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Abstract

Background: There are no known causes for progressive supranuclear palsy (PSP). The microtubule associated
protein tau (MAPT) H1 haplotype is the major genetic factor associated with risk of PSP, with both oxidative stress
and mitochondrial dysfunction also implicated. We investigated whether specific single nucleotide polymorphisms
(SNPs) in genes encoding enzymes of xenobiotic detoxification, mitochondrial functioning, or oxidative stress
response, including debrisoquine 4-hydroxylase, paraoxonase 1 and 2, N-acetyltransferase 1 and 2 (NAT2), superoxide
dismutase 1 and 2, and PTEN-induced putative kinase are associated with PSP.

Methods: DNA from 553 autopsy-confirmed Caucasian PSP cases (266 females, 279 males; age at onset 68 ± 8
years; age at death 75 ± 8) from the Society for PSP Brain Bank and 425 clinical control samples (197 females, 226
males; age at draw 72 ± 11 years) from healthy volunteers were genotyped using Taqman PCR and the
SequenomiPLEX Gold assay.

Results: The proportion of NAT2 rapid acetylators compared to intermediate and slow acetylators was larger in
cases than in controls (OR = 1.82, p < 0.05). There were no allelic or genotypic associations with PSP for any other
SNPs tested with the exception of MAPT (p < 0.001).

Conclusions: Our results show that NAT2 rapid acetylator phenotype is associated with PSP, suggesting that NAT2
may be responsible for activation of a xenobiotic whose metabolite is neurotoxic. Although our results need to be
further confirmed in an independent sample, NAT2 acetylation status should be considered in future genetic and
epidemiological studies of PSP.

Keywords: Progressive supranuclear palsy (PSP), N-acetyltransferase 2 (NAT2), Tauopathy, Single nucleotide poly-
morphisms (SNPs), Parkinson?’?s disease (PD)

Background
Progressive supranuclear palsy (PSP) is the most com-
mon atypical parkinsonian disorder. Classically, patients
present with progressive postural instability and falls fol-
lowed by slow and hypometric vertical saccades and
eventually vertical supranuclear gaze palsy.
Neuropathologically, PSP is characterized by deposits

of four-repeat microtubule associated protein tau
(encoded by the MAPT gene) aggregates in neurons and

glia of the basal ganglia and brain-stem [1]. Additionally,
there is mitochondrial dysfunction, decreased ATP levels
and inflammation in the brains of PSP patients [2-4].
The MAPT H1 haplotype has been consistently reported
to be associated with PSP; however, it is also common
in the general population, suggesting that gene-gene or
gene-environment interactions are likely required for
the development of this disease [5,6]. Recently, MAPT
H1 was also associated with risk of Parkinson’s disease
(PD) suggesting shared pathways of disease [7]. Early-
onset PD and PSP can present with a similar phenotype
and be misdiagnosed, supporting common links between
the two disorders. The product of PTEN-induced
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putative kinase (PINK1, PARK6), associated with early-
onset PD, is involved in mitochondrial respiration and
protection from oxidative damage, which are pathways
that have also been linked to risk of PSP [8-13]. PINK-1
polymorphisms are also associated with PD and it acts
in conjunction with parkin to regulate mitochondrial
functioning. Although the mechanisms by which PINK1
acts are not fully understood; research suggests that it is
crucial for healthy mitochondrial respiration and ATP
production [8]. Considering the role of PINK1 in mito-
chondrial functioning along with its previous links to
PD, specific PINK1 SNPs were included in this study to
determine if there is also an association with PSP.
Consumption of annonaceous fruit and teas, which

contain mitochondrial inhibitors, has been associated
with an atypical parkinsonian disorder similar to PSP in
the French West Indies [14,15]. Considering that mito-
chondrial impairment is observed in PSP brains, mito-
chondrial complex-1 inhibitors and other chemical
neurotoxins, such as organophosphates, are hypothe-
sized as risk factors for PSP [16-18]. These and other
potentially toxic compounds are metabolized by the pro-
ducts of several genes: debrisoquine 4-hydroxylase
(CYP2D6), paraoxonase (PON) 1 and 2, N-acetyltransfer-
ase (NAT) 1 and 2, and superoxide dismutase (SOD) 1
and 2 [10-13,19-22]. CYP2D6 is found in the brain and
is involved in metabolism of MPTP, herbicides (para-
quat) and organophosphate pesticides [11,12]. Reduced
in 5-10% of Caucasians, genetic polymorphisms of this
enzyme have been widely studied in PD and results sug-
gest that there is an association of the poor metabolizer
phenotype with disease development [23,24]. Moreover,
the combination of pesticide exposure and CYP2D6
poor metabolizer phenotype doubles PD risk [11,20].
PON1 hydrolyzes phosphoric acid esters, organopho-
sphates and aromatic carboxylic acid esters and blocks
the formation of free radicals. With low PON1 activity,
these pesticides are not metabolized and the cell is sub-
ject to increased oxidative stress [19]. The PON 1 M
allele, which is correlated with decreased protein levels,
has been shown to be associated with PD [25,26] and
the M/M genotype was recently reported to be asso-
ciated with early onset PD [27]. Additionally, decreased
PON1 activity was overrepresented in PD patients from
agriculturally exposed areas [19]. NAT1 and NAT2 are
involved in the biotransformation of drugs and environ-
mental toxins (xenobiotics) [28]. These enzymes transfer
the acetyl group from acetyl-coenzyme A (acetyl CoA)
to an amino group on aromatic amines and hydrazine
compounds. In addition, following N-hydroxylation, they
can further activate xenobiotics via O-acetylation [29].
There are a number of SNPs reported in NAT1 and
NAT2, which lead to slow and rapid acetylator pheno-
types. The acetylation status of an individual might

determine how they respond to xenobiotic exposures,
therefore presenting the NAT genes as candidates for
gene-environment interaction studies. The slow acetyla-
tor phenotype is reported to be associated with PD, but
inconsistent results warrant further investigation
[30-34]. SOD is an important antioxidant enzyme,
which converts superoxide anions (O2-) to hydrogen
peroxide (H2O2). Considering the antioxidant properties
of the enzyme, polymorphisms resulting in decreased
SOD activity would be expected to have detrimental
effects on the cell; however, recent studies suggest the
opposite is true [35-37]. The mechanism behind this
gain of function toxicity remains unknown, but it is pro-
posed to be a result of either 1) disrupting the balance
of O2- and H2O2, or 2) self-aggregation. Numerous
SOD polymorphisms have been found to be associated
with amyotrophic lateral sclerosis (ALS) [38], and may
play a role in PD and AD pathogenesis [39].
To determine if genetic polymorphisms in toxicant

metabolism increases risk for developing PSP, we investi-
gated associations between PSP and specific single nucleo-
tide polymorphisms (SNPs) in the aforementioned genes.

Methods
Sample
DNA samples from 545 autopsy-confirmed PSP cases col-
lected between 1993 and 2008 at the PSP Society Brain
Bank were included [40]. All cases were from the US and
Canada. Control DNA samples (n = 426) were randomly
selected from an existing repository of control samples at
the Mayo clinic, Jacksonville. All controls were healthy
spouses or caregivers of patients at the Mayo Clinic in
Jacksonville, FL and free from neurological disorders. All
samples were from adults over the age of 33 (see Table 1
for demographic information). Institutional review board
(IRB)-approved protocols, including informed consent,
were followed to obtain all DNA samples.

Genotyping
Within 48 hours of collection, DNA was extracted by
standard protocols and stored at -80°C until used. NAT1
(rs4987076, rs5030839, rs4986782, rs1057123, and
rs15561) and NAT2 (rs1208, rs1801279, rs1801280,
rs1799929, rs1799930, rs1799931, and rs1041983) geno-
typing was performed using Taqman PCR methodology
on an ABI Prism 7700 sequence detection system as
previously published [41,42]. All other genotyping was
performed on a Sequenom Mass Array iPLEX platform
using the Gold Assay (San Diego, CA) as described pre-
viously [43] (see Table 2 for rs numbers). Primer
sequences are available upon request. The rs numbers
tested here also included in the recent GWAS on PSP
are rs1043424, rs662, rs7493, rs1801280, rs1799930,
rs1799931, rs1799929, and rs1041983 [44].
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Data analysis
Statistical analyses were performed using R software (R
Development Core Team 2009). Chi-squared, Fisher’s
exact, student t-test, or Wilcoxon rank sum analyses
were used to test for differences in demographic

variables between cases and controls. For each iPLEX
SNP variable, the Cochran-Armitage and chi-squared
tests were used to test additive, dominant, and recessive
genetic models. In addition, logistic regression was used
to test these same genetic models while adjusting for
significant demographic variables (i.e. age). Logistic
regression models were also used to determine whether
specific NAT1 or NAT2 genotypes or NAT2 phenotypes
were associated with PSP. NAT2 phenotypes may be
accurately assigned according to genotype [22]; there-
fore, NAT2 analysis was initially restricted to phenotypic
evaluation, which was followed by genotypic analysis.
Overall significance of the associations was determined
using the omnibus chi-squared test for the model. If the
omnibus chi-squared test was not significant, then indi-
vidual genotypes were not considered significant even if
the associated p-value (p) was < 0.05. Odds ratios (OR),
95% confidence intervals (CI) and p-values were deter-
mined for each variable. Associations with p < 0.05 were
considered significant. Based on the outcome of the pri-
mary analysis, t-test or Wilcoxon rank sum test was
applied to determine whether means/medians were dif-
ferent between NAT2 phenotypes for age at onset, age
at death or disease duration in cases. NAT2 genotype,
NAT1 genotype and iPLEX SNP associations were all
tested independently each with either a large number of
groups or a low number of tests; nevertheless, when p-
values were less than 0.05, adjustments were made for
multiple testing using the Holm correction [45]. NAT2
phenotype tests were modeled independently from SNP
analyses. Furthermore, while multiple SNPs were deter-
mined to input the phenotypes, only two phenotypes
were compared (i.e. rapid versus slow/intermediate),
therefore no multiple testing correction was needed as
previously described for testing the NAT2 phenotype
association with colorectal cancer [46].

Results
On average, cases were older than controls at sample
collection time (Table 1, p < 0.001), with age at collec-
tion time for PSP cases being age at death. Trend analy-
sis of the iPLEX SNPs showed no between-group
differences in genotypes (Table 2), with the exception of
rs1052553 (MAPT H1 OR = 4.35, CI = 3.08-6.25, p <
0.001), which is a known association [47]. Each marker
was confirmed to be in Hardy-Weinberg equilibrium in
controls. Minor allele frequencies (MAFs) for rs num-
bers 1043424 and 705381 were higher in both our PSP
and control populations compared to that reported for
the general (Caucasian) population. For rs numbers
4880 and 1052553 only the PSP sample differed from
the general population (Table 3). There were no
between-group differences for NAT1 genotypes (Table
4). NAT2 slow and intermediate phenotypes did not

Table 1 Characteristics of PSP Cases and Controls

Case (N = 545)a Control (N = 426)

n % n % p

Gender 0.490

Female 266 49 197 47

Male 279 51 226 53

Race –

Caucasian 545 100 426 100

Ageb < 0.001

Median(Min, Max) 76(44,98) 73(33,92)

Mean(SD) 75.4(8.0) 72(10.7)

Clinical Diagnosis

PSP 468 87

Otherc 68 13

Falls

Yes 482 99

No 3 1

Dementia

Yes 278 82

No 62 18

Eye Mov. Abn.

Yes 349 96

No 13 4

Rigidity

Yes 374 98

No 9 2

Instability

Yes 454 99

No 4 1

Dysarthria

Yes 370 97

No 10 3

Dysphagia

Yes 352 92

No 31 8

AD Path.

Yes 50 9

No 495 91

Family History

Yes 322 73

No 121 27
aNs of cases for characteristics including and following “clinical diagnosis” may
not total 545 as information for these variables was not available for every
case.% represent% of those with data. bAge represents age at death for cases
and age at blood draw for controls. cOther clinical diagnoses included
Alzheimer disease, Parkinson’s disease, corticobasal degeneration, multiple
system atrophy, Parkinson’s disease with dementia, vascular dementia,
progressive non-fluent aphasia and dementia. Abbreviations: p = p-value (chi-
squared), Eye Mov. Abn. = eye movement abnormalities, AD Path. = presence
of coexisting Alzheimer’s pathology
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differ between groups (p = 0.96), thus these groups were
combined and compared against the rapid phenotype
for further analyses. Phenotypic analysis showed cases
had a significantly higher proportion of NAT2 rapid

acetylators (OR = 1.82, CI = 1.05-3.28, p = 0.037) com-
pared to intermediate and slow (Table 5). The omnibus
chi-squared test for NAT2 genotypes was not significant
(Table 6). Since NAT2 rapid phenotype was associated

Table 2 Case-control comparison of SNP genotypes

Total
n

Total
n

n-controls n-cases p q

SNP rs marker (gene
name)

Controls
(freq)a

Cases (freq)
a

0 1 2 0 1 2 OR CI trend recess. dom. Holm

rs1135840 395 500 133 183 79 145 240 115 1.14 0.94-1.37 0.174 0.367 0.188 1

(CYP2D6) 0.44 0.56 0.34 0.56 0.2 0.39 0.5 0.23

rs3738136 412 521 375 36 1 469 48 4 1.11 0.73-1.7 0.625 0.338 0.78 1

(PINK-1) 0.44 0.56 0.91 0.19 0 0.9 0.19 0.01

rs1043424 414 520 217 165 32 281 208 31 0.89 0.72-1.1 0.27 0.19 0.478 1

(PINK-1) 0.44 0.56 0.52 0.4 0.18 0.54 0.4 0.16

rs2234694 412 521 372 38 2 478 41 2 0.84 0.54-1.28 0.411 0.813 0.408 1

(SOD1) 0.44 0.56 0.9 0.19 0 0.92 0.18 0

rs4880 413 523 107 206 100 116 264 143 1.14 0.95-1.38 0.157 0.22 0.279 1

(SOD2) 0.44 0.56 0.36 0.5 0.24 0.22 0.5 0.37

rs662 414 521 211 160 43 256 217 48 1.03 0.85-1.26 0.757 0.65 0.497 1

(PON1) 0.44 0.56 0.51 0.49 0.1 0.59 0.42 0.09

rs854560 412 521 181 176 55 213 242 66 1.02 0.84-1.23 0.875 0.661 0.606 1

(PON1) 0.44 0.56 0.44 0.43 0.13 0.41 0.56 0.13

rs705381 409 523 231 148 30 293 201 29 0.98 0.79-1.21 0.845 0.355 0.831 1

(PON1) 0.44 0.56 0.6 0.46 0.11 0.66 0.48 0.16

rs7493 413 523 237 148 28 315 181 27 0.9 0.73-1.12 0.349 0.265 0.535 1

(PON2) 0.44 0.56 0.67 0.46 0.17 0.6 0.45 0.15

rs12026 412 521 237 147 28 314 180 27 0.9 0.73-1.12 0.364 0.267 0.558 1

(PON2) 0.44 0.56 0.68 0.46 0.17 0.6 0.45 0.15

rs1052553 406 324 231 148 27 281 40 3 0.23 0.16-
0.32

<
0.001

0.001 <
0.001

<
0.001

(MAPT) 0.56 0.44 0.67 0.46 0.17 0.97 0.12 0.01

Logistic regression trend test comparing genotype differences between cases and controls, adjusted for age (age at death for cases, age at draw for controls).
aFrequency = number of samples in a particular variable category (i.e. “cases” or “0, 1, 2”) divided by the total n for that variable (i.e. “cases + controls” or “0+1
+2”). “0” represents common allele homozygous genotype for SNP tested, 1 = heterozygote, 2 = minor allele homozygous. OR = odds ratios for increase in the
number of alleles (i.e. from 0 to 1 or 1 to 2); CI = 95% confidence intervals for ORs; p = p-values reported for trend test as well as for recessive (recess.) and
dominant (dom.) models;q = q-values for multiple testing adjustment using Holm’s method.

Table 3 Allele Frequencies of SNPs vs. General Population

Allele MAF Controls q Cases

Marker Mn/Mj popa MAF CI p Holm MAF CI p q

rs1135840 G/C 0.43 0.432 0.40-0.47 0.954 1 0.47 0.44-0.50 0.012 0.081

rs3738136 A/G 0.06 0.046 0.03-0.06 0.109 0.543 0.054 0.04-0.07 0.432 1.000

rs1043424 C/G 0.34 0.277 0.25-0.31 < 0.001 0.001 0.26 0.23-0.29 < 0.001 < 0.001

rs2234694 C/A 0.042 0.051 0.04-0.07 0.231 0.925 0.043 0.03-0.06 0.91 1.000

rs4880 C/T 0.45 0.492 0.46-0.53 0.018 0.145 0.526 0.50-0.56 < 0.001 < 0.001

rs662 G/A 0.33 0.297 0.27-0.33 0.048 0.337 0.3 0.27-0.33 0.046 0.273

rs854560 T/A 0.38 0.347 0.31-0.38 0.056 0.337 0.359 0.33-0.39 0.171 0.854

rs705381 T/C 0.18 0.254 0.23-0.29 < 0.001 < 0.001 0.248 0.22-0.28 < 0.001 < 0.001

rs7493 G/C 0.24 0.247 0.22-0.28 0.668 1 0.225 0.20-0.25 0.261 1.000

rs12026 G/C 0.24 0.246 0.22-0.28 0.699 1 0.225 0.20-0.25 0.258 1.000

rs1052553 G/Ab 0.21 0.249 0.22-0.28 0.008 0.068 0.071 0.05-0.09 < 0.001 < 0.001

MAFs of studied population (control/case) compared with the general population (MAF pop) using test of proportions. aMinor allele frequencies listed on NCBI
from CEU data (CEU = Utah residents with north and western European ancestry). bNote G = H2, A = H1. Mn/Mj -Minor Allele/Major Allele; MAF = Minor Allele
Frequency; CI = 95% confidence intervals for determined MAF for noted population (i.e. control or case); p = p-value (Chi-squared); q = q-values for multiple
testing adjustment using Holm’s method.

Potts et al. BMC Medical Genetics 2012, 13:16
http://www.biomedcentral.com/1471-2350/13/16

Page 4 of 9



with PSP, rank sum analyses were used to determine
whether NAT2 acetylation status predicted either age at
onset or disease duration. NAT2 phenotype was not
associated with age at onset or age at death. For disease
duration the overall test was also not significant; how-
ever, individual pairwise comparisons for disease dura-
tion using a t-test (unequal variances, Table 7)
corroborated results for association of NAT2 rapid phe-
notype with disease (Table 5). For example, mean dis-
ease duration was shorter for rapid NAT2 phenotype
(6.6 yrs.) compared to slow (7.5 yrs. p = 0.025).

Discussion
Our primary analysis revealed that none of the iPLEX
SNPs was proportionally different between cases and
controls except for MAPT rs1052553, which is a known
association. On the other hand, significant differences
were detected when comparing MAFs of cases with
reported MAFs for the general population. There were
no differences in NAT1 or NAT2 genotypes between
cases and controls. NAT2 rapid acetylator phenotype

was more frequent in PSP cases than controls while
intermediate and slow acetylator phenotypes were less
frequent in cases.
Although trend analysis did not show differences

between cases and controls for the iPLEX SNPs (i.e.
except for rs1052553), cases did differ from the general
population (CEU) in some MAFs. Of particular interest
is SOD2 rs4880, which differed from the general popula-
tion in cases, but not controls. Though not conclusive,
this suggests a possible association of rs4880 with PSP.
The MAPT H1 allele is known to be associated with
PSP; however, it is the major allele. Consistent with pre-
vious studies, we found that MAPT genotype and MAFs
differed between PSP cases, with the H1 allele confer-
ring risk [6,44]. Furthermore, MAF comparisons indicate
the H2 allele is protective, as it had a lower frequency in
our cases compared to the general population (Table 3).
Our results also suggest that NAT2 rapid acetylator sta-
tus might increase risk for developing PSP. This is con-
sistent with NAT2-catalyzed toxicant activation (perhaps
via O-acetylation). Therefore, a higher rate of acetylation

Table 4 Case-control comparison of NAT1 genotypes

Controls(N = 426) Cases (N = 545)

NAT1 Genotype n % n % OR CI p

NAT1*4/*4 211 50.8 268 49.7 1

NAT1*10/*11A 4 1.0 5 0.9 1.03 0.26-4.35 0.967

NAT1*10/*10 14 3.4 22 4.1 1.22 0.61-2.52 0.583

NAT1*4/*3 13 3.1 23 4.3 1.50 0.74-3.14 0.271

NAT1*4/*14A or *10/*14B 13 3.1 19 3.5 1.25 0.60-2.66 0.552

NAT1*10/*14A 4 1.0 6 1.1 1.12 0.31-4.45 0.863

NAT1*4/*10 138 33.3 165 30.6 0.94 0.70-1.26 0.677

NAT1*4/*11A or *3/*11B 13 3.1 21 3.9 1.21 0.59-2.55 0.607

NAT1*10/*15 0 0.0 1 0.2 – – –

NAT1*11A/*14A 0 0.0 1 0.2 – – –

NAT1*3/*10 2 0.5 4 0.7 1.65 0.32-12.10 0.567

NAT1*3/*14A 0 0.0 1 0.2 – – –

NAT1*4/*11B 0 0.0 1 0.2 – – –

NAT1*4/*15 3 0.7 2 0.4 0.37 0.05-2.39 0.298

Missing 11 6

Logistic regression analysis of individual NAT1 genotypes, adjusted for age. NAT1*4/*4 used as reference. Overall chi-squared p = 0.99 (likelihood ratio test).
Genotypes with 10 or less counts in either group (case or control) were not included in overall test of significance. OR = odds ratio, CI = 95% confidence
intervals for ORs, p = p-value

Table 5 Comparisons Between NAT2 Phenotypes

Controls(N = 426) Cases(N = 545)

NAT2 Phenotype n % n % OR CI p q

Slow 241 56.6 299 54.9 1 - - -

Intermediate 161 37.8 198 36.4 0.993 0.76-1.31 0.959 0.959

Rapid 19 4.5 42 7.7 1.82 1.04-3.30 0.042a 0.084

Logistic regression analysis of individual NAT2 phenotypes, adjusted for age OR = odds ratio, CI = 95% confidence intervals for ORs, p = p-value, q = q-values for
multiple testing adjustment using Holm’s method. aWhen intermediate and slow phenotypes are combined (due to p = 0.96) and used as reference, the p-value
for rapid is 0.037, and no multiple testing correction is needed since it is a single hypothesis

Potts et al. BMC Medical Genetics 2012, 13:16
http://www.biomedcentral.com/1471-2350/13/16

Page 5 of 9



would result in a higher concentration of toxic metabo-
lite in the system. NAT2 catalyzes the O-acetylation of
N-arylhydroxylamines resulting in bioactivation [48].
This is an observational study, therefore more empha-

sis should be placed on the estimated odds ratio and
precision of the confidence intervals rather than on p-
values [49]. Nevertheless, these trends must be con-
firmed by additional studies. Our results did not provide
statistical evidence for an effect of NAT2 phenotype on
onset age, age at death or disease duration. In accord
with our finding that NAT2 rapid phenotype is more
frequent in cases than controls, pairwise comparisons
did show a trend supporting a potential link between

rapid phenotype and shorter disease duration (Table 7).
It is important to note that this particular analysis may
have been underpowered for detecting differences in the
outcome parameters since the lack of disease onset and
duration information for many cases substantially
decreased the sample size.
Our findings are noteworthy as NAT2*4, which con-

fers the rapid phenotype, was designated originally as
the “wild-type” allele http://louisville.edu/medschool/
pharmacology/nat/ since it is common among many
ethnic groups other than Europeans or Caucasians [29].
Although the frequency of NAT2*4 is not as common
among Caucasians (which is the group analyzed in our
study), this association may still be similar to the MAPT
H1 haplotype association with PSP (i.e. MAPT H1 is
associated with increased PSP risk, but is also very com-
mon in the general population with a frequency of 0.78)
[6]. Therefore, even though our results suggest the rapid
acetylator phenotype increases risk for PSP, this is only
one of potentially numerous factors that converge to
determine individual risk for disease. On the other
hand, our finding is contrary to recent findings that
NAT2 rapid acetylator genes enhance the protective
effect of smoking in PD (De Palma et al. 2010) and
reports suggesting that the NAT2 slow acetylator phe-
notype increases risk for PD [50-52]. PSP is a tauopathy
and PD is a synucleinopathy, thus, these are two distinct
diseases that may have distinct pathogenic mechanisms
and risk factors [53]. There are varying reports of NAT2
polymorphisms associating with PD, PSP, and AD.
While many suggest that slow alleles or phenotypes
increase disease risk [31,32,50-52], others indicate
increased risk with rapid or intermediate conferring gen-
otypes and protection by slow alleles or genotypes
[13,54]. Still others suggest there are no links between

Table 6 Case-control comparison of NAT2 genotypes

Controls(N = 426) Cases (N = 545)

NAT2 Genotype (phenotype) n % n % OR CI p q

NAT2*4/*4 (rapid) 19 4.5 42 7.7 1

NAT2*4/*5(intermediate) 108 25.4 116 21.3 0.49 0.26-0.88 0.021 0.168

NAT2*4/*6 (intermediate) 49 11.5 69 12.7 0.6 0.30-1.16 0.133 0.532

NAT2*4/*7 (intermediate) 4 0.9 13 2.4 1.43 0.43-5.65 0.576 1

NAT2*5/*6 (slow) 106 24.9 130 23.9 0.55 0.29-0.99 0.053 0.318

NAT2*5/*7 (slow) 5 1.2 10 1.8 0.86 0.26-3.10 0.809 1

NAT2*6/*6(slow) 42 9.9 47 8.6 0.46 0.23-0.92 0.029 0.203

NAT2*6/*7 (slow) 5 1.2 7 1.3 0.56 0.15-2.21 0.394 1

NAT2*5/*5 (slow) 82 19.2 104 19.1 0.58 0.31-1.07 0.086 0.430

NAT2*5/*14 (slow) 1 0.2 0 0 – – –

NAT2*6/*14 (slow) 0 0 1 0.2 – – –

Missing 5 6 – – –

Logistic regression analysis of individual NAT2 genotypes, adjusted for age. NAT2*4/*4 used as reference. OR = odds ratio; CI = 95% confidence intervals for ORs;
p = p-value; q = q values for multiple testing adjustment using Holm’s method. Overall chi-squared p = 0.25 (likelihood ratio test). Genotypes with 10 or less
counts in either group (case or control) were not included in overall test of significance

Table 7 Survival of PSP cases by NAT2 phenotype

NAT2 Phenotype Median(Min,
Max)

Mean
(SD)

p-values

Age at Onset

Rapid 68.5(51,85) 68.5(8.5) > 0.05

Intermediate 68(41,89) 68.1(8.6) > 0.05

Slow 68(47,90) 67.9(8.1) –

Age at Death

Rapid 75.5(58,89) 75.3(7.9) > 0.05

Intermediate 76(44,98) 75.3(8.3) > 0.05

Slow 76(53,95) 75.4(7.9) –

Disease Duration
(yrs.)

Rapida 6(2,12) 6.6(2.2) 0.025, 0.078,
0.028

Intermediateb 7(2,31) 7.4(3.6) 0.675

Slow 7(0,27) 7.5(3.3) –

Pairwise comparisons of age at onset, age at death, and disease duration by
NAT2 phenotype (t-test with unequal variances). ap-values = rapid vs. slow,
rapid vs. intermediate, rapid vs. slow + intermediate, respectively. bp-value =
slow vs. intermediate. Overall p-values from Wilcoxon rank sum tests were all
> 0.1
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these diseases and NAT polymorphisms [18,30,33,55,56].
In view of these conflicting reports on the role of NAT
genetic polymorphisms in neurodegeneration together
with our results, additional studies are needed to deter-
mine whether NAT alleles or genotypes conferring rapid
acetylation increase risk for neurodegenerative diseases
or if the slow alleles/genotypes are protective or vice
versa.

Conclusions
The control series we used was more geographically con-
fined than our PSP population and the CEU population
from which the general population MAFs were derived.
Interestingly, for some of the MAFs our control popula-
tion differed from the general population. This could
explain why our genotype comparisons between cases and
controls were not significant. Therefore, MAF compari-
sons between our PSP sample and the general/CEU popu-
lation augment our case-control analyses. The main
strength of this study was the large sample of pathologi-
cally well-characterized PSP cases from a single center. On
the other hand, the clinical information was not collected
in a systematic or standardized manner and controls were
clinical, not pathological controls. Considering that PSP is
a relatively rare disease, a still larger sample size may be
necessary to detect smaller, yet biologically significant dif-
ferences and investigate interaction effects. Likewise, as
514 of the PSP cases analyzed here were also included in
the GWAS, this finding should be confirmed in an inde-
pendent cohort. Although these findings need to be repli-
cated, this data provides useful information to guide future
genetic studies on PSP as it indicates that NAT2 rapid
acetylator status should be considered as a potential risk
factor for PSP in studies investigating gene-gene and gene-
environment interactions. Furthermore, our results are
consistent with the recent genome-wide association study
(GWAS) on PSP that did not find any associations with
SNPs rs1043424, rs662, rs7493 or any individual NAT2
SNPs [44]. The NAT2rs numbers tested here and included
in the recent GWAS on PSP are rs1801280, rs1799930,
rs1799931, rs1799929, and rs1041983 [44]. Though we did
not find an association with any individual NAT2 SNPs,
when we used the SNPs to input NAT2 phenotype we
observed a significant association between imputed rapid
NAT2 acetylator phenotype and PSP. This result is impor-
tant since this method of testing NAT2 phenotype associa-
tion with disease has been shown to be more useful than
looking at individual SNPs [57,58]. Thus, our study is
quite different from the GWAS, and with respect to
NAT2, much more powerful in terms of biological plausi-
bility. Additionally, this study reveals the odds ratios and
confidence intervals for a number of biologically relevant
SNPs that have not been previously investigated in asso-
ciation studies on PSP. Our results provide support for the

multiple-hit hypothesis and demonstrate the multifaceted
nature of identifying risk factors for neurodegenerative dis-
eases such as PSP.
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