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Cleft palate is one of the most frequent birth defects worldwide. It causes severe
problems regarding eating and speaking and requires long-term treatment. Effective
prenatal treatment would contribute to reducing the risk of cleft palate. The canonical
Wnt signaling pathway is critically involved in palatogenesis, and genetic or chemical
disturbance of this signaling pathway leads to cleft palate. Presently, preventative
treatment for cleft palate during prenatal development has limited efficacy, but we
expect that zebrafish will provide a useful high-throughput chemical screening model for
effective prevention. To achieve this, the zebrafish model should recapitulate cleft palate
development and its rescue by chemical modulation of the Wnt pathway. Here, we
provide proof of concept for a zebrafish chemical screening model. Zebrafish embryos
were treated with 12 chemical reagents known to induce cleft palate in mammals,
and all 12 chemicals induced cleft palate characterized by decreased proliferation and
increased apoptosis of palatal cells. The cleft phenotype was enhanced by combinatorial
treatment with Wnt inhibitor and teratogens. Furthermore, the expression of tcf7 and lef1
as a readout of the pathway was decreased. Conversely, cleft palate was prevented by
Wnt agonist and the cellular defects were also prevented. In conclusion, we provide
evidence that chemical-induced cleft palate is caused by inhibition of the canonical
Wnt pathway. Our results indicate that this zebrafish model is promising for chemical
screening for prevention of cleft palate as well as modulation of the Wnt pathway as a
therapeutic target.

Keywords: teratogen, environmental factors, cleft palate, canonical Wnt signaling pathway, zebrafish

INTRODUCTION

Cleft palate and/or lip is one of the most frequent birth defects, occurring in 1 out of 800 to 2500 live
births, and induces severe eating and speaking problems, dental defects, ear infections, and hearing
loss (Parker et al., 2010; Mezawa et al., 2019). The patients require long-term treatments, including
surgeries, dental treatment, speech rehabilitation and psychological treatment, which impose huge a
lifetime burden estimated at $200,000 on their family and social support system (Boulet et al., 2009;
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Wehby and Cassell, 2010). Thus, prevention and treatment
of cleft palate is a worldwide health and medical issue. Cleft
palate has complicated etiology and its causation involves both
genetic and environmental risk factors (Dixon et al., 2011). To
date, over 500 Mendelian syndromes have been reported as
congenital diseases, including cleft palate, in Online Mendelian
Inheritance in Man (OMIM)1, and also over 60 chemicals
have been categorized as teratogens that induce cleft palate in
ToxRefDB (Martin et al., 2009). Recent studies point out that cleft
palate patients have various mutations in components of specific
signaling pathways, i.e., the Wnt, Hedgehog, FGF, and TGF-beta
signaling pathways (Riley et al., 2007; Lipinski et al., 2010; Liu and
Millar, 2010; Parada and Chai, 2012; Stanier and Pauws, 2012;
Iwata et al., 2014; Kurosaka, 2015; Reynolds et al., 2019). Thus,
for prenatal prevention and therapy of cleft palate, regulation of
such signaling pathways will be a central target. In a mouse model
with a consistent cleft palate phenotype, the cleft phenotype is
partially or completely recovered by chemical modulation of the
canonical Wnt signaling pathway (Liu et al., 2007; Jia et al., 2017;
Li et al., 2017).

Prenatal exposure to environmental risk factors such as
alcohol, cigarette smoking, pharmaceuticals and chemical
reagents also leads to cleft palate in mammals, including
humans (Shaw et al., 1996; Brent, 2004; DeRoo et al., 2008;
Beaty et al., 2016). Some of these chemicals are reported
to target the Wnt signaling pathway: excess retinoic acid or
dexamethasone exposure induces cleft palate via inhibition
of the canonical Wnt pathway in a mouse model (Hu
et al., 2013; Okano et al., 2014; Wang et al., 2019). These
reports suggest that chemical modulation of the Wnt signaling
pathway will be a promising approach for prenatal prevention
of cleft palate. The mammalian model has enabled great
progress for investigating the etiology and pathology of
cleft palate. However, at present, there are few therapies
or medications directed at reducing the risk of cleft palate
during prenatal development. Thus, a zebrafish screening
model could provide another approach for prenatal prevention
of cleft palate as well as teratogenicity testing aimed at
preventing cleft palate.

As an emerging model organism for human disease,
zebrafish provides excellent opportunities for investigating
fundamental mechanisms causing common birth defects as
well as screening and discovering small molecules that impact
human disease (Mork and Crump, 2015; Rennekamp and
Peterson, 2015; Wiley et al., 2017; Weinberg et al., 2018;
Patton and Tobin, 2019). Zebrafish has several experimental
advantages for high-throughput genetic and chemical screening,
including evolutionarily conserved developmental programs,
cost effectiveness, rapid external development, and transparency
during the embryonic stage. Zebrafish ethmoid plate is
considered to be a mammalian palate model because the zebrafish
palate is composed of cells derived from the frontonasal and
maxillary domain, which is similar to the palatogenesis of
mammals (Jugessur et al., 2009; Kague et al., 2012; Mongera
et al., 2013; Mork and Crump, 2015; Duncan et al., 2017).

1https://omim.org

Moreover, the fundamental signaling pathways and cellular
events during craniofacial development, including palatogenesis,
are conserved between fish and mammals (Swartz et al.,
2011). Recently, the responsible genes, such as irf6, tgf β3,
smad5 and faf1, causing cleft palate have been identified, and
disruption of these genes is phenocopied in the zebrafish model,
validating the genetic relevance of cleft palate in zebrafish
to mammalian cleft palate (Cheah et al., 2010; Ghassibe-
Sabbagh et al., 2011; Swartz et al., 2011; Dougherty et al.,
2013). Furthermore, genetic disruption of the Wnt signaling
pathway in zebrafish causes craniofacial anomalies such as
cleft palate and micrognathia, suggesting involvement of the
Wnt signaling pathway in cleft palate both in fish and
mammals (Curtin et al., 2011; Jackson et al., 2015; Duncan
et al., 2017; Neiswender et al., 2017). This accumulating
knowledge of the genetic phenocopying of cleft palate in the
zebrafish palate model indicates the relevance of this model to
mammalian cleft palate.

Recently we reported that in a zebrafish model, several
teratogens recapitulated craniofacial anomalies found in
mammals and some defects phenocopied neurocristopathy,
indicating that the zebrafish model is amenable for high-
throughput prediction of teratogen-induced craniofacial
anomalies of mammals (Liu et al., 2020). Many teratogens that
induce cleft palate have been identified by epidemiological
studies or teratogenicity testing; however, only a few chemicals,
such as retinoic acid and alcohol, have been employed for
analyzing detailed cellular and molecular mechanisms of
cleft palate in a mammalian model (Kietzman et al., 2014;
Okano et al., 2014; Wang et al., 2019). For use in chemical
screening for prenatal prediction and prevention of chemical-
induced cleft palate, a zebrafish model should be useful
in addition to a mouse model, which has been used to
detect phenocopied cleft palate and its rescue based on
mechanistic insights (Sive, 2011; Hahn and Sadler, 2020).
Although our previous study suggested that teratogen-treated
zebrafish phenocopied mammalian craniofacial anomalies,
the biological relevance of chemical-induced cleft palate in
this zebrafish model to mammals still remained unclear.
Notably, the causal relationship between the canonical
Wnt signaling pathway and chemical-induced cleft palate
remained to be examined.

In the present study, we consolidate our previous proof-
of-principle study by Liu et al., 2020 showing that zebrafish
can be utilized as a discovery platform to investigate chemical-
induced neurocristopathies. Zebrafish embryos were exposed to
12 chemical compounds (caffeine, 5-fluorouracil, salicylic acid,
hydroxyurea, warfarin, valproic acid, methotrexate, imatinib,
thalidomide, phenytoin, dexamethasone, and retinoic acid),
which have been identified as teratogens causing cleft palate
by epidemiological research and teratogenicity testing in
mammals (Table 1). All 12 teratogens induced a series of
palate malformations of zebrafish palate dose-dependently,
suggesting the phenotypic relevance of this zebrafish model to
chemical-induced cleft palate in mammals. Moreover, IWP-L6,
a specific inhibitor of the canonical Wnt signaling pathway,
also induced clefting phenotypes, which were enhanced by
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TABLE 1 | Chemicals used in the current study.

Category Compound Abbreviation Birth defects References

Rodents Human

Antiepileptic drug Valproic acid VPA Cleft palate, spina bifida
occulta, and delay in
ossification

Cleft palate, spina bifida, atrial
septal defect, and hypospadias

Faiella et al., 2000; Jentink et al.,
2010

Phenytoin PHT Cleft lip, tetralogy of Fallot,
short neck, and diaphragmatic
hernia

Cleft lip and palate, congenital
heart disease, and
microcephaly

Speidel and Meadow, 1972;
Czeizel, 1976

Antithrombotic drug Warfarin WAF Maxillonasal hypoplasia and
skeletal abnormalities

Cleft palate, nasal hypoplasia,
and skeletal abnormalities

Howe and Webster, 1992; Starling
et al., 2012; D’Souza et al., 2017

Antineoplastic drug 5-Fluorouracil 5FU Cleft lip and/or palate, clubbed
leg, and polydactyly

Radial aplasia, imperforate
anus, esophageal aplasia, and
hypoplasia

Stephens et al., 1980; National
Toxicology, 2008

Hydroxyurea HU Cleft palate, cleft lip,
exencephaly, and clubbed leg

– Chaube and Murphy, 1966

Imatinib IM Cleft lip, exencephaly, and
contraction of forelimb

Cleft palate, polydactyly,
hypospadias, scoliosis, and
small exomphalos

Pye et al., 2008; El Gendy et al.,
2015

Methotrexate MTX Cleft palate, skull defects, and
severe fore- and hindlimb
dysplasia

Cleft palate, ear malformation,
and multiple cardiac
malformations

Jordan et al., 1977; Granzow et al.,
2003

Immunosuppressive
drug

Thalidomide THA – Limb defects, cleft lip and
palate, ear defects, and small
eyes

Newman, 1985; Speirs, 1962;
Taussig, 1962; Smithells and
Newman, 1992

Anti-inflammatory drug Dexamethasone DEX Cleft lip, and cleft palate Cleft lip and palate Hviid and Mølgaard-Nielsen, 2011;
Zhou et al., 2011; Kemp et al.,
2016

Salicylic acid SA Cleft palate, spina bifida,
cranioschisis, spondyloschisis,
and abdominal fissure

Neural tube defects,
gastroschisis, and cleft
lip/palate

Trasler, 1965; Tagashira et al.,
1981; Kozer et al., 2002

Non-pharmaceutical
chemical

Caffeine CAF Cleft palate, and digital defect Cleft palate, hydrocephalus,
and interventricular septal
defect

Nishimura and Nakai, 1960; Collier
et al., 2009

Retinoic acid RA Cleft lip and palate, ear defects,
and limb and lower-body
duplications

Cleft palate, ear defects,
hydrocephalus, and teratology
of Fallot

Benke, 1984; Lammer et al., 1988;
Rutledge et al., 1994;
Padmanabhan and Ahmed, 1997

Boric acid BA Rib defects (short rib and wavy
rib)

- Moore, 1997

All chemicals have been reported to induce birth defects in rodents and human.

combinatorial treatment with the Wnt inhibitor and teratogens.
These results suggested that teratogens inhibited the canonical
Wnt signaling pathway, which was confirmed by observation
of decreased expression levels of downstream effectors of
canonical Wnt signaling (tcf7 and lef1). Cellular defects of
teratogen-induced cleft palate were characterized by inhibition
of cell proliferation and viability in the palate. Furthermore,
cleft palate induced by teratogens was abrogated by three
Wnt agonists (BIO, CHIR-99021, and WAY-262611). These
findings suggest that inhibition of canonical Wnt signaling
in the zebrafish model contributes critically to chemical-
induced cleft palate, which is the same etiology as in
mammalian models. Taken together, our findings indicate
that the zebrafish palate is a suitable model for investigating
the etiology of chemical-induced cleft palate as well as for
high-throughput chemical screening for prevention of cleft
palate and teratogenicity. Additionally, our results provide
insights into chemical modulation of the canonical Wnt

signaling pathway as a potential target for prenatal prevention
of cleft palate.

MATERIALS AND METHODS

Zebrafish Maintenance
Zebrafish (Danio rerio), strain RIKEN WT (RW), were
maintained with a 14-h light/10-h dark cycle and water
temperature at 28 (±1)◦C. Water quality conditions were
maintained according to The Zebrafish Book (Westerfield, 2000)
and the Guide for the Care and Use of Laboratory Animals 8th
edition (National Research Council, 2011).

Test Compounds
Test compounds used in this study are listed in Table 1.
These tested compounds are known to be teratogens inducing
cleft palate in mammals and have been classified into various

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 December 2020 | Volume 8 | Article 592967

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-592967 December 8, 2020 Time: 12:1 # 4

Narumi et al. Chemical-Induced Cleft Palate in Zebrafish

categories as a result of being tested in zebrafish experiments
or chemical safety assays (Hillegass et al., 2008; Selderslaghs
et al., 2009; Ito and Handa, 2012; Lee et al., 2012; Teixido
et al., 2013; Yamashita et al., 2014; Inoue et al., 2016; Martinez
et al., 2018; Cassar et al., 2019). The test compounds and
exposure concentrations were determined based on Liu et al.,
2020. The exposure concentrations were as follows: hydroxyurea
(1 mM, Sigma-Aldrich), valproic acid (7.5–30 µM, Wako),
salicylic acid (100–400 µM, Wako), boric acid (1 mM, Wako),
and caffeine (0.5–2 mM, Wako), which were diluted from stock
solutions prepared with distilled water (Life Technologies), and
imatinib (250 µM, Tokyo Chemical Industry), retinoic acid
(10–50 nM, Tokyo Chemical Industry), thalidomide (400 µM,
Tocris Bioscience), methotrexate (50–200 µM, Wako), warfarin
(15–60 µM, Wako), phenytoin (1 mM, Wako), dexamethasone
(1 mM, Wako), 5-fluorouracil (1 mM, Wako), and isoniazid
(1 mM, LKT Laboratories), which were diluted from stock
solutions prepared with dimethyl sulfoxide (DMSO, Wako).

Egg Production and Chemical Exposure
Adult male and female zebrafish (4–10 months after fertilization)
were placed in a breeding tank with a separator in the late
afternoon the day before spawning. The separator was removed
in the morning and spawning was stimulated when the light
was turned on. Fertilized eggs were collected within 1 h
after removal of the separator. The eggs were incubated in
E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2,
0.33 mM MgSO4, 0.1 mM NaOH) at 28◦C and dechorionated
by 1 mg/mL Protease type XIV (Sigma-Aldrich) for 10 min at
room temperature and washed several times with E3 medium.
Dechorionation was done within an hour after fertilization.
The dechorionated embryos were incubated with E3 medium
and were exposed to the test compounds at 4 hpf. Embryos
were treated with Wnt antagonist (IWP-L6, 15 µM, Merck)
or Wnt agonist [BIO (100 nM, Sigma-Aldrich), CHIR99021
(300 nM, Abcam) or WAY-262611 (250 nM, Wako)]. Embryos
were treated with these small molecules starting at 50 hpf,
when the onset of palatogenesis occurs (DeLaurier et al., 2012).
The exposure medium was replaced daily and samples were
collected at 96 hpf.

Fluorescence Imaging and
Immunofluorescence Staining
Prior to nucleic staining, zebrafish embryos were fixed at 96 hpf
with 4% paraformaldehyde (PFA, Wako) for 1 h and Alcian blue
cartilage staining was performed as previously described (Liu
et al., 2020). Samples were washed twice with PBS-T (phosphate
buffered saline containing 0.1% Triton X-100) for 5 min and
stained with DAPI (1/5000, DOJINDO) diluted with PBS-T on a
shaker for 1 h. After nucleic staining, samples were dissected with
fine forceps and embedded in 1% low-melting agarose (Sigma-
Aldrich) and then mounted on a 35-mm non-coated glass bottom
dish (Matsunami).

For immunofluorescence staining, zebrafish embryos were
fixed at 96 hpf with 4% PFA for 1–2 h(s). Samples were

washed twice with PBS-T for 5 min and placed in 100% ice-
cold methanol (MeOH, KANTO CHEMICAL) and stored for
more than 2 h at −20◦C to accomplish complete dehydration.
Then, samples were gradually rehydrated with 75%, 50%, 25%
MeOH in PBS-T (volume percent) for 5 min per wash on
ice and processed to remove pigmentation by bleaching in 3%
hydrogen peroxide and 0.5% potassium hydroxide under light.
After bleaching, samples were incubated in 10 µg/mL Protease
type XIV (Sigma-Aldrich) in PBS-T for 30 min and then post-
fixed with 4% PFA for 20 min. Samples were washed with
150 mM Tris–HCl (pH 8.5) for 5 min and then heated for
15 min at 70◦C following by washing twice with PBS-T for
5 min. Samples were incubated in ice-cold acetone (Wako) for
20 min at −20◦C and washed twice with PBS-T for 5 min.
Samples were blocked with 3% bovine serum albumin in PBS for
2 h and incubated with rabbit anti-active caspase3 (1/1000, BD
Pharmingen: 559565), rabbit anti-phospho-histone H3 (Ser10)
(1/500, EMD Millipore: 06-570), mouse anti-collagen type II
(anti-coll2, 1/20, DSHB: AB_528165) primary antibody or lectin
PNA Alexa Fluor 488 conjugate (1/1000, Thermo) overnight
at 4◦C, washed six times with PBS-T for 15 min, and then
stained with Alexa Fluor 568-goat anti-rabbit, or Alexa Fluor
647-IgG1 kappa-goat anti-mouse secondary antibodies (1/1000,
Life Technologies) for 2 h. After washing six times with PBS-T
for 15 min, samples were embedded in 1% low-melting agarose
and mounted on a 35-mm non-coated glass bottom dish. All
immunofluorescence images were acquired by the Zeiss LSM880
or LSM800 system equipped with Zeiss ZEN black or blue
software. Z-sections of the images were stacked by Z-projection
(projection type: Max intensity) of ImageJ (National Institutes
of Health). All procedures were performed at room temperature
unless otherwise specified.

Quantification of Immunofluorescence
Image
After nucleic staining, quantification of palate morphology was
performed. The phenotypes were categorized based on the
criteria shown in Supplementary Figure 1A. Lengths of zebrafish
palate and cleft were analyzed using ImageJ. For quantification
of the frequency of pH3- or active caspase3-positive cells, the
number of proliferative or apoptotic cells in the palate was
normalized to 10−4 µm2. The area of the palate was measured
using the ImageJ Measure option. All analysis was performed
after the Z-projection. All experiments were performed in
triplicate and sample sizes are stated in each figure legend.

Dissection, RNA Preparation and
RT-qPCR Analysis
Zebrafish embryos were stained with 5 µM diaminofluorescein-
FM diacetate (DAF-FM DA, GORYO Chemical) in E3 medium
at 28◦C overnight to visualize cranial cartilage. After the trunk
and yolk were removed, the head region of the embryo was
treated with 5 mg/ml pancreatin (Wako) for several minutes at
room temperature. The fluorescence-positive region of the head
region was dissected using Disponano needles (Saito Medical
Instruments) under a fluorescence stereomicroscope. Total RNA
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of each sample was extracted using Trizol (Invitrogen) and an
RNeasy Mini Kit (QIAGEN) followed by reverse transcription
with a QuantiTect Reverse Transcription Kit (QIAGEN). RT-
qPCR analysis was performed with TaqMan Master Mix (Thermo
Fisher Scientific), TaqMan probes and gene-specific primers
for tcf7l1a, lef1, and gapdh (Bio-Rad) using the 7500 Fast
Real-Time PCR System (Thermo Fisher Scientific). For data
analysis, relative quantification analysis was performed using
the comparative CT (2−11CT) method. For each sample,
mRNA levels of the target genes were normalized to the
gapdh mRNA.

Statistics
Two-tailed Welch’s t-tests were used to determine P-values for
RT-PCR experiments. Multiple comparison tests were performed
using Graph Pad Prism version 8 for Windows (La Jolla). P-values
were calculated with one-way ANOVA followed by Dunnett’s
multiple comparison tests for quantification of pH3- and Cas3-
positive cells. P-values less than 0.05 were considered to be
statistically significant. All data are presented as the mean ± SD
unless otherwise specified.

RESULTS

Chemical-Induced Cleft Palate Is
Recapitulated in Zebrafish Embryo
Model
To examine the effects of teratogens on zebrafish palatogenesis,
embryos from blastula to larval stage (4–96 hpf) were exposed
to 14 chemical reagents, which included 12 teratogens that
induce cleft palate, a teratogen that does not induce cleft
palate and a non-teratogen, according to (Kimmel et al.,
1995; Figure 1A and Table 1). These teratogens have been
reported to induce orofacial clefts in humans and/or rodents.
Morphological analysis of the palate was carried out at 96 hpf
by nuclear staining after soft tissue removal and dissection
of the neurocranium (Figures 1A,B). All teratogens induced
palate malformation, which was classified into four types
of defects as follows: rough edge, moderate clefting, severe
clefting, and rod-like (Supplementary Figure 1A). Cleft at
the center of the anterior edge of the palate (moderate
clefting and severe clefting) was frequently observed in CAF-,
5FU-, SA-, HU-, WAF-, VPA-, and MTX-treated embryos
(Figures 1C,D,G–M). Rough edge consisting of several small
clefts was frequently induced by IM, THA, PHT, and DEX
treatment (Figures 1C,D,N–Q,S). These palatal defects were
quantified and summarized in Figure 1T. Dose-response
analysis revealed that these phenotypes were observed in
a dose-dependent manner (Supplementary Figure 1B). RA
induced a rod-like malformation (Figure 1R). This defect
was only observed in RA-treated embryos (Figure 1T and
Supplementary Figure 1B). Non-teratogens (DMSO as vehicle
control and isoniazid; INA) and a teratogen that does not
induce cleft palate (boric acid; BA) did not induce palate
abnormalities (Figures 1C–F,T). These results suggest that

specific teratogens induce cleft palate and chemical-induced cleft
palate is recapitulated in the zebrafish model.

Inhibition of the Canonical Wnt Signaling
Pathway Induces Chemical-Induced
Cleft Palate
Next, we investigated the contribution of canonical Wnt signaling
to chemical-induced cleft palate because the canonical Wnt
signaling pathway is critically associated with cleft palate in
mammals (Song et al., 2009; Kurosaka et al., 2014; Reynolds
et al., 2019). We performed morphological analysis after
pharmacological inhibition of the canonical Wnt signaling
pathway using a specific Porcn inhibitor, IWP-L6 (Wang et al.,
2013; Grainger et al., 2016). To focus on the effect on the
zebrafish palate, IWP-L6 added specifically during palatogenesis
(50–96 hpf) (Figure 2A). Cleft phenotypes were observed in
IWP-L6-treated embryos dose-dependently (Figures 2B–D,I).
Moreover, these palatal malformations were phenocopied by
teratogen-treated embryos (Figures 1G–Q), suggesting that the
teratogens disturbed the canonical Wnt signaling pathway. To
test this, combinatorial treatment with the Wnt antagonist and
the teratogens was performed (Figure 2A). Warfarin (WAF)
and valproic acid (VPA) were selected as suitable chemicals
among the teratogens to verify the combinatorial effect on cleft
palate because of their dose-dependent phenotypic severity and
their different pharmacodynamics (Supplementary Figure 1B;
Holford, 1986; Ghodke-Puranik et al., 2013). The low dosage
of WAF (5 µM) and VAP (5 µM) induced a small number of
palatal defects (Figures 2E,G,J). Combinatorial treatment with
a low dose of IWP-L6 (15 µM, which alone induced a small
number of palatal defects) increased the number of palatal defects
in the treated embryos (Figures 2F,H,J). Furthermore, to obtain
a readout of the effect of disturbing the canonical Wnt signaling
pathway, we analyzed the expression levels of transcription factor
7 (tcf7) and lymphoid enhancer binding factor 1 (lef1), which are
two of the downstream effectors by quantitative real-time PCR
(Veien et al., 2005; Wang et al., 2009; Hagemann et al., 2014).
After WAF and VAP treatment, the neurocranium was dissected
to enrich for the neurocranial progenitors at 72 and 96 hpf,
at which time basic morphogenesis of the palate is completed
(DeLaurier et al., 2012). The expression levels of both tcf7l1a and
lef1 in the neurocranium were significantly reduced by teratogen
exposure (Figures 2K,L). These results suggest that inhibition
of canonical Wnt signaling contributes to chemical-induced cleft
palate in zebrafish.

Decreased Proliferation and Increased
Apoptosis Are Observed in
Chemical-Induced Cleft Palate
The proper regulation of cell proliferation and cell death is one
of the key factors for developing the proper size and shape of
organs during morphogenesis, and disruption of such regulation
of proliferation and apoptosis in palatal shelves induces cleft
palate in mammalian models (He et al., 2011; Bush and Jiang,
2012). Thus, the induction of cleft palate by teratogens raised the
possibility that cell proliferation and/or viability were inhibited
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FIGURE 1 | Morphological phenotype of chemical-induced cleft palate in zebrafish embryos. (A) Experimental time course m.c.: medium change. (B) Atlas of the
neurocranial cartilage. Ep, Ethmoid plate; Tr, Trabecula; Pch, Parachordal. (C–R) Fluorescence images of the ethmoid palate (zebrafish palate) at 96 hpf. Nuclei of
cartilage cells were stained with DAPI. The anterior and posterior edges of the palate are indicated by green and yellow dotted lines, respectively. Exposure
concentration was as follows: DMSO as vehicle control (0.1%), isoniazid (INA, 1 mM), boric acid (BA, 1 mM), caffeine (CAF, 1 mM), 5-fluorouracil (5FU, 1 mM),
salicylic acid, (SA, 200 µM), hydroxyurea (HU, 1 mM), warfarin (WAF, 30 µM), valproic acid (VPA, 15 µM), methotrexate (MTX, 200 µM), imatinib (IM, 250 µM),
thalidomide (THA, 400 µM), phenytoin (PHT, 1 mM), dexamethasone (DEX, 1 mM), and retinoic acid (RA, 10 nM). (S) Highly magnified images of the anterior edge of
the palate. Ctrl, control; IM, imatinib; THA, thalidomide; PHT, phenytoin; DEX, dexamethasone. Yellow dotted line traces the shape of anterior edge. (T) Frequency of
palate morphology. n = 19 (Control), 18 (DMSO), 11 (INA), 14 (BA), 17 (CAF), 8 (5FU), 16 (SA), 27 (HU), 11 (WAF), 18 (VPA), 14 (MTX), 24 (IM), 17 (THA), 10 (PHT), 22
(DEX), 16 (RA). Scale bars: 50 µm in (C–R), 20 µm in (S).
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FIGURE 2 | Chemical-induced cleft palate was induced by inhibition of the canonical Wnt signaling pathway. (A) Experimental time-course. m.c.: medium change.
(B–H) Fluorescence images of the palate at 96 hpf. Nuclei of cartilage cells were stained with DAPI. Yellow dotted line indicates the anterior edge of the palate. (I,J)
Frequency of palate morphology. n = 20 for each sample. (K,L) Quantification of relative levels of tcf7l1a (K) and lef1 (L) mRNA isolated from the neurocranium at 72
and 96 hpf. Each mRNA level was normalized by gapdh mRNA by the comparative CT (2-11CT ) method. Data are shown as mean ± SD from triplicate experiments.
*P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed Welch’s t-tests). Scale bar: 50 µm.

by the teratogens. To examine the effect of teratogens on cell
proliferation and apoptosis, we performed immunofluorescence
staining with anti-phospho-Histone H3 (pH3) antibody as a

mitotic marker and anti-active Caspase-3 (active Cas-3) antibody
as an apoptosis marker. After WAF and VPA treatment, the
numbers of proliferative and apoptotic cells in zebrafish palate
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were quantified (Figure 3). Palatal morphology was marked by
double staining with anti-Collagen type 2 antibody and lectin
PNA (Figure 3A). WAF (30 µM) and VAP (20 µM) treatment

induced cleft palate and significantly decreased the number of
pH3-positive cells in the palate (Figures 3A,B). In contrast, the
number of active Cas-3-positive cells was markedly increased in

FIGURE 3 | The pattern of proliferation and apoptosis in the cleft palate induced by teratogens. (A) Immunofluorescence images of proliferative cells in the palate at
96 hpf. Embryos were treated with WAF (30 µM) or VPA (20 µM) and stained with anti-coll2 antibody, lectin PNA and anti-phospho-histone H3 (pH3) antibody.
Green indicates cartilage cells double stained with anti-coll2 antibody and lectin PNA. White dotted lines trace the shape of the palate. Magenta indicates
proliferative cells stained with anti-pH3 antibody. (B) The number of pH3-positive cells in the palate. Numerical value is normalized by 104 µm2. n = 12 (Control), 15
(WAF), 14 (VPA), ***P < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison test). (C) Immunofluorescence images of apoptotic cells in the palate at
96 hpf. Embryos were treated with WAF (30 µM) or VPA (20 µM) and stained with anti-coll2, lectin PNA anti-active caspase 3 (active Cas-3) antibody. White
indicates cartilage cells double stained with anti-coll2 antibody and lectin PNA. Green dotted lines trace the shape of ethmoid plate. Yellow indicates apoptotic cells
stained with anti-caspase3 antibody. (D) The number of active caspase3-positive cells in the palate. Numerical value was normalized to 104 µm2. n = 15 (Control),
15 (WAF), 15 (VPA), *P < 0.05, ***P < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison test). Scale bars: 50 µm.
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the palate (Figures 3C,D). No cellular changes were observed in
the embryos exposed to INA, which is a non-teratogenic chemical
(Supplementary Figure 2). These results indicate that disruption
of the balance between cell proliferation and apoptosis occurs in
teratogen-treated embryos, leading to cleft palate.

Wnt Agonists Rescue Chemical-Induced
Cleft Palate
We showed that inhibition of the canonical Wnt signaling
pathway is a contributor to chemical-induced cleft palate in
our zebrafish model. Several lines of evidence suggested that

modulation of the canonical Wnt signaling pathway would
induce or correct chemical-induced cleft palate. Next, to
test this hypothesis, we analyzed the effect of simultaneous
treatment with the teratogens and small molecule Wnt agonists:
two glycogen synthase kinase-3 (Gsk-3) inhibitors: (2′Z,3′E)-
6-bromoindirubin-3′-oxime (BIO) and CHIR-99021 (CHIR),
and one Dickkopf1 (Dkk1) inhibitor: WAY-262611 (WAY)
(Figure 4A). These two types of small molecules specifically
inhibit components of the canonical Wnt signaling pathway and
lead to activation of the Wnt signaling pathway in zebrafish
and mammals (Chen et al., 2014; Nishiya et al., 2014; Jia et al.,
2017). These agonists were administered from 50 hpf, a critical

FIGURE 4 | Restoration of chemical-induced cleft palate by Wnt agonists. (A) Experimental time course. m.c.: medium change. (B–K) Fluorescence images of the
palate at 96 hpf. (B,C) WAF (30 µM) exposure induced cleft palate. (D–F) The cleft palate was rescued by combinatorial treatment with BIO (100 nM), CHIR99021
(300 nM) or WAY-262611 (250 nM). (G,H) VPA (20 µM) exposure induced cleft palate. (I–K) The cleft palate caused by VPA was rescued by combinatorial treatment
with BIO (100 nM), CHIR99021 (300 nM) or WAY-262611 (250 nM). White indicates nuclei stained with DAPI. Yellow dotted lines trace the shape of the anterior edge
of the plate. (L,M) Frequency of rescued cleft palate. n = 18 (Control), 11 (WAF), 12 (WAF + BIO), 9 (WAF + CHIR), 10 (WAF + WAY) in (L), n = 19 (Control), 18 (VPA),
15 (VPA + BIO), 18 (VPA + CHIR),15 (VPA + WAY) in (M). Scale bar: 50 µm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 December 2020 | Volume 8 | Article 592967

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-592967 December 8, 2020 Time: 12:1 # 10

Narumi et al. Chemical-Induced Cleft Palate in Zebrafish

developmental window for zebrafish palatogenesis (DeLaurier
et al., 2012). Cleft phenotype was induced by WAF and VPA
exposure (Figures 4B,C,G,H,L,M). These cleft palate phenotypes
were rescued by the Wnt agonist treatment (Figures 4D–F,I–
K). Moreover, quantitative analysis showed that the frequency of
the severe phenotype was reduced by the Wnt agonist treatment
(Figures 4L,M). In contrast, the rod-like phenotype induced
by RA treatment was not rescued in the presence of the Wnt
agonists (Supplementary Figure 3). Therefore, the cleft palate
phenotype alone was specifically restored by the Wnt agonist
treatment. These results suggest that activation of the canonical
Wnt signaling pathway corrects a certain type of cleft palate
induced by teratogens.

Palate Rescued by Wnt Agonists Shows
Restored Cell Proliferation and
Apoptosis
Chemical-induced cleft palate was rescued phenotypically by
Wnt agonist treatment (Figure 4). Our results showed that
teratogens caused decreased cell proliferation and increased
apoptosis in the palate and led to disturbance of proper
palatogenesis (Figure 3). To confirm the restoration of cell
proliferation and apoptosis to the normal levels in the rescued
palate, we performed simultaneous treatment with the teratogens
and the Wnt agonists, followed by immunostaining with anti-
pH3 antibody and anti-active Cas3 antibody (Figures 5, 6). WAF
treatment significantly lowered cell proliferation in the palate;
however, cell proliferation was restored to a level which appeared
adequate for developing normal palatal morphology by BIO,
CHIR, and WAY treatment (Figures 5A,B). Restoration of cell
proliferation was also observed upon combinatorial treatment
with VPA and the Wnt agonists (Figure 5C). Consistent with this,
the number of anti-pH3-positive cells recovered as compared
with the control (Figure 5D).

Next, we investigated the apoptosis in the recovered palate
by anti-active Caspase-3 staining and its quantification. WAF
treatment resulted in a significant increase of apoptosis in the
zebrafish palate (Figures 6A,B). CHIR and WAY treatment
significantly rescued this WAF-induced apoptosis and BIO
treatment tended to decrease it (Figures 6A,B). In VPA-exposed
embryos, the apoptosis in the palate was significantly increased,
and this increase was blocked by BIO, CHIR, and WAY treatment
(Figures 6C,D). These results suggest that inhibition of the
canonical Wnt signaling pathway contributes to both decreased
cell proliferation and increased apoptosis and leads to cleft palate.

DISCUSSION

Our results revealed that: (1) Cleft palate in zebrafish was
specifically induced by the teratogens. (2) Inhibition of the
canonical Wnt pathway caused cleft palate. (3) Chemical-induced
cleft palate is characterized by decreased cell proliferation and
increased apoptosis in the palate. (4) Wnt agonist treatment
rescued chemical-induced cleft palate (Figure 7A).

We selected 12 teratogens to examine the relevance of
cleft palate in the zebrafish model to mammalian cleft palate.

These teratogens are known to induce cleft palate in mammals,
including human (Table 1). Zebrafish embryos were exposed
to these 12 teratogens, and all of them induced palatal defects
dose dependently, ranging from a rough edge to a cleft at
the anterior edge of the palate. Furthermore, the zebrafish
model showed potential for distinguishing teratogens from non-
teratogens. Isoniazid (INA), which is an anti-tubercular drug,
does not induce teratogenicity (Snider et al., 1980). Boric acid
(BA) is known to be a teratogen, but does not induce cleft
palate in mammalian models (Heindel et al., 1994; Price et al.,
1996). Zebrafish embryos did not show cleft palate after INA or
BA treatment, and precisely detected teratogens inducing cleft
palate. BA-treated zebrafish showed other types of teratogenicity,
such as micrognathia, reported in mammalian models (Liu
et al., 2020). Therefore, although further accumulation of
evidence about various chemicals is required to substantiate
the validity of the zebrafish model for prediction of chemical-
induced cleft palate, our results suggest that the zebrafish
model detects phenotypically similar teratogenic responses to
mammals’ and indicates conserved responses to teratogens
between fish and mammals.

Retinoic acid (RA) alone induced a rod-like phenotype in
a dose-dependent manner and did not induce clefting in the
palate. It is reported that RA induces holoprosencephaly (HPE),
which is a birth defect with various degrees of both defects in the
brain and facial abnormalities such as cleft palate, in zebrafish,
mouse, and human (Gongal and Waskiewicz, 2008; Maurus and
Harris, 2009; Roessler and Muenke, 2010; Billington et al., 2015).
It is reported that the palatal morphology of sonic you (syu)
mutant zebrafish embryos, which have disruption of the sonic
hedgehog gene, and of embryos treated with the Hedgehog (Hh)
signaling inhibitor cyclopamine (CyA) show a rod-like structure
like that observed in the RA-exposed embryos (Wada et al., 2005).
Corresponding to those reports, our previous study showed a
decreased expression level of zic2a, which is a gene responsible
for HPE, in RA-treated embryos (Gongal and Waskiewicz, 2008;
Maurus and Harris, 2009; Solomon et al., 2010; Liu et al., 2020).
Thus, our results indicate that the zebrafish model detects and
recapitulates chemical-induced HPE.

Furthermore, we showed that chemical modulation of the
canonical Wnt pathway did not rescue the RA-induced defect,
suggesting that RA-induced palatal abnormality was induced
as a consequence of complicated signaling cross-talk. The RA
signaling pathway plays an essential role in normal palatogenesis
and interacts with other signaling pathways, such as the canonical
Wnt signaling pathway, Hedgehog signaling pathway and Fgf
signaling pathways (Rhinn and Dolle, 2012). In a mouse model,
interplay between the Hh signaling pathway and the Wnt
signaling pathway is required for cleft palate (Kurosaka et al.,
2014). In accord with that previous report, we also found that
RA treatment disturbed the expression of downstream effectors
of both the canonical Wnt pathway (tcf7l1a and lef1) and the
Hh pathway (gli1) (data not shown). This evidence indicates that
RA interferes with the Hh pathway and canonical Wnt pathway,
which has also been reported in mouse palatogenesis (Hu et al.,
2013; Wang et al., 2019). Our finding suggests that partial
rescue of the RA phenotype by Wnt agonist treatment could
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FIGURE 5 | Cell proliferation in the palate was restored by combinatorial treatment with the teratogen and Wnt agonists. (A) Immunofluorescence images of
proliferative cells of the plate at 96 hpf. Experimental time course is the same as in Figure 4A. WAF (30 µM) exposure induced cleft palate and decreased the
number of pH3-positive cells in the palate. The number of pH3-positive cells was restored by combinatorial treatment with BIO (100 nM), CHIR99021 (300 nM) or
WAY-262611 (250 nM). Green indicates cartilage cells double stained with anti-coll2 antibody and lectin PNA. White dotted lines trace the shape of the palate.
Magenta indicates proliferative cells stained with anti-pH3 antibody. (B) Quantification of the number of pH3-positive cells in the palate. Numerical value was
normalized to 104 µm2. (C) VPA (20 µM) exposure induced cleft palate and the number of pH3-positive cells was decreased. The number of pH3-positive cells was
restored by combinatorial treatment with BIO (100 nM), CHIR99021 (300 nM) or WAY-262611 (250 nM). (D) Quantification of the number of pH3-positive cells in the
palate. Numerical value was normalized to 104 µm2. n = 12 (Control), 15 (WAF), 12 (WAF + BIO), 16 (WAF + CHIR), 15 (WAF + WAY) in (B), n = 12 (Control), 14
(VPA), 14 (VPA + BIO), 12 (VPA + CHIR), 13 (VPA + WAY) in (D), *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison
test). Scale bar: 50 µm.

be strengthened to complete rescue by simultaneous activation
of the Hh and the Wnt pathway. This evidence indicates that
the zebrafish model has potential for analyzing complicated
etiology, such as signaling cross-talk, leading to birth defects.
Collectively, our findings demonstrate that the zebrafish model
detects chemical-induced cleft palate found in mammals and
will be applicable mechanism-based prediction of chemical-
induced cleft palate.

In addition to the phenotypic relevance, our findings showed
that chemical-induced cleft palate is induced by inhibition of the

canonical Wnt pathway in the zebrafish model. Low doses of Wnt
antagonists enhanced the cleft phenotype induced by teratogens
(warfarin: WAF and valproic acid: VPA) and caused decreased
expression of downstream effectors of the canonical Wnt
signaling pathway. These results imply that teratogens disrupt
canonical Wnt signaling, which is a target signaling pathway
of cleft palate in mammals (Reynolds et al., 2019). In addition,
these results support a previous in vitro study that showed that
disruption of Wnt signaling is one of the important mechanisms
underlying VPA-induced teratogenicity (Langlands et al., 2018).
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FIGURE 6 | Apoptosis level was restored by combinatorial treatment with teratogen and Wnt agonists. (A) Immunofluorescence images of apoptotic cells in the
palate at 96 hpf. Experimental time course is the same as in Figure 4A. WAF (30 µM) exposure induced cleft palate and increased the number of active
Cas3-positive cells in the palate. The number of active Cas3-positive cells was restored to normal by combinatorial treatment with BIO (100 nM), CHIR99021
(300 nM) or WAY-262611 (250 nM). White indicates cartilage cells double stained with anti-coll2 antibody and lectin PNA. Green dotted lines trace the shape of the
palate. Yellow indicates apoptotic cells stained with anti-caspase3 antibody. (B) Quantification of the number of active Cas3-positive cells in the palate. Numerical
value is normalized to 104 µm2. (C) VPA (20 µM) exposure induced cleft palate and increased the number of active Cas3-positive cells. The number of active
Cas3-positive cells was restored to normal by combinatorial treatment with BIO (100 nM), CHIR99021 (300 nM) or WAY-262611 (250 nM). (D) Quantification of the
number of active Cas3-positive cells in the palate. Numerical value is normalized to 104 µm2. n = 15 (Control), 15 (WAF), 14 (WAF + BIO), 14 (WAF + CHIR), 14
(WAF + WAY) in (B), n = 15 (Control), 15 (VPA), 14 (VPA + BIO), 13 (VPA + CHIR), 11 (VPA + WAY) in (D), *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA
followed by Dunnett’s multiple comparison test). Scale bar, 50 µm.

Thus, considering the dose-dependent severity of the chemical-
induced cleft phenotypes, our findings indicate that the
teratogens examined here target the canonical Wnt pathway.
Moreover, we investigated the cellular response associated with
Wnt inhibition during palatogenesis. In zebrafish embryos, WAF
and VPA exposure inhibited both cell proliferation and viability
in the palate. These results suggest that inhibition of the canonical
Wnt pathway causes cleft palate via altered cell proliferation
and apoptosis in the zebrafish model. Similar observations are
also found in mammalian models: Pax9-deficient mice show
inhibition of the canonical Wnt pathway as well as retardation

of palatal growth marked by decreased cell proliferation (Jia
et al., 2017; Li et al., 2017). Another study showed that Wnt-
mediated Tgf-β3 activation regulates palatal shelf closure, and
inhibition of the Tgf-β3 pathway causes cleft palate via reduced
cell proliferation and increased apoptosis (He et al., 2011). Thus,
the zebrafish model recapitulates mammalian cleft palate etiology
at the cell signaling and cellular levels.

To achieve accurate prediction and reveal the etiology and
pathology of chemical-induced cleft palate, detailed analysis of
the developmental origin of proliferative and apoptotic cells in
chemical-induced cleft palate and target cells adversely affected
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FIGURE 7 | Summary of chemical-induced cleft palate. (A) Teratogen induces cleft palate by inhibition of the canonical Wnt signaling pathway. This defect is
characterized by decreased proliferation and increased apoptosis in the zebrafish palate. Chemical-induced cleft palate is prevented by Wnt agonist treatment.
(B) Application of a zebrafish model for suppressor screening as well as teratogenicity assay for chemicals.

by teratogens will be needed. The cells composing the zebrafish
palate are progenies of neural crest cells migrating from the
frontonasal and maxillary domain to form the palate, a process
which is conserved between fish and mammals (Swartz et al.,
2011; Dougherty et al., 2013; Mork and Crump, 2015). In our
previous report, we demonstrated that 12 teratogens disrupted
cranial neural crest cell development. Besides chemical-induced
craniofacial anomalies, developmental defects in eye, otic vesicles,
the heart and/or body axis were observed as a result of teratogen
treatment (Liu et al., 2020). Thus, to discriminate teratogen
effects on neural crest cells from effects on other cell types will
be required in order to eliminate the possibility that secondary
effect(s) on neural crest cells development are caused by the
teratogens. For this purpose, we have set up experimental systems
such as transgenic lines of cranial neural crest cells and target
organs for applying spatio-temporal analysis. In addition to

utilizing these lines, we will perform teratogen treatment at
different time points to define the specific effects on neural crest
cells and their descendants. These analyses will reveal whether
chemical-induced cleft palate is caused by primary defect(s) in
neural crest cells and will provide insights into the relevance to
mammals, including human.

We investigated the effect of cleft palate prevention
by chemical modulation of the canonical Wnt pathway.
Treatment with small molecule Wnt agonists (BIO, CHIR99021,
WAY-262611) rescued chemical-induced cleft palate at the
morphological and cellular level. This result supports the
conclusion that inhibition of Wnt signaling has a significant role
in chemical-induced cleft palate via decreased cell proliferation
and viability in the zebrafish palate. In a mouse model with
cleft palate, Wnt agonist treatment also corrected cleft palate
(Liu et al., 2007; Jia et al., 2017; Li et al., 2017). Therefore,
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our results demonstrate the relevance of our zebrafish model
to the development of mammalian cleft palate. However,
chemical-induced cleft palate was not completely prevented
by chemical modulation of the canonical Wnt pathway,
implying insufficient penetrance of the small molecules or
the existence of another signaling pathway(s) for complete
prevention of cleft palate. To strengthen the prevention
of cleft palate, genetic modification of the canonical Wnt
signaling could be effective. In addition, modulation of an
additional signaling pathway should also be considered. In
the zebrafish model, disruption of the non-canonical Wnt
pathway also caused cleft phenotype, and cross-talk between
the non-canonical and canonical Wnt pathway was previously
reported (Curtin et al., 2011; Duncan et al., 2017). To obtain
higher efficacy, simultaneous chemical modulation or chemical
and genetic modulation with other signaling pathways will
be a next step toward prevention of cleft palate. The present
results demonstrate the usefulness of the zebrafish model
for mechanism-based suppressor chemical screening as
well as the promising potential of the Wnt pathway as a
therapeutic target.

In this report, we investigated the biological relevance of a
zebrafish experimental model of chemical-induced cleft palate
to cleft palate in mammals at the morphological, cellular and
signaling levels. The results support the usefulness of the zebrafish
model for teratogenicity screening. Also, the rescue experiments
further indicated the usefulness of the zebrafish model: chemical
modulation of the Wnt pathway showed the possibility of using
this zebrafish model for chemical screening for prevention or
treatment of cleft palate (Figure 7B).

In sum, we show a proof of concept for this zebrafish palate
model for chemical screening for prediction and prevention of
chemical-induced cleft palate. Also, our findings show that the
canonical Wnt signaling pathway would be a therapeutic target.
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Supplementary Figure 1 | Phenotypic severity of teratogen treatment in a
dose-dependent manner. (A) Definition of phenotypic severity. Anterior is to the
left. Green dotted lines indicate the anterior (left) and posterior (right) edge of the
zebrafish palate, respectively. The palate length between the green dotted lines is
defined as 100% length. Red dotted line indicates 40% length line of the palate
length. Each phenotype was defined as follows: rough edge; several small nicks
existing at the anterior edge, moderate clefting; under 40% clefting at the center
of the palate, severe clefting; over 40% clefting of at the center of the palate, and
rod-like; the palate showing rod-like structure. (B) Frequency of palatal defects in
dose-dependent manner. n = 11 (VPA 7.5 µM), 18 (VPA 15 µM), 20 (VPA 30 µM),
10 (WAF 15 µM), 14 (WAF 30 µM), 14 (WAF 60 µM), 10 (SA 100 µM), 13 (SA
200 µM), 13 (SA 400 µM), 11 (MTX 50 µM), 14 (MTX 100 µM), 8 (MTX 200 µM),
13 (CAF 500 µM), 17 (CAF 1 mM), 10 (CAF 2 mM), 16 (RA 10 nM), 12 (RA
30 nM), 11 (RA 50 nM).

Supplementary Figure 2 | Proliferation and apoptosis in the palate of
INA-exposed embryos. (A) Immunofluorescence images of proliferative cells in the
palate. Control is the same as Figure 3A. Embryos were treated with isoniazid
(1 mM) and then examined by fluorescent immunohistochemistry. No striking
difference was observed between the control and treated embryos. Green
indicates cartilage cells double stained with anti-coll2 antibody and lectin PNA.
White dotted lines trace the shape of the palate. Magenta indicates proliferative
cells stained with anti-pH3 antibody. (B) Immunofluorescence images of apoptotic
cells in the palate at 96 hpf. Control is the same as in Figure 3C. Embryos were
treated with isoniazid (1 mM) and then examined by fluorescent
immunohistochemistry. No striking difference was observed between the control
and treated embryos. White indicates cartilage cells double stained with anti-coll2
antibody and lectin PNA. Green dotted lines trace the shape of the palate. Yellow
indicates proliferative cells stained with anti-caspase3 antibody. Scale bar: 50 µm.

Supplementary Figure 3 | Rod-like phenotype was not rescued by Wnt
agonists. (A–E) Fluorescence images of palate at 96 hpf. Nuclei of cartilage cells
were stained with DAPI. Embryos were treated with retinoic acid (RA, 10 nM).
(A,B) Retinoic acid (RA) induced rod-like phenotype. (C–E) The rod-like
phenotype was not rescued by combinatorial treatment with Wnt agonists [BIO
(100 nM), CHIR99021 (300 nM) or WAY-262611 (250 nM)]. Scale bar: 50 µm.
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