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ABSTRACT
Background. Bacterial biofilms have become a major threat to human health. The
objective of this study was to isolate amylase-producing bacteria from soil to determine
the overall inhibition of certain pathogenic bacterial biofilms.
Methods. We used serial dilution and the streaking method to obtain a total of
75 positive amylase isolates. The starch-agar plate method was used to screen the
amylolytic activities of these isolates, and we used morphological and biochemical
methods to characterize the isolates. Optimal conditions for amylase production and
purification using Sephadex G-200 and SDS-PAGE were monitored.We screened these
isolates’ antagonistic activities and the purified amylase against pathogenic and multi-
drug-resistant human bacteria using the agar disk diffusion method. Some standard
antibiotics were controlled according to their degree of sensitivity. Finally, we used
spectrophotometric methods to screen the antibiofilm 24 and 48 h after application of
filtering and purifying enzymes in order to determine its efficacy at human pathogenic
bacteria.
Results. The isolated Bacillus species were Bacillus megaterium (26.7%), Bacillus subtilis
(16%), Bacillus cereus (13.3%), Bacillus thuringiesis (10.7%), Bacillus lentus (10.7%),
Bacillus mycoides (5.3%), Bacillus alvei (5.3%), Bacillus polymyxa (4%), Bacillus cir-
culans (4%), and Micrococcus roseus (4%). Interestingly, all isolates showed a high
antagonism to target pathogens. B. alevi had the highest recorded activity (48 mm)
and B. polymyxa had the lowest recorded activity (12 mm) against Staphylococcus
aureus (MRSA) and Escherichia coli, respectively. On the other hand, we detected no
antibacterial activity for purified amylase. The supernatant of the isolated amylase-
producing bacteria and its purified amylase showed significant inhibition for biofilm:
93.7% and 78.8%, respectively. This suggests that supernatant and purified amylase
may be effective for clinical and environmental biofilm control.
Discussion. Our results showed that soil bacterial isolates such as Bacillus sp. super-
natant and its purified amylase are good antibiofilm tools that can inhibit multidrug-
resistant former strains. They could be beneficial for pharmaceutical use.While purified
amylase was effective as an antibiofilm, the isolated supernatant showed better results.
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INTRODUCTION
Bacterial biofilms have increasingly become a serious threat to human health (Hall-
Stoodley, Costerton & Stoodley, 2004; Saber et al., 2017). These substances have a high level
of antibiotic resistance and are hosts to immune response stimulants (Rodrigues et al.,
2016; Sharma, Misba & Khan, 2019). They also play an essential role in the pathogenicity of
several chronic human infections (Parsek & Singh, 2003). Biofilm removal is a particularly
difficult task. The principal method for preventing biofilm formation is applying
chemicals or antimicrobials, such as chemical biocides, detergents, and surfactants.
Biofilm destruction and prevention are effective methods, as are mechanical removal
techniques such as shredding, sonication, freezing, and thawing (De Carvalho, 2007;
Kalpana, Aarthy & Pandian, 2012; Elamary, Albarakaty & Salem, 2020). However, because
the exopolysaccharide biofilm cells are protected (Kalpana, Aarthy & Pandian, 2012), it
is difficult to completely remove biofilms using these methods. Using enzymes is also
a good strategy for biofilm removal because enzymes are rabidly biodegradable and
environmentally harmless (Xavier et al., 2005). Amylase is a member of the glycosidic
hydrolases, which are digestive enzymes that hydrolyze starch glycosidic bonds (Kaur et
al., 2012). This family also includes maltotriotic glucose, dextrin, and maltose. Amylase has
exhibited excellent antibiotic activity against Pseudomonas aeruginosa and Staphylococcus
aureusmarine-derived biofilm-forming bacteria (Vaikundamoorthya et al., 2018). Soil is the
main part of the terrestrial environment, which is compared with aquatic environments
with a large association of microorganisms. Among terrestrial bacteria, Bacillus sp. is
the best source of amylase producers, including Bacillus subtilis, Bacillus cereus, and
Bacillus polymyxa (El-Fallal et al., 2012; Dash, Rahman & Sarker, 2015). Bacillus amylase is
thermostable, and retains a high pH, osmolarity, and high pressure, which are important for
manufacturing (Islam et al., 2017). Antibiotics produced by Bacillus sp. such as bacitracin,
gramicidin S, polymyxin, and tyrotricidin have exhibited great efficacy against gram-
positive and gram-negative bacteria (Perez, Suarez & Castro, 1992; Perez, Suarez & Castro,
1993; Yilmaza, Sorana & Beyatlib, 2006). In this study, we identified and isolated Bacillus
spp. from soil usingmorphological and biochemical assays.We compared the antimicrobial
activity of these isolates against five human pathogenic strains. We optimized and purified
the amylase after determining the optimal temperature, pH, incubation period, and starch
levels needed for the greatest purification. Finally, we monitored the antibiofilm activity of
the filtrate and purified amylase from these isolates.

MATERIALS & METHODS
Soil sample collection
We collected 100 soil samples during January 2019 from different sites across the Luxor
governorate (Monshaat Al Amari, 25◦41′14′′N32◦41′40′′E, 16.2 km), Egypt. Samples
were collected in sterile plastic bags under aseptic conditions and were transported to
the laboratory (Reed & Rigney, 1947). We added 1 gram of soil to 5 ml of tryptic soy
broth (Oxoid, Hampshire, United Kingdom), which we modified with 1% starch to make
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enrichment broth. Samples were incubated at 37 ◦C for 24 h. The landowner, Mohamed
El sanousy, approved field sampling.

Screening and isolation of amylase-producing bacteria
Serial dilution techniques are one of the most precise methods for isolating bacteria from
soil (Jamil et al., 2007; Rasooli et al., 2008). We performed serial dilutions up to 10−7. We
aseptically transferred 100 µl from each dilution, which we spread into tryptic soy agar
media fortified with 1% starch. The plates were incubated at 37 ◦C for 24 h to determine
the colony-forming unit (CFU)/ml. The plates were then flooded with iodine that turns
blue when it reacts to unhydrolyzed starch. If the starch was hydrolyzed, a clear halo zone
would appear against a dark blue background around the colonies that produce amylase
(Gupta et al., 2003; Abd-Elhahlem et al., 2015). We further subcultured bacterial isolates
to obtain a pure culture and identified isolates using standard morphological techniques
based on colony shape, Gram’s staining, spore formation, and biochemical characterization
(Cruickshank et al., 1975; Collins & Lyne, 1984; Koneman et al., 1992). Isolates were then
maintained in a 70% sterilized glycerol stock at −70 ◦C for further use.

Selecting isolates for amylase purification
We selected isolates for amylase extraction and purification, as well as for comparing the
purified amylase’s antibiofilm activity against some human pathogenic bacteria, according
to the starch hydrolysis ratio (SHR) that we calculated using the following equation (Pranay
et al., 2019):

SHR= clear halozone diameter (mm)/colony growth diameter (mm).

Isolates were subcultured on starch agar plates, which were incubated for 24 h at 37 ◦C.
After incubation, the plates were flooded with iodine. Finally, we calculated SHR using the
equation above.

Optimization of amylase production
Effect of temperature and incubation periods
The starch nutrient medium was prepared and the pH was adjusted to 7.5. We then
inoculated the medium with the tested isolates. The culture was allowed to grow on a
rotatory shaker (250 revs/min) at temperatures ranging from 15 to 65 ◦C over 48 h. We
took 20 ml from each culture at all temperatures and time intervals (18, 24, 48, 72, 96, and
120 h) and centrifuged them to remove the bacterial cells. Finally, the supernatant was
collected to assay the amylase activity (Nimisha, Moksha & Gangawane, 2019).

Effect of pH
We prepared the starch nutrient medium and adjusted the pH to different values (5, 6, 7,
8, 9, and 10). Each isolate was inoculated into a portion of this medium and were grown at
50 ◦C for 24 h. We then collected 20 ml from each isolate and applied the same treatment
as above to determine amylase activity (Nimisha, Moksha & Gangawane, 2019).

Effect of starch concentration
All Bacillus isolates were grown on nutrient broth medium with a pH of 9, except B. subtilis
which was grown at a pH of 7. Different soluble starch quantities were added to fresh
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medium to give final concentrations of 0.1, 0.5, 1, 1.5, 2, 2.5, and 3%. We inoculated each
isolate in this medium at 50 ◦C for 24 h to determine their amylase activity (Nimisha,
Moksha & Gangawane, 2019).

Determining amylase activity under optimum conditions
The assay mixture contained 2 ml of a solution made up of 1% starch in 50 mM sodium
phosphate buffer (pH 7) and 0.1 ml of enzyme solution. After 10 min. of incubation at
40 ◦C, we stopped the reaction by adding 2ml of 3,5 dinitrosalicylic acid (DNS) reagent, and
heated the tubes at 100 ◦C for 5min. The absorbance was measured spectrophotometrically
at 540 nm using a blank containing buffer instead of the culture supernatant. We calculated
the amount of reduced sugars from a maltose standard curve (Meyer, Fisher & Bernfeld,
1951). Protein was determined using Bradford’s (1976) method.

Enzyme purification
Ammonium sulfate precipitation
The crude amylase enzyme was brought to 45% saturation with ammonium sulfate and was
kept overnight in a cold room at 4 ◦C.We removed the precipitate, brought the supernatant
to 85% saturation with ammonium sulfate, and centrifuged it at 8,000 rpm for 10 min at
4 ◦C. After collecting the precipitate during this step, we stored it at 4 ◦C (Shinde & Soni,
2014).

Dialysis
This step was conducted to exclude the ammonium sulfate remains and to concentrate
the enzyme. We used the dialysis tubes, which were previously soaked in 0.1 M phosphate
buffer (pH 6.2), for precipitate dialysis. The precipitate was dissolved in 0.1 M phosphate
buffer and was dialyzed against the same buffer (Roe, 2001).

DEAE Sephadex G-200
The crude enzyme preparations of the six culture filtrates were applied separately to
a column of DEAE-Sephadex G-200. The enzyme was eluted with a linear gradient of
sodium chloride (0 –0.4 M) in 200 ml of sodium phosphate buffer (0.05 M and pH 7), the
flow rate was adjusted to 1 ml per 1 min., and 200 ml of eluents were collected into 40 tubes
(1 × 7 cm) using an automatic circular fraction collector. We determined enzyme activity
and protein concentration in each fraction using the described assay method. Fractions of
the highest specific activity were pooled together and kept for further study.

SDS-PAGE
We carried out polyacrylamide gel electrophoresis according to Laemmli’s (1970) method
using 10% polyacrylamide gel. Purified B. alvei and B. cereus amylase was loaded into
wells parallel to the standard protein markers. The protein bands were stained with
Coomassie brilliant blue (Sigma, St. Louis, MO, USA). We estimated the enzyme’s relative
molecular weight by comparing it tomolecularmass standardmarkers (Fermentas, Vilnius,
Lithuania).
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Antibacterial activities
Antagonistic efficacy of the isolated bacteria
We compared the antagonistic efficacy of all isolates against five human pathogenic
strains (Escherichia coli, P. aeruginosa, S. aureus (MRSA), Klebsiella pneumoniae, and
Acinetobacter baumanii). Strains were kindly provided by the International Luxor Hospital
in Luxor Governorate, Egypt. We performed screening using the disc diffusion method.
All bacteria were cultured on TSB modified with 1% starch, adjusted to OD595 = 0.01,
and incubated at 37 ◦C at 24 h. The isolated bacterial cultures were centrifuged to exclude
the cell debris (6,000 rm for 15 min., Biofuge). We then modified 20 ml of TSA with
1% starch, and poured it in a sterile Petri plate (100 mm diameter). We streaked 100 µl
of the five tested pathogens on the plates and punched 6-mm wells in the plates using
a sterile borer. The wells were then filled with 100 µl of the isolated bacteria filtrate,
and the plates were incubated at 37 ◦C for 24 h. The inhibition zone was measured
using a ruler (Reinheimer, Demkov & Condioti, 1990). Standard antibiotics were used as
the controls according to the Kirby Bauer disk diffusion method (Bauer, Sherris & Turk,
1966). The antibiotics were chloramphenicol (C; 30 µg, Oxoid), oxacillin (OX; 1 mcg,
Bioanalyse R©), vancomycin (VA; 30 mcg, Bioanalyse R©), ampicillin/sulbactam (SAM;
10/10 mcg, Bioanalyse R©), penicillin G (P; 10 U; Bioanalyse R©), erythromycin (E; 15 mcg,
Bioanalyse R©), sulfamethoxazole/trimethoprim (SXT; 23.75/1.25 µg, BBLTM), cefotaxime
(CTX; 30 mcg, Bioanalyse R©), gentamycin (GM; 10 µg, Bioanalyse R©), meropenem (MEM;
10µg, Bioanalyse R©), piperacillin (PIP; 100 µg, Bioanalyse R©), and piperacillin-tazobactam
(PTZ; 100/10 µg, Bioanalyse R©). We interpreted the results using the Clinical Laboratory
Standard Institute guidelines (CLSI, 2017) to determine whether the tested pathogens were
resistant, intermediate, or sensitive against the antibiotics.

Antibacterial activity of purified amylase enzyme from the isolated Bacillus
We placed 100 µl of purified amylase from the selected isolates according to their SHR in
the wells of the agar plates inoculated with the target strains. The plates were incubated at
37 ◦C for 24 h. The halo zone was measured using a ruler.

Biofilm formation assay
We determined the biofilm formation ability of the tested pathogens (E. coli, P. aeruginosa,
S. aureus (MRSA),K. pneumoniae, andA. baumanii) using 96-well polystyrene plates (Seper
et al., 2011) and the methods described by Salem et al. (2015a) and Salem et al. (2015b):
isolates were subcultured on tryptic soy agar for 24 h at 37 ◦C, suspended in tryptic soy
broth, and adjusted to an OD595 of 0.02. We placed 130 µl of each adjusted isolate culture
in the microtitre plate (U bottom, Sterilin) for 24 and 48 h at 37 ◦C. After incubation, the
wells were washed with distilled water (six times) and were stained with 0.1% crystal violet
for 10 min. The wells were then washed again with distilled water (four times) to remove
excess stain. Finally, the wells were destained using 210 µl of ethanol 96%, and the OD595

was read using an Infinite
R©
F50 Robotic (Ostrich) Microplate Plate to quantify the amount

of biofilm.
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Antibiofilm activity of the isolated Bacillus sp. filtrate and its purified
amylase enzyme
We compared the antibiofilm effects of the isolated bacteria filtrate and the purified
amylase from the selected isolates against the five human biofilm pathogenic bacteria
using the following spectrophotometric methods: a fresh isolate culture was prepared and
adjusted to 0.5 McFarland (106 CFU/ml), and 30 µl (this volume was selected according
to a preliminary experiment) of these cultures and purified amylase enzyme were added
to 130 µl of the tested pathogens at an OD595 of 0.02 after 24 h of incubation at 37 ◦C to
allow biofilm formation. The plates were then incubated for 24 and 48 h and stained with
crystal violet. Wells without isolated cultures or amylase served as controls.

Statistical analysis
The variability degree of the results was expressed in the form ofmean± standard deviation
(mean±SD) based on three independent determinations (n= 3). We statistically analyzed
the data by one-way ANOVA analysis and compared the control and treatment groups
using the least significant difference (LSD) test at 1% (*) levels (Snedeco & Cochran, 1980).

RESULTS AND DISCUSSION
Screening and isolating amylase-producing bacteria
Microorganisms that produce amylase are generally isolated from soil and other sources
(Fossi, Taveaand & Ndjonenkeu, 2005). Our study explored the isolation of amylase-
producing bacteria from soil using the serial dilution spread plate technique. Singh &
Kumari (2016) used a similar method by diluting soil samples on starch agar plates and
flooding the plates with an iodine solution. The presence of a halo zone around certain
colonies indicated amylase production, and a total of 75 bacterial isolates showed a zone
of clearance with a starch agar medium. Bacterial isolates were selected according to their
amylolytic activity (Table 1). A similar method was also employed byMagalhaes (2010). We
further characterized isolates using morphological and biochemical tests shown in Tables
1 and 2. Our results showed that the 75 isolates were comprised of 19 B. megaterium, 12
B. subtilis, 10 B. cereus, eight B. thuringiesis, eight B. lentus, four B. mycoides, four B. alvei,
three B. polymyxa, three B. circulans, and three Micrococcus roseus. B. megaterium had the
highest recorded prevalence (26.7%) and B. circulans andMicrococcus roseus had the lowest
(4%). The CFU of the amylase-producing bacteria in our 100 soil samples ranged from
115 ×103–198 ×105 CFU/ml (Table 1).

Optimizing amylase production
Using the starch hydrolysis rates shown in Table 2, we selected the six isolates with the
highest hydrolysis rates, namely B. alvei, B. thuringiesis, B. megaterium, B. subtilis, B. cerus,
and B. lentus with SHRs of 6.0, 5.67, 5.33, 5.0, 4.0, and 3.5 mm, respectively, for amylase
purification.

Effect of temperature and time intervals
All isolates showed maximum amylase production after 24 h. Similar results were obtained
by Singh & Kumari (2016), who observed that the highest amylase activity of some Bacillus
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Table 1 Prevalence of Bacillus species isolated from soil.

Isolatesa/Parameters No. of isolatesb Percentagec (%) CFUml−1d

Bacillus megaterium 20 26.7 115×103 –198×105

Bacillus subtilis 12 16

Bacillus cereus 10 13.3

Bacillus thuringiesis 8 10.7

Bacillus lentus 8 10.7

Bacillus mycoides 4 5.3

Bacillus alvei 4 5.3

Bacillus polymyxa 3 4

Bacillus circulans 3 4

Micrococcus roseus 3 4
Total 10 75 100

Notes.
aThe amylase-producing bacteria isolated from soil.
bNumber of each isolated type from the total number of the positive isolated sample.
cPercentage of each isolate.
dAverage colony-forming unit of amylase-producing bacteria per ml of 100 g soil samples (highest value to lowest value).

sp. occurred at 24 h of incubation and that the activity began to decrease after 48 and 72
h of incubation time (Fig. 1B). B. megaterium, B. subtilis, and B. cereus showed maximum
amylase production at 45 ◦C, while other isolates showed maximum amylase production
at 55 ◦C. Mohamed, Malki & Kumosani (2009) similarly reported that some amylase were
stable at 40 ◦C and some at 50 ◦C (Fig. 1A).

Effect of pH
All Bacillus isolates showed maximum amylase production at a pH of 8, except for B.
subtilis which maximally produced amylase at a pH of 7. A previous study by Behal et al.
(2006) found that the optimum pH for amylase production was 8. Another study by Singh
& Kumari (2016) reported that while amylase activity was recorded at different pH levels
from 5 to 10, maximum activity was observed at pH 7 (Fig. 1C).

Effect of substrate concentration
Our results showed that B. subtilis and B. cereus had maximum amylase production
at 1.5% soluble starch concentration. The remaining isolates showed maximum amylase
production at 2.0% soluble starch concetration (Fig. 1D).Mishra & Behera (2008) reported
that Bacillus strains produced the maximum yield of amylase at a starch concentration of
2%.

Enzyme activity
We purified extracellular amylase from the Bacillus isolated from soil to homogeneity
using 45–85% ammonium sulfate precipitation and Sephadex G-200 (Fig. 2). As shown
in Table 3, the highest amylase activity was found in B. alvei (96.02 U/ml), followed by B.
thuringiesis (88.64 U/ml). B.megaterium, B. subtilis, and B. cereus showed amylase activities
of 80.03, 76.0, and 55.9 U/ ml, respectively. B. lentus showed the lowest amylase activity of
45.69 U/ml.
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Table 2 Biochemical activities of amylase-producing bacterial isolates and their starch hydrolysis rates.

Isolate/Testsa Gram
reaction

Motility Catalase Egg yolk
lecithinase

Nitrate
reduction

Vogas
proskauer

Citrate
utilization

Gelatin
hydrolysis

Starch
hydrolysis

Indole
production

Bacillus megaterium + + + – – – + + + –

Bacillus subtilis + + + – + + + + + –

Bacillus cereus + + + + + + + – + –

Bacillus thuringiesis + + + + – + + – + –

Bacillus lentus + + + – – – – + + –

Bacillus mycoides + – + + – + + – + +

Bacillus alvei + + + – – + – + + +

Bacillus polymyxa + + + – + + – + + –

Bacillus circulans + + + – + – – + + –

Micrococcus roseus + + + – + – + – + –

Starch hydrolysis rate (mm)b

Halo zone (mm) Diameter of colony (mm) SHR

Bacillus megaterium 16 3 5.33
Bacillus subtilis 10 2 5.0
Bacillus cereus 12 3 4.0
Bacillus thuringiesis 17 3 5.67
Bacillus lentus 14 4 3.5
Bacillus mycoides 4 2 2.0
Bacillus alvei 18 3 6.0
Bacillus polymyxa 7 5 1.4
Bacillus circulans 16 5 3.2
Micrococcus roseus 10 5 2.0

Notes.
aMorphological and biochemical tests used for identifying isolated bacteria.
+Positive.
–Negative.
bStarch hydrolysis rate.

SDS-PAGE
After purification, the SDS- PAGE profile showed a single protein band of amylase for each
bacteria, confirming that the enzyme has been purified to homogeneity. The molecular
weights of B. alvei and B. cereus were 60 KDa and 43 KDa, respectively (Fig. 3). The
molecular weight of B. alvei was similar to that of the amylase isolated from B. subtilis (56
KDa and 55 KDa, respectively) (Bano et al., 2011; Takkinen et al., 1983). The molecular
weight of B. cereus was equal to the molecular weight of amylase from B. cereus and B.
subtilis (42 KDa) (Annamalai et al., 2011; Das, Doley & Mukherjee, 2004). Previous studies
have reported different molecular weights for amylase isolated from Bacillus sp. Lin, Chyau
& Hsu (1998) found that Bacillus sp. can produce five different forms of amylase.
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Figure 1 Optimization and purification conditions of amylase enzyme from selected Bacillus sp. (A)
The effect of temperature. B. megaterium, B. subtilis, and B. cereus showed maximum amylase production
at 45 ◦C, while other isolates showed maximum amylase production at 55 ◦C. (B) The effect of incubation
time. All isolates showed maximum amylase production after 24 h incubation. (C) The effect of pH. All
Bacillus isolates showed maximum amylase production at a pH of 8.0 except B. subtilis, which maximally
produced amylase at a pH of 7.0. (D) The effect of starch concentration. B. subtilis and B. cereus had max-
imum amylase production at 1.5% soluble starch concentration. The remaining isolates had maximum
amylase production at 2.0% soluble starch concentration.

Full-size DOI: 10.7717/peerj.10288/fig-1

Antibacterial activity
Antagonistic efficacy of the isolated bacteria and purified amylase enzyme
from selected isolates
In this study, we compared the antimicrobial activity of Bacillus supernatant and purified
amylase with standard antibiotics against human pathogens (Table 4). The standard
antibiotics served as the control group since pathogenic bacteria can become extremely
resistant to widely-used antibiotics. The pharmaceutical industry is in need of new and
natural antimicrobials that can overcome the problem of multidrug-resistant strains
(Schmidt, 2004; Salem et al., 2015a; Salem et al., 2015b; Salem et al., 2017). Several soil
organisms can produce antibiotics using a survival mechanism that can eliminate their
competition (Talaro & Talaro, 1996; Jensen & Wright, 1997). The Bacillus genus is a
terrestrial strain that can produce inhibitory compounds from peptide-derivative and
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Figure 2 Elution profile of isolated Bacillus sp. on Sephadex G-200. The figure shows the total protein
concentrations (mg/ml) along with the enzyme activity (U/ml) for (A) B. megaterium; (B) B. subtilis; (C)
B. cereus; (D) B. thuringiesis; (E) B. lentus; and (F) B. alvei.

Full-size DOI: 10.7717/peerj.10288/fig-2

Table 3 Purification profile of amylase produced from different Bacillus sp. isolates.

Isolatesa Purification stepb Bacillus
megaterium

Bacillus
subtilis

Bacillus
cereus

Bacillus
thuringiesis

Bacillus
lentus

Bacillus
alvei

Crude TP(mg/ml) 0.66 0.96 0.81 0.54 0.99 0.86
TA(U) 6630 5000 3932 7890 2780 10040
EA(U/ml) 33.15 25.0 19.66 39.45 13.9 50.2
TP(mg/ml) 0.58 0.88 0.75 0.39 0.79 0.77
TA(U) 701.0 640 461.0 820 308 1029Ammonium sulfate
EA(U/ml) 35.06 32.0 23.08 41.0 15.4 51.47
TP(mg/ml) 0.50 0.82 0.71 0.37 0.60 0.70
TA(U) 718 700 502 805 365 591Dialysis

EA(U/ml) 35.9 35.0 25.12 40.26 18.26 29.56
TP(mg/ml) 0.45 0.76 0.64 0.29 0.48 0.59
TA(U) 800 760 559 886 456.9 960Sephadex G-200

EA(U/ml) 80.03 76.0 55.9 88.64 45.69 96.02

Notes.
aIsolated Bacillus sp. selected for amylase purification according to SHR.
bDifferent purification steps of amylase purification.
TP, total protein; TA, total activity; EA, enzyme activity.

lipopolypeptide antibiotics (Mannanov & Sattarova, 2001; Tamehiro et al., 2002; Stein,
2005). Oscariz, Lasa & Pisabarro (1999) and Yilmaza, Sorana & Beyatlib (2006) found that
isolated bacteriocin-producing strains such as Bacillus sp. were active against gram-negative
and gram-positive bacteria.We compared the antimicrobial activity of the isolated amylase-
producing bacteria and purified amylase against five human pathogenic bacteria (Table 4).
We found that E. coli was resistant to sulfamethoxazole-trimethoprim (23.75/1.25 mcg),
gentamycin (10 µg), cefotaxime (30 µg), piperacillin (100 µg), and piperacillin-tazobactam
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Figure 3 SDS-PAGE amylase profile for B. alvei and B. cereus. Lane 1: molecular weight marker. Lane
2: amylase purified from B. alvei; Lane 3: amylase purified from B. cereus.

Full-size DOI: 10.7717/peerj.10288/fig-3

(100/10 µg); showed intermediate sensitivity to ampicillin-sulbactam (10/10 mcg); and
was sensitive to chloramphenicol (30 µg) and meropenem (10 µg). Notably, we observed
that all isolated bacteria showed high antimicrobial activity in response to E. coli, with B.
polymyxa showing the most activity (36 mm) and B. subtilis and B. cereus showing the least
(12 mm). B.mycoides andM. roseus showed no antimicrobial activity in response to E. coli.
Our results were consistent with the results ofMoshafi et al. (2011), who observed that one
soil bacterial isolate, identified as Bacillus sp., was found to inhibit six pathogenic bacteria,
namely E. coli, K. pneumoniae, S. typhi, P. aeruginosa, S. aureus, and S. epidermidis. When
examining the antimicrobial activity in response to K. pneumoniae, we found that although
K. pneumoniae was resistant to all tested antibiotics, it showed intermediate sensitivity
to ampicillin-sulbactam (10/10 mcg). It is worth mentioning that all isolates had great
antimicrobial effects, with B. megaterium showing the highest inhibition (26 mm) and B.
polymyxa showing the lowest (17 mm) (Table 4). In contrast, B. mycoides and M. roseus
were resistant to K. pneumoniae. In a recent study, (Reed & Rigney, 1947) reported that B.
subtilis metabolites inhibited K. pneumoniae, P. aeruginosa, S. aureus, E. coli, P. mirabilis,
and other bacteria. A. baumanii was resistant to all tested antibiotics and was sensitive only

Elamary and Salem (2020), PeerJ, DOI 10.7717/peerj.10288 11/22

https://peerj.com
https://doi.org/10.7717/peerj.10288/fig-3
http://dx.doi.org/10.7717/peerj.10288


to chloramphenicol (30 µg). However, all isolated bacteria showed improved antibacterial
effects against the tested pathogens, with B. alvei and B. cirulans showing the greatest
inhibitory effects (39 mm), and B. subtilis and B. thuringiesis showing the lowest (21
mm) (Table 4). We found that B. mycoides and Micrococcus roseus displayed no inhibitory
effects against the tested pathogens. Ramachandran et al. (2014) reported that B. subtilis
showed antimicrobial activity against A. baumanii, E. coli, K. pneumoniae, P. aeruginosa,
and S. aureus. The susceptibility level of P. aeruginosa indicated that it was resistant to
sulfamethoxazole-trimethoprim (23.75/1.25 µg), cefotaxime (30 mcg), gentamycin (10
µg), meropenem (10 µg), and piperacillin (100 µg). It had intermediate sensitivity to
chloramphenicol (30 µg) and ampicillin-sulbactam (10/10 mcg), and was sensitive to
piperacillin-tazobactam (100/10 µg). We noted that all isolates showed great antibacterial
effects against the tested pathogens, with B. lentus and B. cirulans having the greatest effects
(32 mm) and B. subtilis having the least (15 mm). Salem et al. (2015a) and Salem et al.
(2015b) similarly reported that Bacillus strains exhibited antimicrobial activity against P.
aeruginosa, E. coli, and S. typhi. Perez, Suarez & Castro (1992) and Aslim, Saglam & Beyatli
(2002) found that B. subtilis, B. thuringiesis, and B. megaterium showed antibacterial
activity against E. coli and P. aeruginosa. We found that S. aureus (MRSA) was resistant to
oxacillin (1 mcg), vancomycin (30 mcg), penicillin G (10 U), cefotaxime (30 mcg), and
gentamycin (10 µg), and showed intermediate sensitivity to chloramphenicol (30 µg),
erythromycin (15 mcg), and sulfamethoxazole-trimethoprim (23.75/1.25 µg). The isolated
amylase-producing bacteria showed better antibacterial effects on the tested pathogens,
with the greatest effect shown by B. alvei (48 mm) and the least effect shown by B. cereus
(14 mm) (Table 4). However, B. mycoides and M. roseus did not affect S. aureus. Similar
results were obtained by Moshafi et al. (2011) and Ramachandran et al. (2014). In contrast
to the high antimicrobial activity observed in the isolated soil bacteria, the purified amylase
from the selected isolates had very little effect on E. coli and K. pneumoniae (the highest
inhibition diameter was 7.5 mm), and no recorded effect in response to the other tested
pathogens (Table 4). This result is similar to that of Kalpana, Aarthy & Pandian (2012),
who confirmed that amylase enzyme has no antibacterial effect.

Biofilm formation assay
We quantitatively determined the amount of biofilm (OD595) in the tested pathogens and
designated the 24 and 48 h treatments as the control groups (Figs. 4, 5, 6, and 7). Using
the OD595 nm mean values, we defined the pathogens as low, moderate, or high bacterial
biofilm formers when the OD595 nm was > 1, 1 - 2.9, and < 2.9, respectively. A. baumanii
and Klebsiella pneumoniae were high biofilm formers while E. coli, P. aeruginosa, and S.
aureus (MRSA) were low biofilm formers.

Antibiofilm activity of isolated bacterial filtrate and purified amylase enzyme
from selected Bacillus isolates
In a natural ecosystem, bacteria can be exist in two forms: planktonic cells, which are
susceptible to antibiotics and other antimicrobial agents, and biofilm, which are resistant
to antibiotics and disinfectants (Limoli, Jones & Wozniak, 2015). A biofilm is a complex
community of bacteria attached to a surface or interface enclosed in an exopolysaccharide
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Table 4 Comparing the antibacterial activity of Bacillus sp. and purified amylase enzyme to different standard antibiotics.

Tested pathogens/Antibiotica/Isolates Escherichia
coli

Klebsiella
pneumoniae

Acinetobacter
baumanii

Pseudomonas
aeuroginosa

Staphylococcus
aureus (MRSA)

Chloramphenicol (30 µg) S R S I I

Oxacillin (1 mcg) NA NA NA NA R

Vancomycin (30 mcg) NA NA NA NA R

Ampicillin- sulbactam (10/10 mcg) I I R I NA

Pencillin G (10 U) NA NA NA NA R

Erythromycin (15 mcg) NA NA NA NA I

Sulfameth.-trimethoprim (23.75/1.25 µg) R R R R I

Cefotaxime (30 mcg) R R R R R

Gentamycin (10 µg) R R R R R

Meropenem (10 µg) S R R R NA

Piperacillin (100 µg) R R R R NA

Piperacillin-tazobactam (100/10 µg) R R R S NA

Inhibition zone in mmb

Bacillus megaterium 21± 1.5 26± 1 36± 1 24± 1 31± 1
Bacillus subtilis 12± 1 18± 2 21± 1 15± 1.5 20± 2
Bacillus cereus 12± 1.2 21± 1 36± 1 18± 1 14± 1.5
Bacillus thuringiesis 14± 1.5 21± 1 21± 1 22± 1 18± 0.6
Bacillus lentus 22± 1.6 22± 1 24± 0.6 32± 1.5 31± 3
Bacillus mycoides NI NI NI NI NI
Bacillus alvei 34± 1.5 21± 1 39± 1.5 29± 2.5 48± 2
Bacillus polymyxa 36± 2.5 17± 0.6 38± 1 17± 4 20± 0.6
Bacillus circulans 21± 1.5 23± 1 39± 1 32± 1 32± 2
Micrococcus roseus NI NI NI NI NI

Inhibition zone in mmc

ABM 7.2+0.3 7.5+0 NI NI NI
ABS 7.3+0.3 7+0 NI NI NI
ABC 7+0.3 7.3+0.3 NI NI NI
ABT 7.5+0 7.2+0.3 NI NI NI
ABL 7.3+0 7.5+0 NI NI NI
ABA 7.5+0.5 7.3+0.3 NI NI NI

Notes.
aComparing the antimicrobial susceptibility of a group of standard antibiotics (CLSI, 2017) against five human pathogenic strains (control).
bAntimicrobial activity of the isolated Bacillus sp.
R, Resistant; S, sensitive; I, intermediate; NA, Not applicable (for antibiotics that were not specific to the bacterial strains); NI, No inhibition; C, antimicrobial activity of
purified amylase from some isolated Bacillus sp.; ABM, amylase purified from Bacillusmegaterium; ABS, amylase purified from Bacillus subtilis; ABC, amylase purified from
purified Bacillus cereus; ABT, amylase purified from Bacillus thuringiesis; ABL, amylase purified from Bacillus lentus; ABA, amylase purified from Bacillus alvei.
Values expressed as mean± SD.

matrix, protected from unfavorable antibiotics, host defenses, or oxidative stresses
(Shakibaie, 2018). Microbial biofilms have created huge problems in the treatment
of both community and hospital infections. Most antimicrobial agents are unable to
penetrate biofilm due to its extracellular polymeric substances (EPS), which act as a barrier
protecting the bacterial cells within the biofilm. Therefore, we must use compounds that
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Figure 4 Comparing the antibiofilm activity of Bacillus-producing amylase-filtrate against some
pathogenic bacteria after 24 h treatment. The figure shows Bacillus sp. filtrate, T1: B. megaterium, T2: B.
subtilis, T3: B. cereus, T4: B. thuringiesis, T5: B. lentus, T6: B. alvei, T7: B. polymyxa, T8: B. circulans. The
tested pathogenic bacteria are (A) E. coli, (B) P. aeruginosa, (C) S. aureus (MRSA), (D) K. pneumoniae,
and (E) A. baumanii. The figure shows the averages from at least three independent measurements. The
error bars indicate the standard deviations using the least significant difference (LSD). The 1% LSD for E.
coli, P. aeruginosa, S. aureus (MRSA), K. pneumoniae, and A. baumanii was 0.016, 0.013, 0.014, 0.04, and
0.17, respectively. Significant differences between controls and treated samples are marked by asterisks.
P < 0.05; Krustal-Wallis test and post hoc Bonferroni post-tests. Scales are different for A–C versus D and
E.

Full-size DOI: 10.7717/peerj.10288/fig-4

have the potential to degrade the biofilm’s EPS. Enzymes have proven to be effective in
EPS degradation (Kalpana, Aarthy & Pandian, 2012; Lequette et al., 2010). In our study, we
compared the antibiofilm activity of the Bacillus sp. that we isolated from soil (supernatant)
and the purified amylase from these isolates against five human pathogenic biofilm former
strains. Our study has reported that Bacillus supernatant and amylase enzyme can inhibit
the biofilm formation in various pathogens. We confirmed the ability of pathogenic
bacterial strains to form biofilm formation using spectrophotometric methods before
applying the antibiofilm treatments of bacterial filtrate and purified amylase enzyme (Figs.
4, 5, 6, and 7). The antibiofilm activity was screened using a spectrophotometric method
with crystal violet staining. Our results showed that the bacteria isolated from soil exhibited
significant antibiolfilm effects against the tested pathogenic strains after 24 h of treatment.
The percentage of inhibition significantly increased after 48 h of treatment. The highest
percentage of inhibition was recorded for B. circulans against K. pneumonia: 93.7% after
48 h of treatment (Fig. 5D, T8). We also monitored the efficacy of the purified amylase
enzyme as an antibiofilm against the same tested pathogens. Our results revealed that
the purified amylase showed significant antibiofilm effects after 24 h of treatment. The
percentages of inhibition significantly increased after 48 h of treatment. We observed the
highest percentage for B. alvei against K. pneumonia: 78.8% after 48 h of treatment (Fig.
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Figure 5 Comparing the antibiofilm activity of Bacillus-producing amylase-filtrate against some
pathogenic bacteria after 48 h treatment. The figure shows Bacillus sp. filtrate, T1: B. megaterium, T2: B.
subtilis, T3: B. cereus, T4: B. thuringiesis, T5: B. lentus, T6: B. alvei, T7: B. polymyxa, T8: B. circulans. The
tested pathogenic bacteria are (A) E. coli, (B) P. aeruginosa, (C) S. aureus (MRSA), (D) K. pneumoniae,
and (E) A. baumanii. The figure shows the averages from at least three independent measurements. The
error bars indicate the standard deviations using the least significant difference (LSD). An LSD of 1% for
E. coli, P. aeruginosa, S. aureus (MRSA), K. pneumoniae, and A. baumanii was 0.027, 0.014, 0.013, 0.08 and
0.19, respectively. Significant differences between controls and treated samples are marked by asterisks.
P < 0.05; Krustal-Wallis test and post hoc Bonferroni post-tests. Scales are different for A-C versus D and
E.

Full-size DOI: 10.7717/peerj.10288/fig-5

7D, T6). Our results also showed the greatest enzyme activity from B. alvei (96.02 U/ ml),
followed by B. thuringiesis (88.64 U/ ml), B. megaterium (80.03 U/ ml), and B. subtilis (76.0
U/ml). The lowest antibiofilm efficacy was recorded in B. cereus, with an enzyme activity
of 55.9 U/ml, and B. lentus, with an enzyme activity of 45.69 U/ml. Kalpana, Aarthy &
Pandian (2012) first reported that purified amylase enzyme from B. subtilis was a good
antibiofilm agent against biofilm-forming clinical pathogens. The purified enzyme caused
68.33%, 64.84%, 61.81%, and 59.2% of inhibition in V. cholerae (VC5, VC26), MRSA
(102), and P. aeruginosa ATCC10145, respectively. Another study by Vaikundamoorthya
et al. (2018) confirmed the antibiofilm efficacy of the thermostable amylase enzyme from
B. cereus.

It is worth noting that the isolated bacteria filtrate showed great antibiofilm activity
compared to the purified amylase enzyme from the selected isolates. This may be due to
the accumulation of some extracellular and intracellular metabolites in the medium, which
is further explained by the metabolic overflow theory (Pinu, Villas-Boas & Aggio, 2017;
Pinu et al., 2018; Horak et al., 2019). Bacillus also showed great efficacy in the production
of carbohydrate-active enzymes and bioactive compounds, as well as the secretion of a
variety of extracellular metabolites and lytic enzymes (Abdel-Aziz, 2013). Additionally,
Bacillus species are the most efficient at producing peptide antibiotic compounds such as
polymyxin, colistin, and circulin (Katz & Demain, 1997; Atanasova-Pancevska et al., 2016).
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Figure 6 Comparing the antibiofilm activity of Bacillus- purified amylase enzyme against some
pathogenic bacteria after 24 h treatment. The figure shows Bacillus sp. filtrate, T1: B.megaterium, T2:
B. subtilis, T3: B. cereus, T4: B. thuringiesis, T5: B. lentus, T6: B. alvei. The tested pathogenic bacteria are
(A) E. coli, (B) P. aeruginosa, (C) S. aureus (MRSA), (D) K. pneumoniae, and (E) A. baumanii. The figure
shows the averages from at least three independent measurements. The error bars indicate the standard
deviations using the least significant difference (LSD). An LSD of 1% for E. coli, P. aeruginosa, S. aureus
(MRSA), K. pneumoniae, and A. baumanii was 0.11, 0.01, 0.03, 0.01, and 0.02, respectively. Significant
differences between controls and treated samples are marked by asterisks. P < 0.05; Krustal-Wallis test and
post hoc Bonferroni post-tests. Scales are different for A–C versus D and E.

Full-size DOI: 10.7717/peerj.10288/fig-6

Our results also indicated a great inhibition of biofilm from the amylase enzymes of B.
alvei (96.02 U/ml), followed by B. thuringiesis (88.64 U/ml), B. megaterium (80.03 U/ml),
B. subtilis (76.0 U/ml), B. cereus (55.9 U/ml), and B. lentus (45.69 U/ml) (Table 3). This
may be due to the increased enzyme activity in each species.

CONCLUSION
Our results indicated that the ability of Bacillus sp. to produce extracellular and intracellular
metabolites, lytic enzymes, and some peptide antibiotics directly affects the antimicrobial
functions of various Bacillus sp. (amylase producers) in the soil. We observed the highest
inhibition rate (93.7%) when comparing the species’ antibiofilm effects against five
human pathogenic strains. We observed an inhibition rate of 78.8% when comparing the
antibiotic biofilm activity of purified amylase against the strains. Our study showed that
Bacillus filtrate is an effective clinical antibiofilm. Futher studies are being conducted to
determine the exact composition of the filtrate and its active agents.
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Figure 7 Comparing the antibiofilm activity of Bacillus- purified amylase enzyme against some
pathogenic bacteria after 48 h treatment. The figure shows Bacillus sp. filtrate, T1: B.megaterium, T2:
B. subtilis, T3: B. cereus, T4: B. thuringiesis, T5: B. lentus, T6: B. alvei. The tested pathogenic bacteria are
(A) E. coli, (B) P. aeruginosa, (C) S. aureus (MRSA), (D) K. pneumoniae, and (E) A. baumanii. The figure
shows the averages from at least three independent measurements. The error bars indicate the standard
deviations using the least significant difference (LSD). An LSD of 1% for E. coli, P. aeruginosa, S. aureus
(MRSA), K. pneumoniae, and A. baumanii was 0.01, 0.009, 0.007, 0.018, and 0.35, respectively. Significant
differences between controls and treated samples are marked by asterisks. P < 0.05; Krustal-Wallis test and
post hoc Bonferroni post-tests. Scales are different for A-C versus D and E.

Full-size DOI: 10.7717/peerj.10288/fig-7
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