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Abstract Multiscale modeling by means of co-simulation
is a powerful tool to address many vital questions in neu-
roscience. It can for example be applied in the study of the
process of learning and memory formation in the brain. At
the same time the co-simulation technique makes it possible
to take advantage of interoperability between existing tools
and multi-physics models as well as distributed computing.
However, the theoretical basis for multiscale modeling is
not sufficiently understood. There is, for example, a need of
efficient and accurate numerical methods for time integra-
tion. When time constants of model components are differ-
ent by several orders of magnitude, individual dynamics and
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mathematical definitions of each component all together
impose stability, accuracy and efficiency challenges for the
time integrator. Following our numerical investigations in
Brocke et al. (Frontiers in Computational Neuroscience,
10, 97, 2016), we present a new multirate algorithm that
allows us to handle each component of a large system
with a step size appropriate to its time scale. We take care
of error estimates in a recursive manner allowing individ-
ual components to follow their discretization time course
while keeping numerical error within acceptable bounds.
The method is developed with an ultimate goal of mini-
mizing the communication between the components. Thus
it is especially suitable for co-simulations. Our preliminary
results support our confidence that the multirate approach
can be used in the class of problems we are interested in. We
show that the dynamics ofa communication signal as well
as an appropriate choice of the discretization order between
system components may have a significant impact on the
accuracy of the coupled simulation. Although, the ideas pre-
sented in the paper have only been tested on a single model,
it is likely that they can be applied to other problems without
loss of generality. We believe that this work may signifi-
cantly contribute to the establishment of a firm theoretical
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basis and to the development of an efficient computational
framework for multiscale modeling and simulations.

Keywords Multiscale modeling - Multiscale simulation -
Co-simulation - Coupled system - Multirate integration -
Adaptive time step integration - Backward differentiation
formula - Parallel numerical integration - Coupled
integration

1 Introduction

Multiscale modeling and simulations provide an entirely
new capability for scientists to explore complex brain
phenomena in neuroscience (Bhalla 2014; Hirakis et al.
2015). Multiscale modeling may contribute to understand-
ing of how the hierarchy of biological levels (Djurfeldt
and Lansner 2007) integrates to produce certain brain func-
tions. This knowledge may have a significant impact for
elucidation of disease states and drug development.

In the paper we refer to multiscale modeling as the pro-
cess of defining multiple models on the conceptual, math-
ematical and computational levels (Delalondre et al. 2010)
as well as their assembly into a larger model. Our ultimate
goal is to be able to simulate these models simultaneously,
in different simulation tools, while exchanging data dur-
ing runtime. We refer to this methodology as co-simulation
(Park and Felippa 1983; Felippa et al. 2001). In computa-
tional neuroscience the co-simulation idea is used by several
software tools. For instance, the MUIti-SImulation Coor-
dinator (MUSIC) tool promotes interoperability between
different event based simulators by allowing existing mod-
els defined by different formalisms to be simulated in
parallel (Djurfeldt et al. 2010).

In computational neuroscience the mathematical domain
is usually represented by a particular set of mathematical
formalisms among which are systems of Ordinary Differen-
tial Equations (ODEs). During the co-simulation of mutu-
ally dependent systems the coupling of the models described
by different formalisms or even the same mathematical
formalism is not a trivial task. One of the problems the sci-
entist may observe is numerical artifacts such as numerical
instability as well as inaccuracy. Thus the potential of a co-
simulation methodology depends on the coupling method
between the components, the choice of an appropriate orga-
nization strategy and the approximation of the exchange
variables (Brocke et al. 2016). Moreover, the co-simulation
technique imposes additional restrictions. In order to mini-
mize the communication overhead during a simulation the
exchange of data should be limited to certain points in time;
an intermediate communication is prohibited.

Brocke et al. (2016) present an efficient method for
coupling problems that can be formulated by systems of
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Ordinary Differential Equations (ODEs). In order to cope
with numerical stiffness the method implements the decou-
pled Backward Differentiation Formulae (BDF). The inte-
gration step size is predicted by the adaptive controller in
Soderlind and Wang (2006). The controller is based on
the error estimation mechanism proposed and analyzed in
Skelboe (2000). Brocke et al. (2016) show a significant
advantage of the method both with respect to accuracy and
computational cost while simulating the electrical-chemical
test case. The method uses a singlerate coupling concept,
that is it works with step sizes that are varying in time but are
the same for each component per step. In contrast, in a mul-
tirate approach each component can be solved with its own
discretization time step (Gear and Wells 1984). This can
reduce the number of communication points between the
components, facilitate the throughput and gain computation
efficiency during co-simulation.

Skelboe (2000) mentions that the decoupled integration
formula can be used in a multirate mode with a wave-
form relaxation method. Waveform relaxation is an iterative
method. It is an expensive method and suitable only for a
certain class of problems (Sand and Skelboe 1992). Some-
times it is enough to have only one iteration during the
relaxation but this is only possible if a macro step size
(i.e. the time step between two successive communica-
tion points) is sufficiently small. To the best knowledge
of the authors, the choice of multirate methods applicable
to the physical systems of our interest is limited. Bartel
and Giinther (2002) propose a multirate method suitable for
highly integrated electric circuits that usually exhibit the
variables of different time scales. This integration approach
employs the concept of a constant step size integration over
a varying in time macro time step. However, the results
showed a relatively high amount of rejected macro steps for
some stiff test cases. Another multirate method for a sys-
tem of ODEs is discussed in Engstler and Lubich (1997).
The method belongs to a class of extrapolation methods in
which the reduction of the number of function evaluations
is achieved by intermediate interpolations. These methods
require additional communication between the components
that can become expensive in co-simulations and should be
avoided. Similar ideas are presented in Savcenco (2008).

Brocke et al. (2016) design the method mathematically
justified for a singlerate approach. Here we try to relax the
requirement of a singlerate integration by applying the idea
of a multirate integration to gain more efficiency during co-
simulations of electrical-chemical systems. The presented
algorithm defines a sequence of actions to be taken while
simulating mutually dependent components of a multiscale
system in parallel. In particular, it introduces a new strategy
for the error control in the multirate integration approach.
The algorithm allows each component to be solved inde-
pendently during the macro time step while keeping the
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accuracy withing acceptable bounds. One of the goals of the
algorithm is to minimize communication between the com-
ponents during a simulation. Thus it is especially tailored to
suit co-simulations.

In the Section 2 we address the questions “which commu-
nication signal to choose?”, “when do the components have
to communicate or to be synchronized?”, “in which order
can the components of a multiscale system be solved?”.
Then we present the multirate algorithm and describe the
details of its implementation in the Section 2.2. In the Sec-
tions 2.3 and 2.4 we describe the multiscale test case and an
evaluation technique, respectively. Finally, we present and
discuss the results in the Sections 3 and 4 sections.

2 Materials and methods
2.1 Problem definition

For expository purposes we define the problem as a system
of ODEs:

d
0= fi(t, x1, g1(x2))

im = fa(t, g2(x1), x2), ey
dt

where x1, xp are solution vectors of the component / and
the component 2 respectively. g1 and g are transformation
functions of the respective solution vector (or a part of it). In
the simplest case the transformation function may represent
a uniform scaling operation between the variables.

2.1.1 Communication signal

Coupling the components of a multiscale system involves
decisions about communication signals. The choice can be
crucial not only from the conceptual perspective, but it may
also have a significant impact on the computational side of
a simulation, e.g., with respect to efficiency.

In neuroscience, the cellular level is a level of commu-
nications, signal integration and filtering that usually acts
on a timescale of about a few microseconds. In the context
of synaptic plasticity, learning and memory, the subcellular
level covers long term processes of physiological changes
in the cell that can span timescales from a few seconds to
months and years. How does the dynamics of a commu-
nication signal contribute to the numerical properties and
overall simulation performance? Which time course should
a communication signal follow in this case?

In Brocke et al. (2016) we developed a multiscale test
case where the fast electrical signal is scaled and communi-
cated to the biochemical component. From a computational
perspective, the fast changing signal can introduce stiffness

in the whole coupled system (Gear and Wells 1984). How-
ever, if stiffness is isolated in a separate component, it can
be tackled locally by choosing an appropriate integration
method. Consequently the choice of having an approxi-
mated communication signal with time course of a slower
component seems to be more favorable unless there is a need
to model systems on a very small spatial scale.

2.1.2 Organization of system components

In co-simulations the components can be solved using
either Jacobi or Gauss-Seidel organization between the
components (Brocke et al. 2016). The organization of the
components will define which approximation, interpolation,
extrapolation, or both, shall be used. The choice may have a
crucial impact on the accuracy of the coupled simulation. In
general, during a multirate integration when approximation
is required, it is preferable to choose interpolation instead
of extrapolation over a large integration step. Gauss-Seidel
organization allows us to eliminate the error introduced by
the approximation of one component as described in Brocke
et al. (2016). Therefore, we will consider only Gauss-Seidel
organization with the fast component or the slow component
solved first. We will refer to these as fast-first and slow-first
strategies respectively.

Figure 1 shows the discretization of two components
over one macro time step H, for the fast-first (Fig. 1a) and
slow-first (Fig. 1b) strategies. The slow system values x{‘“
needed at each micro time step k+1 . .. k+1i, are not known.
Then depending on the strategy either an extrapolation or
interpolation can be used to calculate )?]f"’l.

Each strategy has its pros and cons. In the fast-first strat-
egy when a macro time step is rejected at least some of the
computations performed at the micro time steps will be dis-
carded. In this case it is crucial to use a well adjusted step
size controller in order to minimize the number of rejected
steps. In contrast, when a slow component is solved first the
memory usage and computation costs are relatively negligi-
ble. However, an extrapolation over a large macro step can
introduce a significant extrapolation error. In principle, the
error can be mitigated when the coupling from a fast compo-
nent to a slow component is weak (Sand and Skelboe 1992).
We expect that this can be accomplished by using a slow
changing communication signal in our test case.

s

2.1.3 Communication time points

Co-simulation usually imposes the problem of the vari-
ables’ availability in the mutually dependent components.
Moreover, in a multirate integration approach there will be
points on the time grid when not all required variables are
available due to the independent discretization of the com-
ponents. With synchronous communication we refer to a
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Fig. 1 Discretization of two components s; and s, over one macro
time step [7", T"*!]. f1(...) and f2(...) are the function evaluations
required to evolve the system. The arrows correspond to the commu-
nication of exchanged variables. The variables marked with a tilde
denote variables obtained either by extrapolation or interpolation. In
the fast-first strategy (la) the slow variables x| are communicated

+i

first, then for each micro time step the variables )?]f ' are obtained by

extrapolation x{ at each t§+i. The calculated solution x’2‘+i at 771
is communicated backwards. Finally, the slow component evolves to

communication protocol organized in a such way that the
time points of the discretization grid of any component is a
subset of the grids of the faster components. In contrast, in
asynchronous communication, the discretization time grids
of the components are not synchronized as depicted in
Fig. 2. It is worth noting that the latter type of communica-
tion requires an additional interpolation step.

: ok+1 | k+1
So f2(X1+ :X2+ )

f2 ()—qk+l',xé(+i)

1

A%
Hn :

»
!

Tn T;+1 t

Fig. 2 Discretization of two components s; and s, with asynchronous
communication over one macro time step [T, T"*+1]. The arrows cor-
respond to the communication of exchanged variables in the fast-first
integration strategy. The variables marked with a filde denote variables
obtained by extrapolation. Asynchronous communication requires an
interpolation of x5 at T"*! that is denoted by i *1in the figure

@ Springer

7"+ In the slow-first strategy (1b) the sequence of computations is
similar. The difference is in how the exchanged variables of the slow

component are approximated at each micro time step. ill‘+’ can be

obtained by interpolation since it is the slow component that makes the
first step. Both figures show a synchronous communication between

the components where the last micro time step [té‘“ -1 R té‘“] is shrunk

(see the discussion in Section 2.1.3). This interval is marked with rwo
arrows and the label “shrinkage”

Several tactics are known for synchronous communica-
tion. For instance, one strategy is to use a fixed step size
ratio between the micro and macro time steps (Bartel and
Giinther 2002). One of the potential problems with this
approach is a relatively high amount of rejected macro time
steps. Another option can be to shrink the last micro time
step at the end of each macro time step as indicated in Fig. 1.
However, a sharp reduction of the step size can cause ineffi-
ciency of the step size controller that will require a number
of additional small steps to be taken before the step size
will be increased again. Moreover, it was shown that the
BDF method has better stability properties with a smoother
behavior of step sizes (Hairer et al. 2010, pp. 402ff). The lat-
ter was the key argument that inclined us towards the choice
of asynchronous communication.

2.2 Multirate algorithm
Here we give a detailed description of the multirate algo-

rithm. Let 7' be an integration interval and S an ordered set
of p components of a system to be integrated over 7. Then
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the system can be solved by the SOLVE_INTERVAL(T,S)
function. A sequence of necessary operations is presented
in Algorithm 1 together with the following explanations:

(M

2)

3)

4)

The algorithm admits a possible variance in the tempo-
ral dynamics of a component that may appear due to an
external signal, for instance. The defined set S has the
order slowest to fastest. A fast component is the one
with the smallest predicted integration time step while
a slow component is the one with the largest. Thus, the
decision which component is fast and which is slow
can be made automatically during the integration pro-
cess. The order of components can be assigned by a
simple algorithm like insertion sort before each call to
the SOLVE_INTERVAL(T,S) function.

In the problem definition Eq. (1) we have two com-
ponents p = 2, slow s1 and fast s», respectively. Note,
that the notation f; introduced in Eq. (1) denotes the
physics of a multiscale system while s; is used to
distinguish between fast and slow components in the
algorithm.

For each current component s, an integration time
interval T is provided by the consecutive slower com-
ponent. For the outermost call of SOLVE_INTERVAL
the variable T is equal to the next predicted time step
of the first component in the set S, that is the largest
predicted time step among all components.

Different numerical approximation methods could
be applied to each component to handle individual
dynamics in an efficient way. Here, we choose to
use one method for all components in the system.
We implement the Backward Differential Formulae
of the second order (BDF2) due to its good stabil-
ity properties, high applicability for stiff differential
equations and analyzed properties in coupled simu-
lations (referred to as decoupled BDF2 formulae in
Skelboe (2000)). The SOLVE function calculates a
numerical solution at #*! of the current component
s using the BDF2 method (see Section 2.2.1 for
details).

A set of exchanged variables {x"“, ...,)EL’;“} of

the components {sy, ..., s,} at time "1 has to be
provided to the SOLVE function.
In the slowest-first strategy the subset

{~”+1, .. ”H} is obtamed by interpolation at t”“

while the subset {%"' . ;’“} is obtained by

extrapolation at £ *!.

In the fastest first strategy with synchronous com-
munication between the components only extrapolation
is required to obtain the {x”“, .. "H} subset since
the exchanged variables from the faster components

are calculated first. In asynchronous communication

r+1"'

between the components an interpolation can be used

to calculate the subset {x:'i'll, e )?g"‘l}.

Note that for notational simplicity, we omitted
the transformation function g that was introduced in
Eq. (1). The exchanged variables usually represent a
result of the transformation function g that can be as
simple as a subset of the variables of a solution vector
X.

(5) An estimation of the local discretization error |[€,] |
is calculated in the ESTIMATE_ERROR function
(line #9). Each component calculates an estimation of
the local discretization error using a second order poly-
nomial predictor (Brocke et al. 2016). More details are
given below in the Section 2.2.2 section.

(6) The PREDICT function implements a step size con-
troller that predicts an optimal next time step. We use
the step size controller implemented in Brocke et al.
(2016).

Algorithm 1 Multirate algorithm with the fastest first strat-

egy

1: function SOLVE_INTERVAL(T, S = {s, ... 54}, ...)

2: if S ={} then

3: % The function was called by the fastest component
return {}, 0

4 end if

5: % Retrieve the end of the integration time interval

Lend <— T(2)

6: % While the integration time of the current
% component s, does not Step OVer f.,4
while 1! < 1,4 do

7: X, €max,.; < SOLVE_INTERVAL([#/, tf“],
S\{sr}, .o

8: xiH < SOLVE(sy, [, "+,
{ n+1’“ ~n+l}UX)

9: | [€-]| <~ESTIMATE_ERROR

10: if | [¢,]1| < TOL then

11: €max, < max(fmuxr» Emux,+p| le-1D

12: % Advance current integration time

th <l

13: end if

14: "1 < PREDICT(max(emay, ., | [€11), .. .)

15: end while

16 return (X"} U X, €nay,

17: end function

Figure 3 shows an example of the communication pattern
between three components s, s7 and s3 implemented by the
Algorithm 1. The algorithm assumes an all-to-all connectiv-
ity between the components in the system. An optimization
for non all-to-all cases has yet to be considered.

@ Springer
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fi (X1n X; Xg) fi—=h fZ(X1n+2 é7+2 n+2)
. . . >
T" T+ T+2 t

Fig. 3 The sequence of communications realized by the fast-first
integration strategy with synchronous communication between three
components s, sy and s3 over two macro time steps [T", 77t
and [T"!, T"t2]. The arrows correspond to the communication of
exchanged variables. The order of communications is denoted by the

2.2.1 Backward differentiation formula methods

Here we are addressing a class of problems that is described
by a system of ODEs with a given initial value (initial value
problem (IVP)). This class of problems is usually solved
by finite difference time-stepping methods. We use the
Backward differentiation Formula (BDF) methods. These
methods were introduced by Curtiss and Hirschfelder in
Curtiss and Hirschfelder (1952). The Backward differenti-
ation formulas with an order less than three are often used
for stiff systems due to their property of being A-stable. We
are interested in the second-order backward differentiation
formula (BDF2). On an equidistant grid the BDF2 formula
has the form:

@

1
—2x, + ixn—l = h.fn+1([n+1a xn—i—l)

S Xn+1

3

On a non-uniform grid, the BDF2 method can be formu-
lated as:

Xnt1 = 01Xy + 02Xp—1 + Bhyg1 f(tas1, Xng1) 3)
where
Yn+1 = hn+1/hn “)
ap=1—a )
@ ==Yt/ Qa1 + 1) 6)
B=Wnr1 +D/C¥Vusr1+1) @)

2.2.2 Error control

To ensure that the exact solution is adequately approximated
and the local error is within reasonable bounds we imple-
ment an error control mechanism of the coupled system
during the simulation. Brocke et al. (2016) present an esti-
mate of the local discretization error based on a component-
wise estimation for the solution vector of the whole system
at each discretization time step in a singlerate integration

@ Springer

circled numbers. After the first macro time step the second subsystem
was recognized as the slowest component. Thus the order of inte-
gration has been changed (denoted with fi — f> and fo — fi,
respectively)

approach. The choice was justified by the theoretical back-
ground provided in Skelboe (2000). Analyzing the test case
developed in Brocke et al. (2016) we noticed that it was the
local discretization error of the fastest component that con-
strained the size of the discretization time step for the larger
part of the simulation time. Bearing this in mind we devel-
oped an idea how a multirate integration can be achieved
when the discretization error of one of the components dom-
inates. We relax the necessity of a singlerate integration by
allowing the faster component to have a step size controller
independent from the slower component; whereas we con-
strain the step size controller of the slower component by
taking the maximum discretization error between the local
error and the maximum discretization error of the faster
components calculated over the current step. This strategy
is depicted by lines# 11- 14 of Algorithm 1.

Given a set of ordered components S = {s,...55} in
the fast-first organization strategy, the discretization error at
t"+1 of the current component s, can be written in the form:

n+1 An—&-l)
X . _— .
n+l r,1 r,1
= max { max ,
i relTOL, xfj“JrabsTOLr,i
m
max |e (8)
me[k,k+j]‘ r—H‘

The first argument in the braces corresponds to a
component-wise calculation of the local discretization error
of the s, component. We use a predictor-corrector algorithm
where ﬁ;"“ is a predicted solution and xf'“ is an approx-
imated solution at #**!. For the former we used a second
order polynomial predictor. Details can be found in Brocke
et al. (2016). relTOL, and absT OL, are input tolerance
parameters. The second argument denotes the maximum
discretization error of the faster component §,4] Over an
integration interval [t 1y +1] In synchronous communi-
cation between the components the interval is equal to the
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time step over [¢,#"T!] of the current component. The
interval overlaps with the latter time step in an asynchronous
communication as shown in Fig. 2.

2.3 Test case

In the scope of interest are the models that are usually for-
mulated on the cellular and subcellular levels of neuronal
organization where the molecular events closely interact
with the electrical ones and give rise to many levels of
physiological change like synaptic plasticity and changes in
dendritic excitability.

Here we exploit the multiscale test case used in Brocke
et al. (2016). The test case was developed with two goals
in mind: to keep complexity of the system within reason-
able computational bounds, and to implement a moderately
realistic behavior that will cover a class of problems among
which synaptic and cellular plasticity are of particular inter-
est. The electrical component of the system represented
a multi-compartmental neuron with the minimal Hodgkin-
Huxley type model for a regular-spiking neuron (Pospischil
et al. 2008). During the simulations a pulse current proto-
col was applied to maintain the regular spiking behavior at
approximately 2 Hz and the burst firing at approximately
100 Hz for 5 seconds of simulation time. The biochemical
component of the system represented a reduced model of the
Mitogen-Activated Protein Kinase (MAPK) signaling path-
way previously used in the study of homeostatic regulation
of excitability at the scale of a single synapse (Bhalla 2011).
The biochemical component models the signaling events
triggered by the electrical activity of the neuronal mem-
brane. In particular, it is the calcium signal that feeds into a
slowly integrating signaling pathway and initiates the chem-
ical cascades. A schematic representation of the models and
their interaction is shown in Fig. 4.

In the implementation of Brocke et al. (2016) the calcium
current is transformed into a flux of calcium molecules and
then communicated to the biochemical component. In this
case the communication signal follows the fast dynamics of
the electrical system.

To investigate how the dynamics of the communication
signal can influence the efficiency of a coupled integration,
we introduce the following modifications to the test case.
We solve calcium concentration on the electrical side and
then communicate it to the biochemical component. The
signal from the biochemical component to the electrical one,
that is the fraction of active (non-phosphorylated) potassium
channels in the spine, remains unchanged. We will refer to
the original test case that has a fast changing communication
signal, that is calcium flux, as TC-fast, and to the modified
version with the slowly changing exchanged variable, that
is calcium concentration, as TC-slow. In Fig. 5 we plot both
communication signals for visual comparison: calcium flux

and calcium concentration. It is clear that the dynamics of
the calcium concentration is much slower than the dynamics
of the flux. Here, microseconds are the characteristic time
for the flux, and milliseconds for the concentration.

The morphological and physiological details of the test
case TC-slow is given in Appendix A.

This modification of the communication signal leads
to a linear dependence between the components in the
problem (1):

Exbioch = fpioch (t, Xbioch» 81 (Xelec))

d
Exelec = feiec(t, 82(Xbioch)» Xelec), &)

where g1 and g are the output functions from the
electrical and the biochemical component respectively.

81 (Xelec) =
82(Xpioch)

Xelec,i

CiXpioch, j (10)

where C is a constant; the indices i, j correspond to posi-
tions of the variables in the corresponding solution vector
x at time f. In particular, /i is the calcium concentra-
tion in the spine [M] and j is the concentration of active
(non-phosphorylated) potassium channels in the spine [M].

2.4 Evaluation and implementation

In this paper we evaluate the proposed multirate algorithm
using the multiscale test cases TC-fast and TC-slow. In order
to gain understanding of the global error propagation in
the coupled simulation, we should choose the most rep-
resentative solutions from both electrical and biochemical
components.

The phosphorylated MAPK (P-MAPK) and active potas-
sium (K_A) molecules are the ones that bring about the
bistability property of the biochemical system. We measure
the accuracy by calculating the relative error of the solution
at T = 2 s of the simulation time:

— M 100 [%], (11)

XT,i

€

where Xr; is the reference solution at time 7 and Xr ;
is the chosen solution at time 7 simulated with the ana-
lyzed method. In our simulations we choose to evaluate
the voltage solution in the spine (V), calcium solution (Ca)
and either potassium(K_A) or P-MAPK solutions in our test
cases.

The test case, the algorithms and numerical methods
were implemented in the MATLAB® environment to attain
a full control over numerical integration. The reference
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Fig. 4 A schematic representation of the multiscale neuron assem-
bly. The compartmental structure of the neuron is shown in terms of
a soma, 15 segments of a dendrite and a spine. The spine segment
is zoomed in for visual convenience. The MAPK model (biochemi-
cal component) is placed in the spine segment and is marked with a

solution for each test case is acquired by solving both com-
ponents as a single system using the odel5s MATLAB®
function with a tight value of the tolerance parameter (fol =
10712).

The sources containing the algorithms and model imple-
mentations as well as the datafiles to produce the Figs. 6—8
are available at https://github.com/ebrocke/multiscale.

3 Results

Each figure in this section represents the measurements of
the solution accuracy versus the number of ODE calls. We
consider the number of ODE calls as a measure of the
computational cost for the solver. We plot both first- and
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Fig. 5 The communication signal from the electrical to biochemical
component. Calcium flux (used in TC-fast) is shown in a grey color
while calcium concentration (used in TC-slow) is shown in black.
Calcium concentration exhibits a much smoother behavior
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dendrite (8th segment)

distinct rectangle. Communication signals between electrical and bio-
chemical components are shown by the curved arrows. The response
time of the MAPK model is in the range of tens of seconds (Bhalla
2011), while the response of the electrical model is the order of a
microsecond

second-order declines in dashed lines in order to have visual
estimates of the order of the coupling method. The sin-
glerate coupling strategy in Brocke et al. (2016) showed
a second order accuracy and is taken as a reference for
evaluation of the multirate method in this paper. In addi-
tion, by comparing the curves vertically it is possible to
estimate the accuracy of the solution for the same amount of

—O— Singlerate (i=Ca)

10 —— Singlerate (i=V)
—e— Singlerate (i=K_A)
10° —@— Multirate (i=Ca)
—l— Multirate (i= V)
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s e
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Number of ODE calls

Fig. 6 Efficiency comparison between single- and multirate
approaches in the BDF2-BDF2 coupling method with the fast com-
munication signal. The singlerate coupling method corresponds to the
results presented in (Brocke et al. 2016). The datapoints in the figure
correspond to relTOL = {107; 107%; 10~7}. The dashed lines cor-
respond to first- and second-order declines. The simulations were
performed with the TC-fast test case that uses calcium flux as a com-
munication signal between the electrical and biochemical component.
The accuracy results of the singlerate integration using Gauss-Seidel
organization where the electrical component was solved first is repre-
sented by hollow markers. The results of a multirate integration with
Gauss-Seidel organization and the fast-first strategy are shown with
filled markers. Exchanged variables were approximated by a second
order polynomial (referred to as Mode 3 in (Brocke et al. 2016))
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computational cost. Looking at the curves horizontally, the
computational costs for the same accuracy can be compared.
Each curve is an interpolation on a set of datapoints marked
with markers. Each datapoint corresponds to the specified
tolerance parameter used in the simulation.

3.1 Multirate improves efficiency but accuracy is lost
with a fast communication signal

Second order accurate numerical solutions are expected
using the BDF2-BDF2 coupling method since this was
found with the TC-fast test case singlerate simulations in
Brocke et al. (2016). To investigate the multirate algorithm’s
performance we simulated the TC-fast test case with dif-
ferent values of the tolerance parameter. We plotted the
accuracy measurements of the solutions versus the number
of ODE calls in Fig. 6.

In the multirate simulations we observed a loss of order
of accuracy in the TC-fast test case that is clearly noticeable
while comparing the interpolated error behavior with the
decline lines plotted in the figure. Presumably the dominant
extrapolation error at each micro time step propagates to the
slow component through the fast communication signal.

Comparing corresponding datapoints in Fig. 6, a large
difference in the number of ODE calls between single-
and multirate coupling approaches can be observed. For a
detailed numerical overview of this difference we present
the synopsis of the simulations in Table 1. The speed ups
both with respect to the number of function calls and com-
putation times in the multirate approach were substantial.

3.2 The extrapolation error influence in the fast-first
strategy is reduced by a slow changing communication
signal

Can we diminish the influence of the expected extrapola-
tion error observed in the previous results? To answer this
question we replaced the fast communication signal with

the slow one as described in Section 2.3. Here, we simu-
late the TC-slow test case and compare single- and multirate
coupling approaches in Fig. 7.

Comparing Figs. 6 and 7 we observed that the extrapo-
lation error in the fast component (i = V, the voltage error
lines) was not changed. However, the error in the slow com-
ponent (i = K _A, the potassium error lines) was not only
considerably smaller but, also, the second order accuracy
was re-established. While the first observation was in accor-
dance with our expectations due to required extrapolation in
the fast-first strategy step, the latter was slightly surprising.
We compared the order of accuracy of the communication
signal (i = Ca, the calcium error lines). The results showed
that the accuracy of the communication signal, that is cal-
cium concentration solved in the fast component, had been
re-established to second order.

3.3 Slow-first strategy restores the accuracy
of the coupled multirate simulation

Our previous results showed that the second order of
the BDF2-BDF2 coupling using the multirate integration
approach was reduced to first order. The simulations were
performed using the fast-first strategy where the variables
communicated from the slow component had to be extrap-
olated at each micro time step. There, we suspected that an
extrapolation error of the exchanged variables had the main
contribution to the numerical approximation error at each
discretization time step. After, instead, using a slow commu-
nication signal (the TC-slow test case) and verifying that the
propagation of the approximation error can be diminished
we applied the slow-first strategy. In that case an extrap-
olation of a slow varying signal may have less significant
contribution to the discretization error of a slow component.
Figure 8 confirms our expectations. Second order accuracy
of the multirate algorithm was confirmed using the slow-
first strategy and a slow communication signal between the
components.

Table 1 Synopsis of the

TC-fast test case simulations relTol micros macros speedup 1 speedup 2 # of switches
using single- and multirate
approaches le—5 (singlerate) 90529(4081) - - - -

le—5 (multirate) 90543(4266) 23747(16) 1.5 34 26

le—6 (singlerate) 194883(2915) - - - -

le—6 (multirate) 193630(1822) 70244(74) 1.47 3. 81

le—7 (singlerate) 417315(2211) - - - -

le—7 (multirate) 416832(1922) 159361(89) 1.44 2.7 133

micros - the number of the micro time steps in case of the multirate or the total number of accepted steps
otherwise; macros - the number of the macro time steps; speedup 1 - the speed up measurements based on the
number of function calls; speedup 2 - the speed up measurements based on a wallclocktime; # of switches
- the number of times when the integration order of the components has been changed. The numbers in
parenthesis denote the number of rejected steps during the simulation
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Fig. 7 Efficiency comparison between single- and multirate
approaches in the BDF2-BDF2 coupling method with the slow
communication signal. The datapoints in the figure correspond to
relTOL = {10*5; 1079; 10*7}. The simulations were performed
with the TC-slow test case which has a slow changing communication
signal (calcium concentration) between the electrical and biochemical
component. Otherwise conditions are as in Fig. 6. Hollow mark-
ers: singlerate integration with Gauss-Seidel organization, electrical
component solved first. Filled markers: the results of the multirate
integration with the fast-first strategy

4 Discussion

In this paper we presented a new multirate numerical
integration algorithm based on the BDF2-BDF2 coupling
method described in Brocke et al. (2016). The idea of multi-
rate numerical integration is to let individual components be
solved independently for a large integration time in order to
gain efficiency by minimizing communication and compu-
tation operations. The proposed multirate algorithm showed
computational speedups both with respect to the number of
function calls and computation times in simulations of a
given test case.

We presented and analyzed two organization strategies
between the components, fast-first and slow-first. The sim-
ulations showed a strong dependence of the numerical accu-
racy of the coupled simulations on the dynamics of the com-
munication signal between the components. We observed
that in multirate simulations the second order of the BDF2-
BDF2 coupling method was reduced to the first order in
the fast-first strategy. We introduced a few modifications
to our multiscale test case. In particular, we replaced the
fast communication signal with its analogous slow changing
variable. The results showed a strong numerical sensitiv-
ity of a slow system to the behavior of the communication
signal. As can be seen in Fig. 7, the increased accuracy of
the slow communication signal led to the re-establishment
of the accuracy order of the slow component. Note, that a
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Fig. 8 Efficiency comparison between single- and multirate
approaches in the BDF2-BDF2 coupling method using slow-first strat-
egy and a slow communication signal. The datapoints in the figure
correspond to relTOL = {1073; 107%; 10~7}. The simulations were
performed with the TC-slow test case. Gauss-Seidel organization with
the biochemical component solved first and slow-first strategy were
used in single- and multirate approaches, respectively

coupled method may have properties completely different
from those of the individual components (Hanke 2017). It is
known that the order of a method may depend on linearity
and non-linearity of the system (Hairer et al. 1993). Con-
sidering that the slow variable had been defined by a linear
ODE in comparison to its highly nonlinear definition in the
initial test case, it might be one of the possible explanations
for the re-establishment of the order in Fig. 7. In addition,
we suspect that the stability domain of the coupled BDF2
method may change similar to what is observed in Hanke
(2017). Some methods are known to have a reduced order if
applied to very stiff problems (Hairer and Wanner 1996). It
might happen that the smoothened variable drives the sys-
tem away from stiffness thus changing the order. However,
these ideas do not yet have any theoretical justification with
respect to the coupled BDF2 methods.

The re-established order of the communication signal
allowed us to employ a slow-first Gauss-Seidel organization
strategy where the extrapolation error of the slow chang-
ing variable had a less severe impact on the accuracy of the
coupled simulation thus making the slow-first organization
strategy more favorable.

We decided to use calcium as a key communication
signal between electrical and chemical components in the
test case. From the perspective of cellular physiology it is
clear that by far the most commonly reported and predom-
inant signal for electrical to chemical coupling is indeed
calcium. In our simulations we replaced the fast calcium
flux communication signal with a smoother signal (calcium
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concentration). A few studies have estimated coupling
through synaptic transmission via metabotropic G-protein
coupled receptors (Bhalla and Iyengar 1999), but here flux
calculations are not needed and instead the arrival of an
action potential is typically treated as an instantaneous event
that raises the activation of the receptor. Downstream events
are slow (hundreds of ms) so this component of coupling
is not likely to contribute significantly to the error. Neu-
ronal simulation packages such as NEURON, GENESIS,
MOOSE offer to solve chemical concentrations along with
the fast electrical calculations. Here we represented calcium
calculations by a phenomenological model of the calcium
activity on the electrical side of the system. The results
presented in the paper will remain valid unless a study
addresses calcium behavior on a finer compartmentalization
level. In this case a more detailed modeling of calcium and
its interactions is required where calcium may not be viewed
as a slow changing variable anymore.

An important biochemical aspect related to the chemical
signal is diffusion. In spatially complex models, the chem-
ical signals may require reaction-diffusion formulations.
This introduces spatial discretization requirements for the
chemical system and a further numerical integrator to solve
the Partial Differential Equations (PDEs) for diffusion. Our
current analysis does not address how to couple the chemi-
cal reaction calculations both to the chemical diffusion and
electrical calculations.

The multirate algorithm developed in this paper is based
on the BDF2-BDF2 coupling method. Solver implementa-
tions based on the BDF family of methods can be found in
multiple scientific open source software packages which can
easily be incorporated into existing simulation codes. For
example, the NEURON simulation environment supports
adaptive integration by means of the SUNDIALS CVODE
suite (Serban and Hindmarsh 2005). The latter includes a
variable-order variable-stepsize BDF-based method.

For purposes of evaluating the multirate algorithm we
simulate the developed test case on a range of low toler-
ances. Our basic assumption is that the underlying system
of ODEs is perfect, that is it depicts the real system with
high fidelity. In reality, the knowledge of a system is usually
constrained by some unknowns, for example, with regard
to parameters. Thus it may turn out that it is not necessary
to perform simulations with high levels of numerical pre-
cision. Therefore, once the method is designed well, other
optimizations may be considered in order to achieve more
efficient simulations. One possibility is to take different
sources of error into consideration rather than to focus only
on the numerical error. Rangan and Cai (2007) present a
method that accounts for both trajectory-wise and statisti-
cal accuracies in simulations of large-scale integrate-and-
fire neuronal networks. In neuronal network simulations
it is usually more important to obtain accurate statistical

properties of the network rather than the individual time
course for each of the neurons. The emphasis of statisti-
cal properties in the work by Rangan and Cai (2007) has a
close connection to uncertainty quantification that is often
posed in a statistical manner. This analysis extends much
beyond the scope of this paper but can be considered for
further development of efficient coupling algorithms for
electrical-chemical systems.

This paper presents a new multirate numerical inte-
gration algorithm developed with a particular interest in
co-simulations of electrical-biochemical systems in neuro-
science. The ideas and requirements of the implementation
presented in the paper can be exploited in the develop-
ment of the API in communication frameworks such as the
MUIti-SImulation Coordinator tool (MUSIC) (Brocke and
Djurfeldt 2011; Djurfeldt et al. 2010).
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