpse into the implications of native chemical computing for
the implementation of the predictions of the Maximum Entropy
Production Principle and its connection with the efficiency of
computing processes.

Many questions remain open: from the extension of the above
framework to other oscillating reactions, to their application
to “computer controlled” molecular and supramolecular
architectural assembly from the subnanometer to the micrometer
scales, to the study of their implications in non-equilibrium
thermodynamics and efficient computation, their direct use
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in the simulation of chemistry by chemistry, including the
development of such processors or their use in the construction
of mimics of life without using biochemistry.
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NOMENCLATURE AND DEFINITIONS

a: alphabet symbol in abstract language (in the Chomsky
hierarchy). For the experimental Turing machine recognizing
L3, this symbol is transcribed by an aliquot of sodium bromate.
b: alphabet symbol in abstract language (in the Chomsky
hierarchy). For the experimental Turing machine recognizing
L3, this symbol is transcribed by an aliquot of malonic acid.
c: alphabet symbol in abstract language (in the Chomsky
hierarchy). For the experimental Turing machine
recognizing L3, this symbol is transcribed by an aliquot
of sodium hydroxide.

A(word)
: Thermodynamic accept-reject metric, based on

integrating in the redox potential vs. time plane, defined as:

A(Word) ≡ Vmax · (τ − 30) −
∫ t#+τ

t#+30 Vosc (t) dt. Times are
in seconds.
D: The (oscillation) distance D between the maximum
redox potential value Vmax and the redox potential value
corresponding to the center of a given oscillation:

D = Vmax −

(

VT +
VP − VT

2

)

D#: Value of D corresponding to the last oscillation when one
time interval has elapsed after the end-# was added.
f : The (oscillation) frequency f, as the inverse of the period.
The period is taken to be the time elapsed between two
consecutive peaks.
f #: Value of D corresponding to the last oscillation once one
time interval has elapsed after the end-# was added.
F: Faraday Constant.
G (t) : Gibbs free energy.
Q :Heat.

R : Universal Gas Constant.
[

Ru
(

bpy
)3+

3

]

: Molar Concentration of oxidized

catalyst [Ru(III)].
[

Ru
(

bpy
)2+

3

]

input
: Total Molar Concentration of oxidized

catalyst [Ru(III)] added with the input.
[

Ru
(

bpy
)2+

3

]

: Molar Concentration of reduced

catalyst [Ru(II)].
[

Ru
(

bpy
)2+

3

]

input
: Total Molar Concentration of oxidized

catalyst [Ru(II)] added with the input.
s : Specific Entropy.

T : Temperature.
Tresetting : Resetting time in chemical automata in CSTR

mode. Time needed to erase a computation and set back to the
steady oscillations.

Vmax :Maximum redox potential value, when all catalyst is in
the oxidized form.

VP−VT : Trough-to-peak amplitude of the redox oscillation.
VT: Redox potential value of the trough of

the oscillation.
#: beginning and end-of-sequence symbol. For the

experimental Turing machine recognizing L3, this symbol
is transduced by an aliquot of ruthenium(II) catalyst.

µRTD: Residence time distribution mean (CSTR operation).
ν : Number of electrons exchanged in the redox reaction.
ξ (i)

: Reaction extent corresponding to reaction i in the FKN
kinetic mechanism of the Belousov-Zhabotinsky reaction.

σ : Entropy production density.
σRTD : Residence time distribution standard deviation

(CSTR operation).
τ : Time Interval between aliquots in native

chemical automata.
τres : Nominal Residence time (in CSTR operation).
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