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Abstract
Ecological monitoring of streams has often focused on assessing the biotic integrity 
of individual benthic macroinvertebrate (BMI) communities through local measures of 
diversity, such as taxonomic or functional richness. However, as individual BMI com‐
munities are frequently linked by a variety of ecological processes at a regional scale, 
there is a need to assess biotic integrity of groups of communities at the scale of water‐
sheds. Using 4,619 sampled communities of streambed BMIs, we investigate this ques‐
tion using co‐occurrence networks generated from groups of communities selected 
within California watersheds under different levels of stress due to upstream land use. 
Building on a number of arguments in theoretical ecology and network theory, we pro‐
pose a framework for the assessment of the biotic integrity of watershed‐scale group‐
ings of BMI communities using measures of their co‐occurrence network topology. 
We found significant correlations between stress, as described by a mean measure 
of upstream land use within a watershed, and topological measures of co‐occurrence 
networks such as network size (r = −.81, p < 10–4), connectance (r = .31, p < 10–4), mean 
co‐occurrence strength (r = .25, p < 10–4), degree heterogeneity (r = −.10, p < 10–4), and 
modularity (r = .11, p < 10–4). Using these five topological measures, we constructed a 
linear model of biotic integrity, here a composite of taxonomic and functional diversity 
known as the California Stream Condition Index, of groups of BMI communities within 
a watershed. This model can account for 66% of among‐watershed variation in the 
mean biotic integrity of communities. These observations imply a role for co‐occur‐
rence networks in assessing the current status of biotic integrity for BMI communities, 
as well as their potential use in assessing other ecological communities.
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1  | INTRODUC TION

Humanity can be considered a global scale force for ecosystem en‐
gineering (Guerry et al., 2015; Laurance, Sayer, & Cassman, 2014; 
Vörösmarty et al., 2010). Subsequent to the rise of anthropogenic 

stressors on the environment, there has been the recognition of the 
need for ecological monitoring, which can match the scale of human 
activity (Bergseth, Russ, & Cinner, 2015; Corona, Chirici, McRoberts, 
Winter, & Barbati, 2011; Foley et al., 2013; Schmeller et al., 2015; 
Steenweg et al., 2017).
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Among the ecosystems being monitored, streams have been of 
long‐term and ongoing interest. Human activities are both depen‐
dent upon their ecological services (Anderson, Glibert, & Burkholder, 
2002; Dudgeon et al., 2006) and dependent upon frequently a 
source of their environmental stress (Carpenter et al., 1998; Paerl et 
al., 2016). Human‐dominated environments, such as farms, tend to 
cover large areas. For this reason, there have been efforts to monitor 
the state of streams across entire watersheds rather than individual 
streams (Grönroos et al., 2013; Socolar, Gilroy, Kunin, & Edwards, 
2016), especially in light of the importance of regional versus local 
measures of habitat quality with stream communities (Stoll, Breyer, 
Tonkin, Früh, & Haase, 2016). These biomonitoring efforts have 
typically focused either on the presence of certain indicator taxa 
(Fausch, Lyons, Karr, & Angermeier, 1990; Vieira, Séneca, Sérgio, & 
Ferreira, 2012) or on comparing the composition of communities to 
an “undisturbed” reference (Kerans & Karr, 1994; Lakew & Moog, 
2015; Masese, Raburu, & Muchiri, 2009; Mazor et al., 2015; Silva, 
Herlihy, Hughes, & Callisto, 2017; Vile & Henning, 2018).

Historically, bioassessments of stream have tended to be based on 
data sets composed on particular communities, such as BMIs (Cuffney, 
Brightbill, May, & Waite, 2010; Maxted et al., 2000), organized by 
morphological classifications. With the advent of high‐throughput 
metagenomic sequencing, there now exists the potential for rapidly 
constructing a picture of community composition with greater breadth 
(Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017; Stein et al., 2014), 
taxonomic resolution, and reliability (Baird & Hajibabaei, 2012; Sweeney, 
Battle, Jackson, & Dapkey, 2011). There is an opportunity then to create 
a bioassessment framework for BMI communities in which one could 
readily incorporate community composition data constructed from 
metagenomic methods (Goodwin et al., 2017; Hering et al., 2018).

Here, we propose the use of co‐occurrence networks to the 
task of ecological monitoring. These networks represent the likeli‐
hoods, represented by edges, of various unique categories of taxa, 
represented by nodes, co‐occurring in a landscape defined by the 
spatial extent of the communities sampled and studied. These net‐
works can be constructed from basic ecological data, such as the 
presence or absence of a set of taxonomic groups across a set of 
sites (Arita, 2016; Gotelli, 2000; Morueta‐Holme et al., 2016). 

Co‐occurrence networks have been investigated as a means of in‐
ferring ecological patterns, particularly when direct measurement of 
ecological interactions proves infeasible. For example, the cluster‐
ing of microbial species into distinct modules within co‐occurrence 
networks has been used to infer physiochemical niches for various 
prokaryotic groups (Fuhrman & Steele, 2008; Larsen & Ormerod, 
2014; Mandakovic et al., 2018; Ruan et al., 2006; Steele et al., 2011; 
Widder et al., 2014). In studies of larger organisms, topological mea‐
sures of these networks have also been used to illustrate a loss in 
both diversity and the number of significant co‐occurrences be‐
tween reptiles in response to habitat degradation (Kay et al., 2018). 
The previous diversity of scenarios where co‐occurrence network 
topology has been used in ecological analysis then implies that it 
could also be used to develop a framework for the assessment of the 
biotic integrity of streams across an entire catchment area (Ahn & 
Kim, 2017; Moyle & Randall, 1998; Smith & Lamp, 2008).

We hypothesized a number of relationships between ecolog‐
ical stress and five measures of co‐occurrence network topology 
(Table 1). We chose these measures based on prior analyses of 
co‐occurrence networks and their relationships with environmen‐
tal stress, for example, spatial aggregation of species across an 
environmentally heterogeneous landscape due to variations in 
their ecological attributes (Bellisario, Cerfolli, & Nascetti, 2010; 
Borthagaray, Arim, & Marquet, 2014). These hypotheses were 
then tested using co‐occurrence networks generated from the 
presence/absence data for benthic macroinvertebrates (BMIs) 
gathered in streams across the state of California. We used up‐
stream land use as our measure of stress as it was consistently 
measured at every sample sited, and has been found to be a broad 
measure of anthropogenic stress in stream communities (Novotny, 
Bartošová, O'Reilly, & Ehlinger, 2005; Vander Laan, Hawkins, 
Olson, & Hill, 2013).

1.1 | Ecological stress and co‐occurrence 
network topology

Prior observations of BMI communities under stress have shown 
two trends: first, a decline in taxonomic richness (Lenat & Crawford, 

Topological 
measure Ecological relevance

Hypothesized rela‐
tionship with stress

Network size The number of unique types of taxa across a 
set of communities.

(−)

Connectance The fraction of significant co‐occurrences real‐
ized compared to theoretical maximum for a 
network.

(+)

Mean co‐occur‐
rence strength

Correlation strength between unique types of 
taxa.

(+)

Modularity How strongly patterns of co‐occurrence are 
partitioned into subcommunities.

(+)

Degree 
heterogeneity

How skewed the distribution of the number of 
co‐occurrences per unique type of taxa is in a 
community.

(−)

TA B L E  1  Topological measures of 
co‐occurrence networks, their ecological 
relevance, and predicted relationship with 
an increase in stress due to upstream land 
use: network size, connectance, mean 
co‐occurrence strength, modularity, and 
degree heterogeneity
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1994; Stepenuck, Crunkilton, & Wang, 2002; Voß & Schäfer, 2017); 
and second, a predominance of members of generalist groups with 
broad ecological niches (Büchi & Vuilleumier, 2014; Ducatez, Tingley, 
& Shine, 2014; Mykrä & Heino, 2017). Starting with these trends, we 
then hypothesized relationships between five topological measures 
and ecological stress.

1.1.1 | Network size

The sizes of our networks were determined by the number of unique 
BMI genera present within a given set of sampling sites. Ecological 
stress in BMI communities has been found to be associated with a 
decline in local taxonomic richness (Ourso & Frenzel, 2003; Paul & 
Meyer, 2001; Stepenuck et al., 2002; Wallace & Biastoch, 2016). This 
is especially the case where the stress is due to an increase in up‐
stream land use (Allan, 2004; Sponseller, Benfield, & Valett, 2001; 
Stepenuck et al., 2002). Given then the correspondence between 
the taxonomic richness present in a group of sites, and the number 
of nodes in any resulting co‐occurrence network, we expect net‐
work size to be negatively correlated with stress (H1).

1.1.2 | Connectance

As the number of edges in a variety of ecological networks may be 
sensitive to the number of unique taxonomic groups (Dormann, Frund, 
Bluthgen, & Gruber, 2009; Goldwasser & Roughgarden, 1997; Nielsen 
& Bascompte, 2007), we then also calculated the connectance (Bell, 
King, Bohan, & Symondson, 2010). Generalists are expected to have 
a greater likelihood of co‐occurring with a wider variety of organisms 
(Fridley, Vandermast, Kuppinger, Manthey, & Peet, 2007), and BMI 
communities in degraded environments tend to contain relatively 
more groups classified as generalist (von der Ohe & Goedkoop, 2013; 
Suga & Tanaka, 2013). We then expect stress to be positively corre‐
lated with the fraction of realized versus the potential number of edges 
(significant co‐occurrences), that is, the connectance, of a resulting co‐
occurrence network (H2). With an expected increase in connectance 
associated with stress, as well as a decline in number of nodes (number 
of unique BMIs) (Blann, Anderson, Sands, & Vondracek, 2009; Shaver, 
Maxted, Curtis, & Carter, 1994), we also expect a decline in the number 
of edges.

1.1.3 | Mean co‐occurrence strength

To make additional inferences on shifts in community co‐occurrence 
patterns in relation to environmental stress, we then determined the 
mean strength of the co‐occurrences found within each network 
(Araújo & Rozenfeld, 2014). For this value, we used the mean value 
of all of the significant correlations, as described by standardized ef‐
fect‐size scores (Morueta‐Holme et al., 2016), within a network. For 
any two unique categories of organisms found in a group of commu‐
nities, the standardized effect‐size score represents the conditional 
probability, as compared to a null model, of observing one organism 
given the presence of the other. The mean strength of correlations 

defining significant co‐occurrences in a network has been observed 
to decline with the number of edges (Cazelles, Araújo, Mouquet, & 
Gravel, 2016). We then expect the number of edges in a co‐occur‐
rence network to decline with stress, as described by a mean meas‐
ure of upstream land use within a watershed, along with a positive 
correlation between stress and the mean co‐occurrence strength 
(H3).

1.1.4 | Modularity

Prior evidence suggests shifts in communities in response to en‐
vironmental changes can be better illustrated not just from the 
number or strength of co‐occurrences, but from their structural 
arrangement (Fortuna et al., 2010; Thébault & Fontaine, 2010; 
Tylianakis, Laliberté, Nielsen, & Bascompte, 2010). To measure 
these structural changes in our co‐occurrence networks, we used 
the topological measures of modularity, defined here as the pro‐
portion of edges that occur within subnetworks less the expected 
proportion of such edges (Clauset, Newman, & Moore, 2004). 
With highly modular networks, this would be expected to lead to 
a co‐occurrence network composed of sparsely interconnected 
subnetworks.

Prior observations of stressed watersheds have shown both a 
decline in local diversity and a rise in landscape diversity as a result 
of declining taxonomic similarities between individual stream com‐
munities (Hawkins, Mykrä, Oksanen, & Vander Laan, 2015; Simons, 
Mazor, Stein, & Nuzhdin, 2019). Given these prior observations, with 
regard to changes in patterns of diversity across watersheds in rela‐
tion to stress, we expect the taxonomic “space” for co‐occurrences 
to shrink with a rise in stress due to land use (Figure 1), and with it 
a trend toward the fracturing of assembled co‐occurrence networks 
into weakly connected subnetworks. Similar relationships, between 
the modularity of co‐occurrence networks and ecological stress, 
have also been observed in various ecological communities (Hu et al., 
2017; Kay et al., 2018). To assess these trends, we use modularity, 
the degree to which networks are organized into clusters of weakly 
interconnected subnetworks (Barberán, Bates, Casamayor, & Fierer, 
2012; Clauset et al., 2004). With stress expected to drive greater 
dissimilarity between communities, we then expect a positive rela‐
tionship between the modularity of co‐occurrence networks and the 
levels of stress experienced by the communities from which they are 
constructed (H4).

1.1.5 | Degree heterogeneity

To further investigate changes in the arrangement of co‐occur‐
rences, we determined the degree heterogeneity of each network, 
a measure of how skewed the distribution of edges per node in a 
network is toward the most connected nodes (Yan, Martinez, & Liu, 
2017). The distribution of edges per node in ecological networks can 
be indicative of the structure of ecological communities, such as the 
likelihood of co‐occurrence between generalist and specialist spe‐
cies (Dormann et al., 2009; Williams, 2011).
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Prior observations of co‐occurrence networks assembled from 
communities at increasing levels of anthropogenic disturbance have 
shown a trend toward the preferential loss of taxa of low degree 
(Fournier, Mouly, & Gillet, 2016; Tulloch et al., 2016). Additional 
trends regarding ecological networks have also displayed trends to‐
ward the loss of highly keystone taxa due to environmental stresses 
(Araújo & Rozenfeld, 2014; Morriën et al., 2017). Given both of these 
trends, the loss of taxa of both high and low degrees, we then ex‐
pect co‐occurrence networks assembled by communities under 
stress have a narrow degree distribution and thus a low degree 
heterogeneity.

Using prior arguments regarding connectance (H2), we also 
make an additional argument regarding our expected trends in the 
degree with respect to land use. With ecological networks, connec‐
tance has been found to be negatively correlated with the skewness 
of their degree distributions (Poisot & Gravel, 2014). With degree 
heterogeneity being a measure of skew for the degree distribution 
of a network, this then implies that the stress experienced by the 
communities used to construct co‐occurrence networks will be neg‐
atively correlated with their degree heterogeneity (H5).

2  | MATERIAL S AND METHODS

2.1 | Sample scope

The initial scope of data covered in this analysis consists of 4,984 
stream samples from 2,997 unique geographic locations across the 
state of California, constituting a 23‐year period (1994–2016) (Mazor 
et al., 2015). Every sample contains the following data: BMIs enu‐
merated and sorted to a standardized level (generally a genus‐level 
identification except chironomids, which were identified to subfam‐
ily; Richards and Rogers, 2006), sample site altitude in meters, U.S. 
Geological Survey Hydrologic Unit Code 8 level watershed (Seaber, 
Kapinos, & Knapp, 1987), and the percent developed land use (ag‐
ricultural, urban, and managed landscapes) within a 5  km clipped 
buffer of the watershed upstream of the sampling site, and a bio‐
assessment index score (California Stream Condition Index [CSCI]) 
based on a composite of taxonomic and functional diversity within 
BMI assemblages (Mazor et al., 2015).

2.2 | Sample acquisitions and classifications

Approximately 55% of the BMI communities were sampled through 
a reach‐wide protocol of Peck et al. (2006), with the remainder col‐
lected using a targeted riffle protocol, both of which produce com‐
parable data (Gerth & Herlihy, 2006; Herbst & Silldorff, 2006; Rehn, 
Ode, & Hawkins, 2007). Taxa were identified to one of 334 genera, 
with each genus then assigned to one of eight functional feeding 
groups using CAMLnet (Ode, 2003). Of these eight functional feed‐
ing groups, we could conclusively assign five of them to either gen‐
eralist or specialist categories (Barbour et al., 2006; De Castro et al., 
2016; Feld & Hering, 2007; Mihuc, 1997; Rawer‐Jost, Böhmer, Blank, 
& Rahmann, 2000). Using this information, we produced a measure 
of the number of generalist and specialist genera per sample site.

2.3 | Calculating the CSCI

Our measure of community biotic integrity at a given stream sample 
site was done using the CSCI. This index compares observed taxa and 
metrics to values expected under undisturbed reference conditions 
based on site‐specific landscape‐scale environmental variables, such 
as watershed area, geology, and climate (Mazor et al., 2015). This 
index comprises two sets of measurements using a standardized tax‐
onomy for BMI communities (Richards and Rogers, 2006): the first 
being a ratio of observed‐to‐expected taxa (O/E), and the second a 
predictive multimetric index (pMMI) made of six metrics related to 
ecological structure and function of the BMI assemblage describing 
the composition of community within a site. The CSCI and its com‐
ponents were designed to have minimal influence from major natural 
gradients. This in turn has allowed for it to be used as a measure of 
biological conditions with a consistent meaning in different environ‐
mental settings (Reynoldson, Norris, Resh, Day, & Rosenberg, 2006; 
Hawkins, Olson, & Hill, 2010).

2.4 | Land use

The type and geographic extent of land use in the upstream vicin‐
ity of each sampling site data is derived from the National Land 
Cover Data set (NLCD) (Homer et al., 2007), with developed land 

F I G U R E  1  An example of a stressor 
reducing both the taxonomic richness of 
three communities, from an initial state 
(α1, α2, α3) to a degraded state (�
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), and the number of unique categories 
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cover measured by the total percent of land cover in a designated 
area dedicated to agriculture, urbanization, or otherwise managed 
vegetative landscapes such as golf courses. The designated area for 
calculating percent developed land cover at each site is defined using 
a 5 km watershed‐clipped buffer upstream of a stream sampling site 
using ArcGIS tools (version 10.3; Environmental Systems Research 
Institute) (Mazor et al., 2015). The values for land use were calcu‐
lated from NLCD measurements acquired in the year 2000, though 
it should be noted that the sample sites in our study were located in 
areas where the percent developed land use was not significantly 
correlated with time over the duration of this study (r = −.02, p = .27).

2.5 | Sample group selection

We first filtered our initial data by selecting watersheds with 15 or 
more unique samples. This filtering reduced our overall data set from 
4,984 to 4,619 unique samples in 2,694 unique geographic locations 
across 67 watersheds, while containing sample groups with suf‐
ficient data density for co‐occurrence network construction. From 
these remaining samples, we then divided both upstream land use 
and sample site altitude into quintiles. Samples for network gen‐
eration were then selected by randomly subsampling 10 samples 
within each watershed within quintiles of upstream land use and 
sample site altitude. For each group of 10 samples, we calculated 
the mean sample site altitude (altitude) and the mean percent devel‐
oped upstream land use (land use), and for mean geographic sepa‐
ration distance in meters between samples (distance), we used the 
distm function within the R package geosphere (Hijmans, Williams, & 
Vennes, 2012). To obtain a measure of environmental heterogeneity 
within each sample group, we also calculated the standard devia‐
tions on altitude and land use.

2.6 | Network construction

Co‐occurrence networks were then constructed using the R package 
netassoc (Morueta‐Holme et al., 2016), with the presence/absence 
site by BMI genera as input. We chose to convert our abundance 
data to the presence/absence as the most conservative approach 
with representing our assembled database of BMI communities. 
Observed co‐occurrences were compared against 100 randomized 
null communities with the same taxonomic richness as the observed 
community. The resulting edges were filtered so only correlations 
representing co‐occurrences, as calculated by standardized effect‐
size scores, with a significance and false discovery rate less that 10–4 
were kept. This process was repeated 100 times, with a set of 8,208 
co‐occurrence networks kept for analysis.

2.7 | Topological measures

Topological measures of our networks, such as size and con‐
nectance, were calculated using the packages igraph (v.1.2.2) (Csárdi 
& Nepusz, 2014) and network (v.1.13.0.1) (Butts, 2015) in R (v.3.5.1). 
The mean co‐occurrence strength values were calculated, using the 

R package netassoc (Morueta‐Holme et al., 2016), as the network 
mean of the significant standardized effect‐size scores. Modularity, 
defined as the proportion of edges that occur within subnetworks 
less the expected proportion of such edges, was calculated using the 
modularity function within the igraph package (Clauset et al., 2004). 
Degree heterogeneity was calculated as 𝜁 = <k2>

<k>2
, where k represents 

the mean number of edges per node in a network (Yan et al., 2017).

2.8 | Modeled biotic integrity index

Using the lm function in the stats R package (v3.5.1, R Core Team, 
2018), we constructed a best‐fit linear model to predict the mean 
CSCI score of a set of samples, our measure of biotic integrity, given 
the topological measures of their co‐occurrence networks. We then 
applied a backwards elimination method in order to select topologi‐
cal measures, which make a significant contribution to our model 
(Pearman, 1997; Snodgrass, 1997). In comparing the AIC scores of 
linear models after the removal of each topological measure, we 
found all five were significant. We calculated coefficients for our lin‐
ear models using a 10‐fold cross‐validation, with 100 repeats, within 
the “train” function within the R package “caret” (Kuhn, 2008). To 
determine the relative importance of each topological measure in 
our linear models, and to adjust for any collinearity between meas‐
ures as a result, the function calc.relimp was used within the relaimpo 
R package (Grömping, 2015). The relative importance of land use, 
altitude, and distance in describing variations in both the mean CSCI 
score and our modeled CSCI scores was also done using the calc.
relimp function.

3  | RESULTS

In analyzing 8,208 co‐occurrence networks, generated from com‐
munities collected from within‐watershed groups with similar val‐
ues for sample site land use and altitude, we found general support 
(Table 2) for our hypotheses (Table 1).

3.1 | Trends in co‐occurrence network topology

The size of our co‐occurrence networks declined significantly with 
a rise in land use (r = −.81, p < 10–4). This reflects a general decline 
in both the number of genera found in an individual sampling site 
(r  =  −.52, p  <  10–4) and the number of functional feeding groups 
(r = −.44, p < 10–4), in relation to land use.

While network size was found to have a strong negative cor‐
relation with land use, along with the mean number of edges per 
node (r  =  −.56, p  <  10–4), we still found that connectance tended 
to be larger in co‐occurrence networks constructed from groups of 
stressed communities with a rise in land use (r = .31, p < 10–4). This 
positive association between stress and connectance appears to re‐
flect a greater relative decline in the number of nodes relative to 
land use (r = −.81, p < 10–4) than with the number of edges (r = −.70, 
p < 10–4).
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These trends, a rise in connectance despite a decline in network 
size, may also reflect our observations regarding the relative abun‐
dance of unique genera classified by membership of a generalist 
or specialist functional feeding groups to land use. We found the 
proportion of genera from specialist functional feeding groups (e.g., 
shredders and scrapers) tended to decline with land use, while those 
of generalist functional feeding groups (e.g., gatherers, filterers, and 
omnivores) tended to increase with land use (Table 3).

In addition to a rise in connectance, networks assembled from 
communities with higher land use were on average found to have 
stronger co‐occurrences (r = .25, p < 10–4). We also found evidence of 
a negative relationship between both mean co‐occurrence strength 
and the number of co‐occurrences (r = −.32, p < 10–4), and connec‐
tance (r = −.24, p < 10–4). This potentially indicates a preferential loss 
of weak co‐occurrences in networks assembled from communities 
under high levels of land use.

Weaker trends were observed with regard to variables, modu‐
larity and degree heterogeneity, which describe structural arrange‐
ments of co‐occurrences. The mean modularity of our networks 
(0.35) was found to be both greater than the common modularity 
threshold of 0.3 (Newman & Girvan, 2004) and greater than that 
of our randomized null co‐occurrence networks (0.22). Using a 
Wilcoxon signed‐rank test, we found additional evidence for sig‐
nificant nonrandom structuring in our networks as their modularity 
values were significantly larger than their randomized null counter‐
parts (p < 10–4). However, despite evidence of significant network 
modularity there was only a relatively weak positive correlation with 
its value and land use (r = .11, p < 10–4).

Across our watersheds, we observe a trend where land use is 
associated with a slight decline in degree heterogeneity (r  =  −.10, 
p < 10–4). However, we did find support for our hypothesis that a 
decline in degree heterogeneity would be driven, at least in part, 

by a rise in connectance (r = −.60, p < 10–4). Similar to our results 
with modularity, we found evidence, using a Wilcoxon signed‐rank 
test, for significantly higher values for degree heterogeneity in our 
co‐occurrence networks than their randomized null counterparts 
(p < 10–4). The higher mean degree heterogeneity of our co‐occur‐
rence networks (1.82), as compared to that of the null networks 
(1.14), indicates our networks are skewed more toward a relatively 
small number of highly connected nodes than what would be ex‐
pected by chance.

3.2 | Linear models of watershed biotic integrity 
using co‐occurrence network topology

Using five measures of co‐occurrence network topology, network 
size (N), connectance (C), mean co‐occurrence strength (S), modular‐
ity (M), and degree heterogeneity (ζ), a linear model was constructed 
to best predict the mean value of the CSCI score for a set of samples 
(Table 2). The relationship between these topological measures and 
our first modeled mean CSCI score per sample group is as follows:

This modeled index of watershed biotic integrity was found to 
be strongly correlated with the observed variation in the mean value 
of the CSCI score for a set of samples (Figure 2). After performing 
a 10‐fold cross‐validation, this model could still account for approx‐
imately 66% of the observed variation in the mean CSCI score. This 
modeled biotic integrity index was also found to vary in accordance 
with altitude, land use, and distance for a set of samples in a similar 
fashion as the mean CSCI score, although this first modeled index 
was less sensitive to altitude and the standard deviation on land use 
than the mean CSCI score (Table 4). We also observed that most of 
the variations observed in both the mean and our first modeled CSCI 

MeanCSCI=0.3+4.6×10
−3

×N−1.2×C−1.8×10
−2

×S+0.3×M+0.1×�

Topological 
measure

F (1, 8,208)
(Model 1)

Relative importance 
(%)
(Model 1)

F (1, 8,208)
(Model 2)

Relative importance 
(%)
(Model 2)

Network size 1.4 × 104 44.8 NA NA

Connectance 704.3 10.0 2,086 19.3

Modularity 151.4 1.3 39.9 1.8

Mean co‐occur‐
rence strength

868.6 7.5 2,462 13.4

Degree 
heterogeneity

91.6 2.7 387.1 3.3

TA B L E  2  The relative importance 
of the topological measures used in our 
modeled stream health indices (p < 10–4)

 

Generalist functional feeding groups
Specialist functional feed‐
ing groups

Gatherers Filterers Omnivores Scrapers Shredders

Coefficient 
(land use)

1.6 × 10–3 1.5 × 10–4 3.5 × 10–4 −9.0 × 10–5 
(p < 10–2)

−1.5 × 10–4

Coefficient 
(altitude)

8.0 × 10–6 
(p < 10–2)

−1.3 × 10–5 −5.8 × 10–6 −9.0 × 10–5 1.1 × 10–5

TA B L E  3  Coefficients of sample site 
altitude and land use in linear models 
describing linear models of the percent 
of genera of BMIs per sample site per 
functional feeding group (All p < 10–4 
unless otherwise noted)
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scores were driven by land use and the standard deviation on land 
use (Table 4).

Both network size and the CSCI, our measure of biotic integrity, 
represent measures based on the taxonomic diversity of sampled 
communities. To focus on the potential role of the characteristics 
and configuration of our co‐occurrences, rather than measures of 
local diversity alone, we then generated a second model of the mean 
CSCI with network size removed from our list of topological mea‐
sures (Tables 2 and 4). After performing a 10‐fold cross‐validation, 
we found this second linear model can account for 38% of the ob‐
served variation in the mean CSCI score per group of samples, and it 
exhibits a similar trend compared to the mean CSCI as with our first 
model (Figure 3).

4  | DISCUSSION

We found changes in patterns of co‐occurrence between genera 
of BMIs can play a role in describing effects of land use on regional 
measures of biotic integrity. This is reflected in evidence support‐
ing our hypotheses regarding the relationships between land use 
and the connectance of our co‐occurrence networks (H2), and the 
mean strength of their co‐occurrences (H3). Evidence supporting 
our hypothesis regarding a negative correlation between network 
size and land use (H1) reflects a well‐established link between envi‐
ronmental stress and both the loss of biodiversity and measures of 
biotic integrity (Freeman & Schorr, 2004; Garie & McIntosh, 1986; 
Jun et al., 2016, 2011). We find the importance of network size, 
along with network connectance and co‐occurrence strength, re‐
inforces prior observations on the importance of both regional and 
local measures of environmental quality in BMI communities (Stoll 
et al., 2016).

Trends relating the arrangement of co‐occurrences within of our 
networks, as described by our hypotheses regarding modularity (H4) 
and degree heterogeneity (H5), were less clear. This may reflect lim‐
itations in our use of co‐occurrence rather than co‐abundance net‐
works. However, prior evidence from assessments of biotic integrity 

for stream communities of BMIs has shown a strong correlation 
between results generated using community data sets described 
through the abundance or presence/absence (Beentjes, Speksnijder, 
Schilthuizen, Schaub, & Hoorn, 2018). The more fundamental issue 
may stem from differences between networks assembled from co‐
occurrences rather than interactions.

Analyses of co‐occurrence networks have been used to iden‐
tify candidate keystone taxa (Berry & Widder, 2014), potential 
species interactions (Veech, 2013), and the simplification of com‐
munities under ecological stress (Araújo, Rozenfeld, Rahbek, & 
Marquet, 2011). Though inferring co‐occurrences, rather than ver‐
ifying interactions, is a far more tractable problem in complex eco‐
logical systems, we must acknowledge that co‐occurrences do not 
necessarily imply interactions. An underlying caveat with analyses 
involving co‐occurrences is that various types of ecological inter‐
actions, such as mutualism or similar environmental requirements, 
may produce similar patterns of co‐occurrence (Ovaskainen, 
Hottola, & Siitonen, 2010). In the context of our study, we ob‐
served trends between land use and both network connectance 
and co‐occurrence strength with our BMI communities, which 
may reflect changes in patterns of interaction between members 
of generalist genera. However, our co‐occurrence networks may 
also be incorporating information beyond potential interactions 
between species, such as the tendency of organisms with similar 
ecological niches to form co‐occurrences, or for dispersal limita‐
tion to tend to limit them (Morueta‐Holme et al., 2016). While co‐
occurrence networks, such as the ones we have constructed, may 
only describe potential interactions, they can still provide useful 
indications of changes in ecological systems (Freilich, Wieters, 
Broitman, Marquet, & Navarrete, 2018).

Even with these limitations we found, a simple linear model com‐
posed of topological measures of co‐occurrence networks could 
describe a significant portion of the observed variation in the bi‐
otic integrity of our BMI communities (Table 4). Analysis of these 
models also suggests the topology our networks reflect more than 
changes in local biodiversity. While network size contributes a size‐
able portion of the observed variation in biotic integrity, its removal 
still leaves more than half of the remaining explanatory power of our 
linear model of the mean CSCI score (Table 4). This suggests that we 
are not simply observing a decline in local diversity in response to 
stress but a change in landscape diversity as well.

Variations in our models appeared to be driven more by both 
land use and the standard deviation on land use than either altitude 
or geographic separation distance (Table 4). This reflects our prior 
observations of this system (Simons et al., 2019), whereby both the 
mean and standard deviation of land use are strongly correlated 
with degree of taxonomic dissimilarity between communities. These 
results are also in agreement with studies of other BMI communi‐
ties where measures of environmental heterogeneity, such as vari‐
ations in upstream land use between sample sites (Astorga et al., 
2012; Sponseller et al., 2001), appear to drive significant changes in 
patterns of co‐occurrence (Heino, 2013; Larsen & Ormerod, 2014; 
Shostell & Williams, 2007; Zhang et al., 2014).

F I G U R E  2  A comparison of the first modeled CSCI and mean 
CSCI colored by land use (r = .81, p < 10–4). CSCI, California Stream 
Condition Index
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These trends may reflect co‐occurrence patterns unique to 
stream communities of BMIs. However, the framework we have 
used to test these hypotheses is not dependent upon the particular 
identities of taxa present in communities and may have the potential 
to be applied to other systems. Assessments of the biotic integrity 
of freshwater ecosystems have been carried out at a variety of spa‐
tial scales (Booth et al., 2004; King, Baker, Kazyak, & Weller, 2011; 
Pratt & Chang, 2012), regions (Jun, Won, Lee, Kong, & Hwang, 2012; 
Waite et al., 2010; Weigel & Dimick, 2011), and biological commu‐
nities (Ferreira, Paiva, & Callisto, 2011; Fetscher et al., 2014; Zalack, 
Smucker, & Vis, 2010). With co‐occurrence networks, we then as‐
sert the potential for the development of a more flexible framework 
for the monitoring of freshwater ecosystems, and find this direction 
warrants further research.

4.1 | Synthesis and future directions

It is increasingly becoming feasible to characterize entire eco‐
logical communities, from prokaryotes through metazoa, through 
metagenomic approaches (Baird & Hajibabaei, 2012; Bohmann et 
al., 2014; Deiner, Fronhofer, Mächler, Walser, & Altermatt, 2016; 
Jackson et al., 2016). With the ability to generate such broad and 
deep pictures of multiple communities, there is a commensurate 
need to create a framework, which could evaluate in general pat‐
terns in ecological systems in order to evaluate the biotic integrity 
of ecosystems. Using these stream communities as an example, 
our study suggests significant relationships exist between ecologi‐
cal stress and the structure of co‐occurrence networks. We found 
our co‐occurrence networks reflected changes in the structure of 
within‐watershed communities in accordance with both the mean 
and standard deviation on land use and altitude, potentially re‐
flecting segregation in BMI communities with a rise in measures 
of environmental heterogeneity. Using only a small number of 
topological measures, we were also able to construct a simple lin‐
ear model with a close correspondence to a well‐accepted index 
of biotic integrity. These networks are based on patterns derived 
from the co‐occurrences of unique organisms, rather than their 
identities. For such reasons, we believe co‐occurrence networks 
may have the potential to describe the biotic integrity of a diverse 
array of ecological communities.
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  CSCI
Modeled 
index 1 Modeled index 2

Proportion of variation due to altitude, F 
(1, 8,208)

690.5 9.0 (p < 10–2) 189.2

Proportion of variation due to the stand‐
ard deviation on altitude, F (1, 8,208)

26.6 51.8 302.9

Proportion of variation due to land use, 
F (1, 8,208)

2.2 × 104 1.6 × 104 3,082

Proportion of variation due to the stand‐
ard deviation on land use, F (1, 8,208)

776.2 212.5 217.7

Proportion of variation due to distance, 
F (1, 8,208)

28.4 168.4 2.8

Relative importance of altitude (%) 11.6 5.2 7.3

Relative importance of the standard 
deviation on altitude (%)

7.4 4.1 2.7

Relative importance of land use (%) 33.6 35.2 11.9

Relative importance of the standard 
deviation on land use (%)

20.7 18.4 9.3

Relative importance of distance (%) 1.0 3.3 0.4

Proportion of variance explained by 
model (%)

74.2 66.3 31.6

Abbreviation: CSCI, California Stream Condition Index.

TA B L E  4  The relative importance of 
altitude, standard deviation on altitude, 
land use, standard deviation of land use, 
and distance in describing our linear 
models of the mean value of the CSCI and 
modeled index per HUC 8 watershed (All 
p < 10–4 unless otherwise noted)

F I G U R E  3  A comparison of the second modeled CSCI and mean 
CSCI colored by land use (r = .61, p < 10–4). CSCI, California Stream 
Condition Index
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