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Abstract: Presently, the nanotechnology approach has gained a great concern in the media of drug
delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold
nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields.
The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial
and wound healing efficacy in diabetic animals. Material and methods: Au-NPs were characterized
using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing
their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal
behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in
STZ-induced diabetic animals. Results: Au-NPs were found to show maximum absorption at 520 nm.
They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited
good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a
significantly increased percentage of wound area reduction, lesser time needed for epithelialization,
and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing
processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related fac-
tors (HIF-1α, TGF-β1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as
mitigated inflammatory mediators IL-6, IL-1β, TNF-α, and NF-κB) and lipid peroxidation (MDA).
Conclusion: Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimi-
crobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising
wound healing activity in STZ-induced diabetic animals.

Keywords: gold nanoparticles; characterization; antibacterial; antifungal; diabetic; wound healing

1. Introduction

Bacterial infection is one of humanity’s most critical hazards. Bacteria can cause
a variety of infections [1]. Gram-negative bacteria, such as E. coli, can cause infections
in the urinary tract, gastrointestinal tract, and lungs. Gram-positive bacteria have the
potential to harm the skin and other sensitive tissues. Existing antibiotics are no longer
effective in controlling bacterial infection due to the overuse of classical, small organic
molecule-based antibiotics [2], which resulted in multiple global disasters as a result of
the widespread of resistant fungus and bacteria [3]. The challenge of antibiotic-resistant
microorganisms, as well as the focus on healthcare expenditures, drives researchers to come
up with pioneering ways to generate powerful antimicrobial drugs to combat bacterial
resistance and lower costs [4].
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Nanotechnology, a new discipline of research, has a wide range of applications in
fields such as agriculture, electronics, and medicine. NPs and their conjugates have been
extensively explored in antibacterial therapy [5]. Antibacterial, antimalarial, and antibiofilm
agents have all been utilized with gold NPs (Au-NPs). Au-NPs have a wide range of
biological uses, including medicinal and gene therapy, as well as diagnostic biosensors.
Au-NPs could be synthesized using various methods including coprecipitation, chemical
reduction, seeding, and hydrothermal method [6]. NPs are simple to be synthesized using
a co-precipitation method especially for preparing iron oxide NPs [7,8]. On the other hand,
the chemical reduction method was widely used for preparing NPs such as silver and gold
NPs [9]. It is an effective method by which the aqueous salt of the metal is reduced to
produce the NPs. Further, the obtained NPs are stabilized with certain stabilizers, mainly;
cetyltrimethylammonium bromide (CTAB) for gold NPs and sodium citrate for silver
ones [10]. Regarding seeding method, the NPs were developed by reduction of salts in the
aqueous media and controlling the size of the obtained NPs by the stabilizing agent [11].
However, hydrothermal method depends on certain reaction under high temperature and
pressure for growing NP crystals [12].

Gold nanorods (GNR), having a non-spherical structure, are attracting a lot of interest
as antibacterial candidates. They extensively absorb near-infrared light that is within
an acceptable wavelength window for therapeutic applications [13], resulting in local
hyperthermia that can be exploited to eradicate germs, in addition to their biocompatibility
and simplicity of functionalization [14]. Additionally, it was reported that the antibacterial
activity of NPs came from their reaction and deactivation for the bacterial enzymes [15]. It
was previously investigated that the antibacterial activity of Au-NPs prepared with CTAB
exhibited a toxic influence against the bacterial culture [16]. Furthermore, the antifungal
activity of GNR against Candida strains was studied and confirmed earlier [17]. Two types
of NPs are broadly used for wound healing, one of them acts as a route of delivering
the active agent while the other has its own properties that enable the wound healing
action [18]. The later NPs such as metallic NPs that gained a great concern in the medical
application including the enhancement of wound healing [19].

Wound healing is the body’s natural reaction to fix and rebuild damaged skin tissues.
It is the most prevalent occurrence in human life as a result of traumatic, surgical, or
burn traumas, as well as chronic disorders. A significant risk of bacterial infection is
associated with poor wound healing [20]. Diabetes is linked to poor wound healing
due to abnormal cellular and cytokine responses, infection, poor vascularization, and
neuropathy. Recent promising treatment techniques for speeding diabetic wound healing
include nanotherapeutics-based compounds designed within 1–100 nm levels, which
include NPs [21]. Different nanoformulations exerted a great influence in the field of
wound healing especially in diabetic patients [22]. Interestingly, the antimicrobial and
antioxidative effects of gold NPs proved very effective in wound healing and regeneration
of damaged collagen tissues [23]. Another study reported that topical Au-NP application
with epigallocatechin gallate and α-lipoic acid significantly accelerated mouse cutaneous
wound healing through anti-inflammatory and anti-oxidant effects [24]. Wound healing
efficiency of GNR was formerly investigated by Mahmoud et al., where the prepared
nanorods exhibited strong antibacterial activity against the most common skin pathogens
and facilitated wound healing [25]. Moreover, Hassan et al investigated the potential of the
wound healing mechanism of the developed nanorods [26]. Furthermore, it was reported
that the hydrogel of the developed GNR revealed a significant wound healing properties
following topical application to wounds [27].

As a result, the goal of the current research is to describe gold rod-shaped NPs,
incorporated into gel formulation for topical application and explore their antibacterial and
wound-healing effect in diabetic wounded animals treated with Au-NPs.
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2. Materials and Methods
2.1. Materials

Tetrachloroauric acid, cetyltrimethyl ammonium bromide, ascorbic acid, sodium boro-
hydride (NaBH4), silver nitrate, and Hydroxypropyl methylcellulose (HPMC) were bought
from Sigma-Aldrich Co. (St Louis, MO, USA). All other chemicals were of analytical grade.

2.2. Synthesis of Au-NPs

Au-NPs development was conducted by simply preparing seed and growth solution.
For the seed solution, 5 mL, 0.2 M of cetyltrimethyl ammonium bromide (CTAB) was
stirred with equivalent volume of 0.0005 M HAuCl4. Next, 0.6 mL of ice cold 0.01 M NaBH4
was added, which resulted in forming the brownish-yellow colour seed solution. Stirring
was kept for 2 min and then stored at 25 ◦C. Regarding growth solution, cetyltrimethyl
ammonium bromide (5 mL, 0.2 M) was added to (0.05 mL) of 0.004 M AgNO3 solution and
gently mixed with 5 mL of 0.0010 M HAuCl4. Next, 70 µL of 0.0788 M ascorbic acid as a
mild reducing agent was added. The colour was changed from dark yellow to colorless.
12 µL of seed solution was mixed with growth solution at 30 ◦C after which the color was
gradually changed [28].

2.3. Characterization of Synthesized Au-NPs
2.3.1. UV–Visible Spectroscopic Determination

Estimating the UV-Vis spectroscopy for analyzing the surface plasmon resonance is
very essential in the characterization of the formulated NPs. This estimation was carried
out using a UV-Vis spectrometer (U.V. Spectrophotometer, JENWAY 6305, Stone, UK) in the
wave length range of 200–800 nm [29].

2.3.2. Dynamic Light Scattering Analysis and Zeta Potential

The particle size of the fabricated NPs together with its size distribution (PDI) was
determined depending on the dynamic light scattering analysis technique. Additionally,
the NPs zeta potential was estimated by determining the surface charges relying on the elec-
trophoretic mobility. The evaluations were conducted using Zetasizer apparatus (Malvern
Instruments Ltd., Worcestershire, UK) at 25 ◦C [30].

2.3.3. Transmission Electron Microscopy (TEM)

The morphology of the synthesized Au-NPs was inspected via Transmission electron
microscopy (TEM, JEM, 2100, Tokyo, Japan). Sample was prepared by adding one drop
of the formulation over a carbon-coated copper grid and kept to dry using infrared lamp,
then investigated at accelerating voltage 200kv.

2.4. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR (FTIR spectrophotometer, SHIMADZU, IRAFFINITY-1S, Japan, Kyoto, Japan)
was employed for identifying the functional group in the fabricated NP and for detecting
any drug excipient interaction. The study was done using KBr pellet method, where the
NP sample was placed over a KBr plate and allowed to be dried at vacuum. The spectra of
FTIR were recorded among 4000 and 400 cm−1 [31].

2.5. Fabrication of Topical Au-NPs Gel

Topical formulation integrating Au-NP was prepared in order to be easier and more ef-
ficient for application over skin. Simply, 4% w/w gelling agent (HPMC) was sprinkled over
distilled water and kept stirring on a magnetic stirrer (Jeio Tech TM-14SB, Medline Scientific,
Oxfordshire, UK) till getting smooth hydrogel base. 250 µL of the developed Au-NP was
mixed with them and vortexed for 5 min till obtaining hydrogel containing Au-NP [32].
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2.6. Characterization of the Developed Au-NPs Gel Preparation
2.6.1. Visual Examination

The developed Au-NP gel was visually examined for its physical appearance, homo-
geneity, and color.

2.6.2. pH Measurement

To ensure the safety of the developed gel and avoid the possibility of irritation upon
its application, the pH of the gel should be measured. Standardized pH meter (MW802,
Milwaukee Instruments, Szeged, Hungary) was utilized for such measurement [33].

2.6.3. Viscosity Measurement

Viscosity is a very essential parameter for topical formulations to be evaluated since
improper viscosity would be inefficient and may cause discomfort for the patient [34].
Therefore, Brookfield viscometer (DV-II+ Pro, Middleboro, MA, USA) using spindle 63 was
used to determine the viscosity of Au-NP gel formulation at 25 ◦C [35].

2.6.4. Spreadability Determination

Same like, spreadability is another vital parameter to be calculated. It depends mainly
upon the viscosity of the formulation. Proper spreadability help in the even and smooth
application of the preparation over the affected area. Briefly, a sample of the gel was added
in between two glass slides. Certain load (500 g) was fixed over them for 1 min. The spread-
ability is calculated by measuring the diameter of the formulation spreading area [36].

2.7. Antimicrobial Studies
2.7.1. Culturing of the Microorganisms

Both Staph. aureus (ATCC 10400) and E. coli (ATCC 25922) were used as Gram-positive
and Gram-negative control organisms, respectively. However Candida albicans (ATCC 90028)
was included as fungal control. All the microorganisms were obtained in freeze-dried form
and rehydrated in Luria Bertani broth (10 g tryptone, 5 g yeast extract, 5 g NaCl l-1;
Sigma–Aldrich, St. Louis, MO, USA) whereas C. albicans, which was cultured in Sabouraud
dextrose broth (Sigma–Aldrich). Later the broth was solidified (by adding 1.5 percent
agar) to preserve the viability of the microorganisms. These media was incubated at
37 ◦C (for bacteria) and 27 ◦C (for fungi), respectively, to enhance the growth of the
microorganisms [37].

2.7.2. The Antimicrobial Activity of Au-NPs

For each experiment, a single colony of each organism was inoculated into 5 mL of
3% (wt%) tryptic soy broth (TSB) and growing it in a shaking incubator for overnight. The
bacteria were diluted in 3% TSB so as to reach an optical density of 592 nm (OD592) = 0.52
that corresponds to 109 bacteria/mL. The culture was diluted further in TSB before being
plated at a concentration of 106 bacteria/mL. AU-NPs at a concentration of 2 nmol/mL
were diluted with TSB to 1, 0.5, 0.25, 0.125, till 0.008 nmol/mL solutions. Of these, 50 µL
of diluted bacterial culture was added to each well of the 96-well plate except in negative
control. Each treatment was replicated three times on each plate. After incubation at 37 ◦C
for 24 h (for bacteria) and 48 h (for the fungus), 0.015% resazurin solution was added to
all wells (20 µL per well) followed by incubation at 37 ◦C for 2–4 h and monitored for the
change in check color.

2.7.3. Minimum Bactericidal and Fungicidal Concentration Determination

Following the MIC analysis, the minimum bactericidal concentration (MBC) and
minimum fungicidal concentration (MFC) were determined. A total of fifty microliters of
aliquots were taken from all tubes that exhibited no signs of growth or change in optical
density at 600 nm. Aliquots were then seeded aseptically on nutrient agar plates and
incubated at 37 ◦C for 1 day. The lowest concentration of the antimicrobial agent when
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99.9% of the bacterial or fungal strains were completed was referred to as MBC and MFC
endpoints, respectively [38].

2.7.4. Scanning Electron Microscopy (SEM) Imaging of S. aureus, E. coli and C. albicans
treated with Au-NPs

Using a poly-l-lysin-coated slide, SEM imaging of S. aureus, E. coli, and C. albicans treated
with Au-NPs solution was performed. 100 µL of Au-NPs suspension (1.25 nM) were combined
with 100 µL of Mueller–Hinton broth and 10 µL of microbe (about 1.5 × 106 CFU/mL) and
incubated for 1 h. After centrifuging the mixture for 20 min at 15,000 rpm, the supernatant
was removed, and the pellets were suspended in normal saline. After that, 50 µL of the
suspension was poured onto the slide and allowed to dry. After that, the sample was fixed
in 3% glutaraldehyde for 3 h and photographed using a scanning electron microscope. As
a control, SEM imaging of untreated S. aureus, E. coli and C. albicans were carried out.

2.8. In Vivo Studies
2.8.1. Animal’s Acquisition

Male Wistar rats (200 ± 20 g, 6–8 weeks) were acquired from King Saud University,
Riyadh, Kingdom of Saudi Arabia. Rats were maintained in the animal house under
standard surroundings for a week prior to conducting the experiment. Rats were fed
laboratory chow and water ad libitum.

2.8.2. Ethical Approval

All experiments were appropriately executed in agreement with the “Ethical Conduct
for Use of Animals in Research” Guidelines in King Faisal University. The Animal Research
Ethics Committee at King Faisal University approved all animal care and experimental
procedures with an ethical approval no (KFU-REC-2022- MAY -EA000632).

2.8.3. Induction of Diabetes

Diabetes was induced in overnight-fasted rats via intraperitoneal (i.p.) injection of
65 mg/kg of a freshly prepared streptozotocin (STZ) (Sigma, St. Louis, MO, USA) dissolved
in citrate buffer (pH 4.5). Rats were administered 10% glucose solution after 6 h of STZ
injection for another 24 h, to deter the severe hypoglycemia triggered by the immense
insulin release [39,40]. After three days of the STZ administration, fasting blood glucose
level (BGL) was measured and rats with BGL higher than 200 mg/dL were considered
diabetic and were used in the current study.

2.8.4. Experimental Design

Excision wound models were used to evaluate the diabetic wound healing activity
of Au-NPs in this investigation. Diabetic rats were arbitrarily separated into three groups
in each model (n = 6). Group I: diabetic negative control, in which diabetic animals were
granted to heal spontaneously without any treatment. Group II: diabetic positive con-
trol, in which diabetic rats were treated with the commercial standard ointment (Silver
Sulfadiazine 1% ointment (SSD) (Dermazin®), manufactured by Medical Union Pharma-
ceuticals, Saudi Arabia). Group III: diabetic + Au-NPs (30 µg/kg), in which diabetic rats
were treated with topical application of 30 µg/kg Au-NPs on wounds for once a day. Ani-
mals were checked for any wound contamination daily throughout the whole experiment.
No antibiotic was given to any of the animals’ groups. At the end of the investigation
and after the complete wound healing, the animals were sacrificed using 10 mg/kg of
xylazine (Bayer, Leverkusen, Germany) and 25 mg/kg of ketamine (Pfizer Inc., New York,
NY, USA) and wound tissue samples were collected and preserved in liquid nitrogen for
further biochemical analysis. At the end of the experiment, blood samples were collected,
centrifuged at 3000× g for 15 min, and the resulting serum was employed for subsequent
biochemical assays.
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2.8.5. Excision Wound Establishment

Anesthetized rats were situated face down on the dissection pad. Before the wound
creation, the dorsal region of the anesthetized animals was shaved, and the wound ar-
eas were cleaned via 70% ethanol. An open circular cut of 0.2 mm depth and 10 mm2

diameter was made on the back of each animal using a sterile scalpel. The animals were
distributed randomly into the different groups as mentioned in the experimental design.
Days of application of topical preparations started from day 0 to the day of complete
wound healing.

2.8.6. Measurement of Wound Area Parameters
Macroscopic Investigation

Wound photos were taken on days 0, 3, 7, 14, and 21 using a camera (Spot Insight QE;
Diagnostic Instruments, Sterling Heights, MI, USA). The epithelialization time which is the
number of days taken to drop off the dead tissue without any sign of raw wound [41]. The
wound area was measured using a tracing paper by placing the paper on the wound on the
0th, 7th, 14th, and 21st day after excision wound establishment. The percentage of wound
contraction was calculated as stated previously [42] using the following formula:

Wound contraction percentage = ((wound area day 0 − wound area day n)/wound
area day 0) × 100 where n is the number of days until whole healing.

2.8.7. Skin Tissues Measured Parameters

The hydroxyproline content in wound tissues was measured as described earlier [43].
Concisely, the wound tissue samples obtained from different experimental animals were
dried in a hot air oven at 60 ◦C to obtain similar weights and then hydrolyzed with 6 N
hydrochloric acids (HCl) (1:10, w:v) at 130 ◦C for 4 h in sealed glass tubes. The attained
hydrolysates were neutralized to pH 7.0 and subjected to oxidation via chloramine T. The
reactions accomplished by the addition of perchloric acid (0.4 M), and Ehrlich reagent at
60 ◦C to develop the colors which were valued at 557 nm. A standard linear curve was
performed, from which hydroxyproline concentrations were calculated and presented as
µg/mg of dry tissue weight.

2.8.8. Measurement of Angiogenesis Related Factors

In the wound tissue homogenates, vascular endothelial growth factor (VEGF, Item
No. LS-F5482), transforming growth factor-β1 (TGF-β1, Item No. LS-F24972) and hypoxia-
inducible factor 1-alpha (HIF-1α, Item No. LS-F4225) levels were measured using the ELISA
kit attained from LifeSpan BioSciences, Seattle, WA, USA.

2.8.9. Measurement of Lipid Peroxidation and Antioxidant Enzymes Activities

Lipid peroxidation was assessed using thiobarbituric acid reaction and stated as the
malondialdehyde (MDA) level using an MDA kit (Cat. No. ab 118790, Abcam, Cambridge,
MA, USA). Regarding the antioxidant activities, glutathione (GSH, Cat. No. 703002), glu-
tathione peroxidase (GPx, Cat. No. 703102), superoxide dismutase (SOD, Cat. No. 706002)
and catalase (CAT, Cat. No. 707002) were measured agreeing with the manufacturer’s
procedures using the ELISA kits, (Cayman Chemicals, Ann Arbor, MI, USA).

As for the estimation of nitric oxide (NO), the stable end-products of nitric oxide (NO)
biosynthesis were estimated by appraising the nitrite levels. Greiss reagent (500 µL; 1:1
solution of 1% sulphanilamide in 5% phosphoric acid and 0.1% napthaylamine diamine
dihydrochloric acid in water) was placed with 100 µL of serum and absorbance was valued
at 546 nm using spectrophotometer [44]. The nitrite concentration was calculated using a
standard curve for sodium nitrite and expressed as nanograms per milligram of protein.

2.8.10. Measurement of the Inflammatory Cytokine

Tumor Necrosis Factor-alpha (TNF-α, Cat. No. LS-F23150), Interleukin 8 (IL-8,
Cat. No. LS-F9753) and Interleukin 1β levels by ELISA based kits obtained from LifeS-
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pan Bio-Sciences, Seattle, WA, USA. The ELISA assays were implemented as per the
manufacturer’s guidelines.

2.9. Statistical Analysis

Data are presented as the mean ± SE. Multiple comparisons were performed via
one-way ANOVA, followed by Tukey’s test as a post hoc analysis, using a 0.05 level of
probability as the significance level. All statistical analyses were achieved using GraphPad
Prism (GraphPad Software Inc., San Diego, CA, USA,) software, version 8.

3. Results
3.1. Characterization of Au-NPs
3.1.1. UV–Visible Spectroscopic Determination

The spectrum of UV-visible spectroscopy of the fabricated Au-NPs was scanned
between 200 and 800 nm and the result was shown in Figure 1. The band of the surface
plasmon resonance appeared to be within 510–540 nm with a characteristic absorption peak
at 525 nm.

Figure 1. UV scanning of fabricated gold NP.

3.1.2. Dynamic Light Scattering Analysis and Zeta Potential

The developed Au-NPs were evaluated for their particle size and PDI and the results
were represented in Figure 2. The particle size was found to be 82.5 nm with a PDI value
of 0.323. On the other hand, zeta potential is regarded as an essential parameter in NPs
characterization since the surface charges provide an indication of the stability of the
preparation. As displayed in Figure 2B, the zeta potential of the developed Au-NP was
34.8 ± 0.14 mV. This was in accordance with Guo et al, where the prepared Au-NPs using
CTAB showed positive zeta potential ranging from +33 to +49 mV [45].

Figure 2. (A) Particle size and size distribution (PDI), and (B) zeta potential of the developed Au-NP.
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3.1.3. Transmission Electron Microscopy (TEM)

Morphology of the prepared Au-NP was evaluated using TEM and the image was ob-
tained in Figure 3. This was in agreement with Zhao et al., who stated that the morphology
of the synthesized NPs were long rod nanoparticles [46].

Figure 3. TEM image showing the morphology of rod Au-NP.

3.2. FTIR

Analysis of FTIR of the formulated Au-NPs was determined and the spectrum was
displayed in Figure 4. FTIR spectra of the formulated Au-NPs were determined and the
spectrum was displayed in Figure 4. FTIR spectra of CTAB showed peaks before 3000 cm−1

for different aliphatic C-H stretching vibrations of CH3 and CH2 groups. In addition to
bands around 1650 and 1460 cm−1 for N+-C stretching vibrations. Regarding IR spectrum
of HAuCl4, it exhibited a broad band in at 330 cm−1 at fingerprint region, and in solution
and hydrated form showed a broad band at 3300 cm−1 due to the OH group of water
molecules. On the other hand, NaBH4 was characterized at spectrum by 2 B-H Stretching
absorption bands around 2100 and 2200 cm−1 and its B-H bending mode around 1100 cm−1.
For ascorbic acid IR spectra, it was confirmed by broad peaks around 3300 cm−1 of many
hydroxyl groups, The C=O of lactone structure at 1710 cm−1, the stretching vibration of
C=C at 1674 cm−1, The stretching vibration of enol OH group observed at 1322 cm−1 and
the peak of C-O observed at 1500 cm−1. However, AgNO3 showed 2 symmetric vibrational
bands around 1300 and at ≈ 700–800 cm−1 for (N=O) of NO3 that was confirmed by
1550–1500 cm−1 stretching of the N-O bond [47].

3.3. Characterization of the Developed Au-NPs Gel Preparation
3.3.1. Visual Examination

The prepared Au-NP gel was examined visually for the final appearance and was pink
coloured, smooth, and homogenous gel.

3.3.2. pH Measurement

The pH of the formulated gel was measured and reported to be 6.67 ± 0.13, which
looked to be in great close to the pH of the human skin that assures its safety.
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Figure 4. FTIR spectrum of the developed Au-NPs.

3.3.3. Viscosity Measurement

The viscosity of Au-NP gel was evaluated to be 11450 ± 1212 cP, which is presumed
to be in the acceptable range for topical formulations and would not run off easily upon
skin application.

3.3.4. Spreadability Determination

Spreadability was determined to evaluate the easiness of the formulation to be spread
over the affected area. It was measured to be 57.56 ± 1.16 mm, which is adequate for any
topical preparation

3.4. Antibacterial Studies
3.4.1. Determination of the Antibacterial and Antifungal Effects

The rod-shaped nanoparticles that have been developed showed powerful bactericidal
and fungicidal activity against a wide range of microbial infections. The antimicrobial
activity of rod-shaped gold nanoparticles was determined using a micro broth dilution assay
against tested bacterial and fungal strains (Table 1 and Figure 5). The lowest concentration
with no apparent development of test pathogens was recorded as the MIC. A bulk of the
microbial population is destroyed at concentrations of 0.25–0.125 ng mL−1, as determined
by MIC/MFC assays (Figure 5). As established for S. aureus, E. coli, and C. albicans isolates
using the micro broth dilution method, a relatively low dose of (GNR), ranging from
0.125 to 0.1 ng mL−1, should be regarded as bactericidal and fungicidal. Mahmoud et al
supported our finding since their study revealed that gold nanorods could be a promising
nanoformula having an antibacterial effect against skin disorders [16].

Table 1. MIC and MBC values of Au-NPs suspensions against different microbial strains.

Strains MIC/MBC

Staphy. aureus 0.25/0.1 nmole/mL
E. coli 0.125/0.125 nmole/mL

C. albicans 0.25/0.5 nmole/mL
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Figure 5. Representative MIC using resazurin dye for (A) S. aureus and E. coli and (B) for C. albicans.

3.4.2. Antimicrobial and Antibiofilm Potential as Characterized by SEM

Nanoparticles’ antibacterial and antibiofilm properties were revealed by SEM as seen
in Figure 6. SEM image of bacterial cells after treatment with Au-NPs, demonstrating a
reduction in cell number, this is very clear with S. aureus and E. coli. The control sample had
more cells adhered to the surface. Our findings were in accordance with Castillo-Martínez
et al., who stated that treatment with gold nanorods resulted in changes in the volume and
morphology of the bacteria when compared to the control group without treatment [48].

3.5. Assessment of Au-NPs on Excision Wound Healing Parameters in Diabetic Animals

Figure 7 shows pictures of the wound area taken on different days for the experimental
groups to demonstrate the progress of the wound healing ability of Au-NPs in diabetic
animals. On the first day after the wound establishment, a bright red color was observed
indicating that the recovering of the blood supply to the beneath muscle following the
skin injury. On the seventh day subsequent to the wound establishment, a dark brown
color was spotted in Au-NPs-treated animals and diabetic positive control, suggesting
scab formation, whereas the diabetic negative wounds were still faintly red and inflamed.
On the 14th day, Au-NPs-treated and positive control wounds exhibited a significantly
reduced wound size when related to the untreated diabetic negative group as revealed
in Figure 8. The percentage of wound contraction of excision wounds was statistically
(p < 0.05) increased in the diabetic rats treated with Au-NPs when correlated to the diabetic
negative control group. However, there was no significant difference between Au-NPs
and positive control animals in the excision wound contraction percentage (Figure 9a).
Regarding the epithelialization time, the mean days of epithelialization increased in the
diabetic negative control group, whereas it decreased in the Au-NPs-treated and diabetic
positive groups with no significant differences between the treatment groups (Figure 9b).

Hydroxyproline is the main component of collagen which is the main extracellular
protein in the skin tissue, making hydroxyproline as an excellent indicator of the collagen
content within the skin tissue [49]. This is because any alteration in hydroxyproline amount
can indicate any variation in collagen synthesis, reflecting the wound healing process in the
injured tissues. The diabetic negative control animals demonstrated decreased hexosamine,
collagen, and hydroxyproline contents as demonstrated in Figure 9c–e respectively. On
the other hand, topical application of Au-NPs caused significantly increased levels of hy-
droxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes,
compared to both diabetic negative and positive controls.
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Figure 6. SEM analysis of biofilm structure. SEM images of the biofilms formed on the glass coverslips
after 24 h of incubation. (A) Control C. albicans; (B), C. albicans. treated with Au-NPs, (C) Control
E-coli; (D), E-coli treated with Au-NPs (E) Control S. aureus; (F) S. aureus treated with Au-NPs.
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Figure 7. Photographic illustration showing the effect of topical application of AuNPs on wound
healing on different days subsequent to the excision wound establishment in diabetic animals.

Figure 8. Effect of topical application of Au-NPs in excision wound model on wound healing
parameters including (a) wound contraction percentage obtained from different experimental groups
at 0, 3, 7, 14, and 21 days of post wounding (b) epithelialization period, (c) hexosamine, (d) collagen
and (e) hydroxyproline contents in diabetic animals. All values were expressed as mean ± SD (n = 6).
* indicates statistically significant from the diabetic negative control group (p < 0.05), # indicates
statistically significant from diabetic positive control group using one-way ANOVA followed by
Tukey’s test as a post hoc analysis.
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Figure 9. Effect of topical application of AuNPs in excision wound model on angiogenesis-related
factors including (a) VEGF, (b) TGF-β1, and (c) HIF-1α and on inflammatory mediators including
(d) IL-6, (e) IL-1β, (f) TNF- and (g) NF-κB in diabetic animals. All values were expressed as mean
± SD (n = 6). * indicates statistically significant from the diabetic negative control group (p < 0.05),
# indicates statistically significant from diabetic positive control group using one-way ANOVA
followed by Tukey’s test as a post hoc analysis.

3.6. Assessment of AuNPs on Angiogenesis-Related Factors in Excision Wound Healing in
Diabetic Animals

The angiogenesis process during wound repair performs a dual role of providing
the nutrients necessary for the healing tissue and serving for structural repair via gran-
ulation tissue construction [50]. The outcomes from the existing investigation showed
that the angiogenesis-related factors including HIF-1α, TGF-β1, and VEGF contents in
wound tissues were inferior in the negative diabetic group to the positive diabetic group.
Furthermore, topical application of AuNPs displayed a significant intensification in VEGF,
TGF-β1, and HIF-1α levels compared with diabetic positive animals (Figure 9a–c).

3.7. Assessment of Au-NPs on the Inflammatory Mediators in Excision Wound Healing in
Diabetic Animals

In the current study, we evaluated different inflammatory mediators to specify the
inflammation status happening during the diabetic wound healing process. Diabetic
non-treated animals revealed significant escalation in numerous inflammatory mediators
such as IL-6, IL-1β, TNF-α, and NF-κB when linked to positive diabetic animals. While,
topical application of AuNPs demonstrated diminished inflammation, as verified by the
significantly inferior level of inflammatory mediators when compared to diabetic positive
animals (Figure 9d–g).

3.8. Assessment of AuNPs Antioxidant Activity and Lipid Peroxidation in Excision Wound
Healing Parameters in Diabetic Animals

Oxidative stress persistence during the wound healing process is detrimental, specifi-
cally in diabetic wounds. Figure 10 illustrates the outcomes of the topical application of
Au-NPs on different antioxidant enzymes including CAT, SOD, GPx, on the GSH content,
and on lipid peroxidation expressed as malondialdehyde (MDA), and finally on the NO
content on the excision wound healing process. Diabetic non-treated animals exhibited a
significant reduction in antioxidant enzyme activity including CAT, SOD, and GPx and
GSH content and NO levels as well as augmented lipid peroxidation.
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Figure 10. Effect of topical application of AuNPs in excision wound model on antioxidant enzymes
activities including (a) superoxide dismutase (SOD), (b) catalase (CAT), and (c) glutathione peroxidase
(GPx), (d) glutathione (GSH) content, (e) lipid peroxidation expressed as malondialdehyde (MDA)
and on (f) nitric oxide (NO) content. All values were expressed as mean ± SD (n = 6). * indicates
statistically significant from the diabetic negative control group (p < 0.05), # indicates statistically
significant from diabetic positive control group using one-way ANOVA followed by Tukey’s test as a
post hoc analysis.

On the other hand, animals treated with AAu-NPs presented a significant intensifi-
cation in antioxidant enzymes (CAT, SOD, and GPx) and GSH content in, as compared
to diabetic-positive animals. This action could be attributed to the reduction in reactive
oxygen species (ROS) manufactured with Au-NPs treatment. In addition, a distinguished
reduction in MDA level (lipid peroxidation marker) in the wound tissue obtained from
Au-NPs treated animals when compared to the positive control animals, indicating that
the topical application of Au-NPs reduced the secondary oxidation product content. Addi-
tionally, Au-NPs significantly amplified the nitric oxide level when compared to diabetic
positive control rats.

4. Discussion
4.1. Characterization of Au-NPs

As per UV–Visible spectroscopic determination, it was performed and showed a peak
at 525 nm, which is the characteristic absorption peak for the formula. Regarding particle
size and size distribution, the developed Au-NP exhibited a particle size of 82.5 nm with a
corresponding PDI value of 0.323, which indicates that the distribution of the particle size
falls within a narrow range of sizes. It was previously reported that PDI values lower than
0.7 point toward homogeneity of the particle size and denoted an ideal formulation [51].
However, the zeta potential was found to be 34.8 ± 0.14 mV. It is highly obvious that Au-NP
tends to carry a characteristic positive charge, which is certainly ascribed to the presence of
CTAB that could induce a positive charge since it is a positively charged surfactant [52].
Additionally, the value of zeta potential emphasized the stability of the formulation since
it was reported that particles are usually considered stable when showing zeta potentials
more positive than +30 mV or more negative than −30 mV [53]. The image exhibited
the rod shape of the particles in addition to emphasizing the particle size obtained from
the zeta sizer with a diameter less than 100 nm. Concerning morphology evaluation, the
image obtained from the TEM study exhibited the rod shape of the particles in addition to
emphasizing the particle size obtained from the zeta sizer with a diameter less than 100 nm.



Polymers 2022, 14, 2637 15 of 19

4.2. FTIR Study

FTIR study was implemented and it was clearly apparent that the characteristic peaks
of all excipients were present and being distinguished in the spectrum. However, in the
case of the IR spectrum of HAuCl4, it was noticed that the characteristic peaks of gold were
not apparent indicating the reduction by ascorbic acid although the fingerprint region of
Au is still present signifying the existence of gold.

4.3. Characterization of the Developed Au-NPs Gel Preparation

The prepared Au-NP gel was evaluated for all the parameters to check its suitability
for topical use. All the evaluated parameters were in the acceptable range with regard to
the topical formulation.

4.4. Antibacterial Studies

Nanotechnology has gotten a lot of attention since nanoparticles have different prop-
erties than their bulk counterparts. Human pathogenic bacteria such as E. coli and S. aureus
have been used to test nanoparticle antibacterial properties [4]. In microbiology, the MIC
and MBC values are the most important tests for determining an agent’s antibacterial
activity. The MIC is the lowest concentration of an antimicrobial agent that prevents
observable bacterial growth (bacteriostatic activity), whereas the MBC is the highest con-
centration that causes microbial mortality (at which it is bactericidal) [54]. MIC and MBC
data showed that Au-NPs had bacteriostatic and bactericidal properties at concentrations
of 0.25–0.125 ng mL−1 against S. aureus, E. coli, and C.albicans, respectively.

Because of the Au-NPs synthesis method or cell growth determination method, there
are no significant variations in the antibacterial impact of Au-NPs on Gram-negative and
Gram-positive bacteria, besides antifungal activity which is in agreement with
Zhang et al’s findings [55].

Metal NPs’ antibacterial effect has been extensively researched, although their specific
mechanisms of action are still unknown. The antibacterial effect of gold nanoparticles has
been attributed to a number of processes. The nanoparticles attach tightly to the microbes’
surfaces and puncture the cell wall. This causes cell contents to flow out, resulting in the
death of bacterial cells [56]. Reactive oxygen species generation, cation release, biomolecule
destruction, ATP depletion, and membrane contact are all other factors that may contribute
to the death of bacterial cells [57,58]. It is also possible that the nanoparticle can interact
with the phosphorus or sulphur moieties of DNA, which may hinder the DNA replication
and subsequently cause the death of bacteria [59]. GNPs can stimulate protein refolding via
interactions between unfolded protein and oppositely charged AuNPs, depending on their
cytotoxicity on the surface [60]. Furthermore, it has been suggested that the surface charge
of nanoparticles has a role in their cytotoxicity [61]. These findings were in accordance with
Zhou et al., 2012, [62] who found that biophysical interactions between NPs and bacteria
may occur via biosorption, aggregation, and cellular absorption, resulting in membrane
degradation and toxicity. However, in order to improve the efficacy of NPs in disease
treatment, a thorough understanding of mechanisms of antibacterial activity is required.

The bactericidal action of Au-NPs, according to Zhang et al. [55], may be owing to the
bactericidal activity of co-existing molecules that are not entirely eliminated from AuNPs,
such as gold ions, surface coating agents, and chemicals used in the synthesis. The coating
composition has a significant impact on Au-NP characteristics [62].

Nanoparticles’ bactericidal effects were also stronger for Gram-negative bacteria than
for Gram-positive bacteria. This is due to a change in the cell wall’s composition. Gram-
positive bacteria have much rigid cell wall network with a thick layer of peptidoglycan
that makes them to resist mechanical rupture. However, Gram-negative bacteria possess a
one-molecule thick cell membrane network [63,64]. These factors would probably enhance
the activity of NP against Gram-negative bacteria.
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4.5. In Vivo Evaluation of the Wound-Healing Activity

The in vivo wound-healing ability was conducted through determining wound area
reduction, tissue re-epithelialization, collagen deposition, angiogenesis, inflammatory
mediators, and antioxidant enzyme activities. The wound healing process happens in
four different coinciding phases, which are hemostasis, inflammation, proliferation, and
remodeling [65]. During the proliferative phase, remarkable amounts of cells including fi-
broblast, keratinocytes, and endothelial cells transfer to the wounded area. The extracellular
matrix (ECM) including proteoglycans, hyaluronic acid, collagen, and elastin accumulates
to form a new granulation tissue to substitute the original. Numerous kinds of cytokines
and growth factors participate in the wound healing process including the transforming
growth factor- β family (TGF-β), interleukin (IL) family, and angiogenesis factors (i.e.,
vascular epidermal growth factor VEGF [66].

In the current study, topical application of Au-NPs caused a significantly increased
percentage wound reduction, lesser time for epithelialization, and augmented hydroxypro-
line, collagen, and hexosamine levels demonstrating improved healing processes. Similarly,
Raghuwanshi, et al. [67] showed that gold nanoparticles biosynthesized using Woodfordia
fruticosa which were complex with carbopol demonstrated a higher level of hydroxypro-
line and collagen fibers causing better tensile strength as well as an accelerated healing
process. Furthermore, gold nanoparticles exhibit a positive impact on the healing of wound
infections by means of photobiomodulation therapy [20].

Furthermore, the current study showed that topical application of Au-NPs displayed
a significant intensification in angiogenesis-related factors such as VEGF, TGF-β1, and
HIF-1α levels. Furthermore, Au-NPs demonstrated diminished inflammation, as verified
by the significantly inferior level of inflammatory mediators IL-6, IL-1β, TNF-α, and
NF-κB. Regarding antioxidant activity, Au-NPs displayed potent antioxidant activity via
intensifying the activity of antioxidant enzymes including CAT, SOD, and GPx, GSH, and
NO contents, and on diminishing lipid peroxidation in the excision wound healing process.

Lau, Bidin, Islam, Shukri, Zakaria, Musa and Krishnan [20] argued that the anti-
inflammatory response and effective angiogenesis were the potential cause of effective
wound repair obtained by Au-NPs alone and with photobiomodulation. In another
study, the wound healing potential of Au-NPs was attributed to its antioxidation, anti-
inflammation, and non-antiangiogenesis properties which lead to the formation of fibrob-
lasts and decrease in the apoptosis of cells eventually contributing to the wound healing
process [23]. The antimicrobial and antioxidative effects of gold nanoparticles proved very
effective in wound healing and regeneration of damaged collagen tissues [49]. Further-
more, gold nanoparticles are involved in the secretion of proteins (IL-8, IL-12, VEGF, and
TNF-α) which are important candidates for wound healing via their antiangiogenic and
anti-inflammatory activity [68]. Also, gold nanoparticles, together with epigallocatechin
gallate and α-lipoic acid, demonstrated to have high antioxidant and anti-inflammatory
activities causing skin wound healing [24].

5. Conclusions

In the present investigation, nanotechnology was exploited via developing gold
nanoparticles using the reduction method. The nanoparticles were characterized for their
particle size, zeta potential, morphology, and FTIR. They were investigated for their an-
tibacterial activity and efficiency for wound healing in diabetic animals. The nanoparticles
provide proper particle size, zeta potential, and rod-shaped particles. They could pro-
vide efficient antibacterial behavior against different bacterial strains. Ultimately, gold
nanoparticles exhibited promising wound healing activity in STZ induced diabetic animals.
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Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells. Nanomedicine 2020,
15, 2733–2752. [CrossRef]

18. Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic
interventions in wound healing: Potential uses and applications. ACS Cent. Sci. 2017, 3, 163–175. [CrossRef]

19. Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine 2015, 10, 2593–2612.
[CrossRef]

http://doi.org/10.1038/nature17042
http://www.ncbi.nlm.nih.gov/pubmed/26791724
http://doi.org/10.1016/S1473-3099(16)00068-2
http://doi.org/10.3390/antibiotics10111342
http://www.ncbi.nlm.nih.gov/pubmed/34827280
http://doi.org/10.1038/srep18877
http://doi.org/10.1016/B978-0-08-102814-8.00008-1
http://doi.org/10.3390/nano6040071
http://doi.org/10.1021/acs.jpcc.5b02728
http://doi.org/10.1016/j.supflu.2014.02.022
http://doi.org/10.1586/eri.11.121
http://doi.org/10.1039/C1CS15166E
http://doi.org/10.1155/2021/7019130
http://doi.org/10.2147/IJN.S145531
http://doi.org/10.2217/nnm-2020-0324
http://doi.org/10.1021/acscentsci.6b00371
http://doi.org/10.2217/nnm.15.82


Polymers 2022, 14, 2637 18 of 19

20. Lau, P.; Bidin, N.; Islam, S.; Shukri, W.N.B.W.M.; Zakaria, N.; Musa, N.; Krishnan, G. Influence of gold nanoparticles on wound
healing treatment in rat model: Photobiomodulation therapy. Lasers Surg. Med. 2017, 49, 380–386. [CrossRef]

21. Ezhilarasu, H.; Vishalli, D.; Dheen, S.T.; Bay, B.-H.; Srinivasan, D.K. Nanoparticle-based therapeutic approach for diabetic wound
healing. Nanomaterials 2020, 10, 1234. [CrossRef]

22. He, J.; Wang, J.; Gao, S.; Cui, Y.; Ji, X.; Zhang, X.; Wang, L. Biomineralized synthesis of palladium nanoflowers for photothermal
treatment of cancer and wound healing. Int. J. Pharm. 2022, 615, 121489. [CrossRef]

23. Volkova, N.; Yukhta, M.; Pavlovich, O.; Goltsev, A. Application of cryopreserved fibroblast culture with Au nanoparticles to treat
burns. Nanoscale Res. Lett. 2016, 11, 1–6. [CrossRef]

24. Leu, J.-G.; Chen, S.-A.; Chen, H.-M.; Wu, W.-M.; Hung, C.-F.; Yao, Y.-D.; Tu, C.-S.; Liang, Y.-J. The effects of gold nanoparticles in
wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine 2012, 8, 767–775. [CrossRef]

25. Mahmoud, N.N.; Al-Kharabsheh, L.M.; Khalil, E.A.; Abu-Dahab, R. Interaction of Gold Nanorods with Human Dermal Fibroblasts:
Cytotoxicity, Cellular Uptake, and Wound Healing. Nanomaterials 2019, 9, 1131. [CrossRef]

26. Hassan, A.; Elebeedy, D.; Matar, E.R.; Fahmy Mohamed Elsayed, A.; Abd El Maksoud, A.I. Investigation of Angiogenesis and
Wound Healing Potential Mechanisms of Zinc Oxide Nanorods. Front. Pharmacol. 2021, 12, 661217. [CrossRef]

27. Mahmoud, N.N.; Hikmat, S.; Abu Ghith, D.; Hajeer, M.; Hamadneh, L.; Qattan, D.; Khalil, E.A. Gold nanoparticles loaded
into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int. J. Pharm. 2019,
565, 174–186. [CrossRef]

28. Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method.
Chem. Mater. 2003, 15, 1957–1962. [CrossRef]

29. Soliman, W.E.; Khan, S.; Rizvi, S.M.D.; Moin, A.; Elsewedy, H.S.; Abulila, A.S.; Shehata, T.M. Therapeutic Applications of Biostable
Silver Nanoparticles Synthesized Using Peel Extract of Benincasa hispida: Antibacterial and Anticancer Activities. Nanomaterials
2020, 10, 1954. [CrossRef]

30. Elsewedy, H.S.; Dhubiab, B.E.A.; Mahdy, M.A.; Elnahas, H.M. Development, optimization, and evaluation of PEGylated
brucine-loaded PLGA nanoparticles. Drug Deliv. 2020, 27, 1134–1146. [CrossRef]

31. Khalil, H.E.; Alqahtani, N.K.; Darrag, H.M.; Ibrahim, H.-I.M.; Emeka, P.M.; Badger-Emeka, L.I.; Matsunami, K.; Shehata, T.M.;
Elsewedy, H.S. Date Palm Extract (Phoenix dactylifera) PEGylated Nanoemulsion: Development, Optimization and Cytotoxicity
Evaluation. Plants 2021, 10, 735. [CrossRef] [PubMed]

32. Abdallah, M.H.; Elsewedy, H.S.; AbuLila, A.S.; Almansour, K.; Unissa, R.; Elghamry, H.A.; Soliman, M.S. Quality by Design for
Optimizing a Novel Liposomal Jojoba Oil-Based Emulgel to Ameliorate the Anti-Inflammatory Effect of Brucine. Gels 2021, 7, 219.
[CrossRef] [PubMed]

33. Ayoub, A.M.; Ibrahim, M.M.; Abdallah, M.H.; Mahdy, M.A. Sulpiride microemulsions as antipsychotic nasal drug delivery
systems: In-vitro and pharmacodynamic study. J. Drug Delivery Sci. Technol. 2016, 36, 10–22. [CrossRef]

34. Vowden, P.; Bond, E.; Meuleneire, F. Managing high viscosity exudate. Wounds UK 2015, 11, 56–60.
35. Elsewedy, H.S.; Aldhubiab, B.E.; Mahdy, M.A.; Elnahas, H.M. Brucine PEGylated nanoemulsion: In vitro and in vivo evaluation.

Colloids Surf. A 2021, 608, 125618. [CrossRef]
36. Abdallah, M.H.; Lila, A.S.A.; Unissa, R.; Elsewedy, H.S.; Elghamry, H.A.; Soliman, M.S. Brucine-Loaded Ethosomal Gel: Design,

Optimization, and Anti-inflammatory Activity. AAPS PharmSciTech 2021, 22, 269. [CrossRef]
37. Penders, J.; Stolzoff, M.; Hickey, D.J.; Andersson, M.; Webster, T.J. Shape-dependent antibacterial effects of non-cytotoxic gold

nanoparticles. Int. J. Nanomed. 2017, 12, 2457–2468. [CrossRef]
38. Das, S.; Pramanik, T.; Jethwa, M.; Roy, P. Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative

Bacteria Escherichia coli. Appl. Biochem. Biotechnol. 2021, 193, 1727–1743. [CrossRef]
39. Prasad, S.K.; Kumar, R.; Patel, D.K.; Hemalatha, S. Wound healing activity of Withania coagulans in streptozotocin-induced diabetic

rats. Pharm. Biol. 2010, 48, 1397–1404. [CrossRef]
40. Younis, N.S.; Mohamed, M.E.; El Semary, N.A. Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.:

Characterization, Antimicrobial and Diabetic Wound-Healing Actions. Mar. Drugs 2022, 20, 56. [CrossRef]
41. Ren, J.; Yang, M.; Xu, F.; Chen, J.; Ma, S. Acceleration of wound healing activity with syringic acid in streptozotocin induced

diabetic rats. Life Sci. 2019, 233, 116728. [CrossRef]
42. Kant, V.; Gopal, A.; Kumar, D.; Pathak, N.N.; Ram, M.; Jangir, B.L.; Tandan, S.K.; Kumar, D. Curcumin-induced angiogenesis

hastens wound healing in diabetic rats. J. Surg. Res. 2015, 193, 978–988. [CrossRef]
43. Reddy, G.K.; Enwemeka, C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996,

29, 225–229. [CrossRef]
44. Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and

[15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [CrossRef]
45. Guo, J.; Armstrong, M.J.; O’Driscoll, C.M.; Holmes, J.D.; Rahme, K. Positively charged, surfactant-free gold nanoparticles for

nucleic acid delivery. Rsc Adv. 2015, 5, 17862–17871. [CrossRef]
46. Zhao, Y.; Wang, Y.; Ran, F.; Cui, Y.; Liu, C.; Zhao, Q.; Gao, Y.; Wang, D.; Wang, S. A comparison between sphere and rod

nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 2017, 7, 4131. [CrossRef]
47. Su, G.; Yang, C.; Zhu, J.-J. Fabrication of Gold Nanorods with Tunable Longitudinal Surface Plasmon Resonance Peaks by

Reductive Dopamine. Langmuir 2014, 31, 817–823. [CrossRef]

http://doi.org/10.1002/lsm.22614
http://doi.org/10.3390/nano10061234
http://doi.org/10.1016/j.ijpharm.2022.121489
http://doi.org/10.1186/s11671-016-1242-y
http://doi.org/10.1016/j.nano.2011.08.013
http://doi.org/10.3390/nano9081131
http://doi.org/10.3389/fphar.2021.661217
http://doi.org/10.1016/j.ijpharm.2019.04.079
http://doi.org/10.1021/cm020732l
http://doi.org/10.3390/nano10101954
http://doi.org/10.1080/10717544.2020.1797237
http://doi.org/10.3390/plants10040735
http://www.ncbi.nlm.nih.gov/pubmed/33918742
http://doi.org/10.3390/gels7040219
http://www.ncbi.nlm.nih.gov/pubmed/34842709
http://doi.org/10.1016/j.jddst.2016.09.002
http://doi.org/10.1016/j.colsurfa.2020.125618
http://doi.org/10.1208/s12249-021-02113-8
http://doi.org/10.2147/IJN.S124442
http://doi.org/10.1007/s12010-021-03543-7
http://doi.org/10.3109/13880209.2010.486837
http://doi.org/10.3390/md20010056
http://doi.org/10.1016/j.lfs.2019.116728
http://doi.org/10.1016/j.jss.2014.10.019
http://doi.org/10.1016/0009-9120(96)00003-6
http://doi.org/10.1016/0003-2697(82)90118-X
http://doi.org/10.1039/C4RA16294C
http://doi.org/10.1038/s41598-017-03834-2
http://doi.org/10.1021/la504041f


Polymers 2022, 14, 2637 19 of 19

48. Castillo-Martínez, J.C.; Martínez-Castañón, G.A.; Martínez-Gutierrez, F.; Zavala-Alonso, N.V.; Patiño-Marín, N.; Niño-Martinez, N.;
Zaragoza-Magaña, V.; Cabral-Romero, C. Antibacterial and antibiofilm activities of the photothermal therapy using gold nanorods
against seven different bacterial strains. J. Nanomater. 2015, 2015, 783671. [CrossRef]

49. Kallis, P.J.; Friedman, A.J. Collagen Powder in Wound Healing. J. Drugs Dermatol. JDD 2018, 17, 403–408.
50. Okonkwo, U.A.; DiPietro, L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [CrossRef]
51. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R.

Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018,
10, 57. [CrossRef]

52. Zhang, Z.; Lin, M. Fast loading of PEG–SH on CTAB-protected gold nanorods. RSC Adv. 2014, 4, 17760–17767. [CrossRef]
53. Clogston, J.; Patri, A. Zeta Potential Measurement. Methods Mol. Biol. 2011, 697, 63–70. [CrossRef]
54. National Committee for Clinical Laboratory Standards; Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial

Agents: Approved Guideline; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1999; Volume 19.
55. Zhang, Y.; Shareena Dasari, T.P.; Deng, H.; Yu, H. Antimicrobial activity of gold nanoparticles and ionic gold. J. Environ. Sci.

Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 286–327. [CrossRef]
56. Reddy, G.B.; Madhusudhan, A.; Ramakrishna, D.; Ayodhya, D.; Venkatesham, M.; Veerabhadram, G. Green chemistry approach

for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. Nanostruct.
Chem. 2015, 5, 185–193. [CrossRef]

57. Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J.
Nanobiotechnol. 2017, 15, 1–20. [CrossRef]

58. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial effects of
silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [CrossRef]

59. Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, B.; Baskaran, K.; Balachander, R.; Parameswaran, V. Antimicrobial,
free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of
Aristolochia indica L.: A promenade towards sustainability. Appl. Nanosci. 2016, 6, 711–723. [CrossRef]

60. Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.
Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration.
Eur. J. Pharm. Biopharm. 2011, 77, 407–416. [CrossRef]

61. Schaeublin, N.M.; Braydich-Stolle, L.K.; Schrand, A.M.; Miller, J.M.; Hutchison, J.; Schlager, J.J.; Hussain, S.M. Surface charge of
gold nanoparticles mediates mechanism of toxicity. Nanoscale 2011, 3, 410–420. [CrossRef]

62. Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia
coli and bacillus Calmette-Guérin. J. Nanobiotechnol. 2012, 10, 1–9. [CrossRef] [PubMed]

63. Elemike, E.E.; Onwudiwe, D.C.; Fayemi, O.E.; Ekennia, A.C.; Ebenso, E.E.; Tiedt, L.R. Biosynthesis, electrochemical, antimicrobial
and antioxidant studies of silver nanoparticles mediated by Talinum triangulare aqueous leaf extract. J. Cluster Sci. 2017, 28, 309–330.
[CrossRef]

64. Vijayan, R.; Joseph, S.; Mathew, B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant,
and catalytic activities. IET Nanobiotechnol. 2018, 12, 850–856. [CrossRef] [PubMed]

65. Janis, J.; Harrison, B. Wound healing: Part II. Clinical applications. Plast. Reconstr. Surg. 2014, 133, 383e–392e. [CrossRef]
66. Lian, N.; Li, T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed.

Pharmacother. 2016, 84, 42–50. [CrossRef]
67. Raghuwanshi, N.; Kumari, P.; Srivastava, A.K.; Vashisth, P.; Yadav, T.C.; Prasad, R.; Pruthi, V. Synergistic effects of Woodfordia

fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo. Mater.
Sci. Eng. C. 2017, 80, 252–262. [CrossRef]

68. Pivodová, V.; Franková, J.; Galandáková, A.; Ulrichová, J. In vitro AuNPs’ cytotoxicity and their effect on wound healing.
Nanobiomedicine 2015, 2, 7. [CrossRef]

http://doi.org/10.1155/2015/783671
http://doi.org/10.3390/ijms18071419
http://doi.org/10.3390/pharmaceutics10020057
http://doi.org/10.1039/c3ra48061e
http://doi.org/10.1007/978-1-60327-198-1_6
http://doi.org/10.1080/10590501.2015.1055161
http://doi.org/10.1007/s40097-015-0149-y
http://doi.org/10.1186/s12951-017-0308-z
http://doi.org/10.1016/j.nano.2006.12.001
http://doi.org/10.1007/s13204-015-0477-8
http://doi.org/10.1016/j.ejpb.2010.12.029
http://doi.org/10.1039/c0nr00478b
http://doi.org/10.1186/1477-3155-10-19
http://www.ncbi.nlm.nih.gov/pubmed/22559747
http://doi.org/10.1007/s10876-016-1087-7
http://doi.org/10.1049/iet-nbt.2017.0311
http://www.ncbi.nlm.nih.gov/pubmed/30104462
http://doi.org/10.1097/PRS.0000000000000077
http://doi.org/10.1016/j.biopha.2016.09.010
http://doi.org/10.1016/j.msec.2017.05.134
http://doi.org/10.5772/61132

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of Au-NPs 
	Characterization of Synthesized Au-NPs 
	UV–Visible Spectroscopic Determination 
	Dynamic Light Scattering Analysis and Zeta Potential 
	Transmission Electron Microscopy (TEM) 

	Fourier Transform Infrared Spectroscopy (FTIR) 
	Fabrication of Topical Au-NPs Gel 
	Characterization of the Developed Au-NPs Gel Preparation 
	Visual Examination 
	pH Measurement 
	Viscosity Measurement 
	Spreadability Determination 

	Antimicrobial Studies 
	Culturing of the Microorganisms 
	The Antimicrobial Activity of Au-NPs 
	Minimum Bactericidal and Fungicidal Concentration Determination 
	Scanning Electron Microscopy (SEM) Imaging of S. aureus, E. coli and C. albicans treated with Au-NPs 

	In Vivo Studies 
	Animal’s Acquisition 
	Ethical Approval 
	Induction of Diabetes 
	Experimental Design 
	Excision Wound Establishment 
	Measurement of Wound Area Parameters 
	Skin Tissues Measured Parameters 
	Measurement of Angiogenesis Related Factors 
	Measurement of Lipid Peroxidation and Antioxidant Enzymes Activities 
	Measurement of the Inflammatory Cytokine 

	Statistical Analysis 

	Results 
	Characterization of Au-NPs 
	UV–Visible Spectroscopic Determination 
	Dynamic Light Scattering Analysis and Zeta Potential 
	Transmission Electron Microscopy (TEM) 

	FTIR 
	Characterization of the Developed Au-NPs Gel Preparation 
	Visual Examination 
	pH Measurement 
	Viscosity Measurement 
	Spreadability Determination 

	Antibacterial Studies 
	Determination of the Antibacterial and Antifungal Effects 
	Antimicrobial and Antibiofilm Potential as Characterized by SEM 

	Assessment of Au-NPs on Excision Wound Healing Parameters in Diabetic Animals 
	Assessment of AuNPs on Angiogenesis-Related Factors in Excision Wound Healing in Diabetic Animals 
	Assessment of Au-NPs on the Inflammatory Mediators in Excision Wound Healing in Diabetic Animals 
	Assessment of AuNPs Antioxidant Activity and Lipid Peroxidation in Excision Wound Healing Parameters in Diabetic Animals 

	Discussion 
	Characterization of Au-NPs 
	FTIR Study 
	Characterization of the Developed Au-NPs Gel Preparation 
	Antibacterial Studies 
	In Vivo Evaluation of the Wound-Healing Activity 

	Conclusions 
	References

