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Abstract
Ecological	monitoring	of	streams	has	often	focused	on	assessing	the	biotic	 integrity	
of	individual	benthic	macroinvertebrate	(BMI)	communities	through	local	measures	of	
diversity,	such	as	taxonomic	or	functional	richness.	However,	as	individual	BMI	com‐
munities	are	frequently	linked	by	a	variety	of	ecological	processes	at	a	regional	scale,	
there	is	a	need	to	assess	biotic	integrity	of	groups	of	communities	at	the	scale	of	water‐
sheds.	Using	4,619	sampled	communities	of	streambed	BMIs,	we	investigate	this	ques‐
tion	using	co‐occurrence	networks	generated	 from	groups	of	communities	selected	
within	California	watersheds	under	different	levels	of	stress	due	to	upstream	land	use.	
Building	on	a	number	of	arguments	in	theoretical	ecology	and	network	theory,	we	pro‐
pose	a	framework	for	the	assessment	of	the	biotic	integrity	of	watershed‐scale	group‐
ings	of	BMI	 communities	using	measures	of	 their	 co‐occurrence	network	 topology.	
We	 found	significant	correlations	between	stress,	 as	described	by	a	mean	measure	
of	upstream	land	use	within	a	watershed,	and	topological	measures	of	co‐occurrence	
networks	such	as	network	size	(r	=	−.81,	p < 10–4),	connectance	(r	=	.31,	p < 10–4),	mean	
co‐occurrence	strength	(r	=	.25,	p < 10–4),	degree	heterogeneity	(r	=	−.10,	p < 10–4),	and	
modularity	(r	=	.11,	p < 10–4).	Using	these	five	topological	measures,	we	constructed	a	
linear	model	of	biotic	integrity,	here	a	composite	of	taxonomic	and	functional	diversity	
known	as	the	California	Stream	Condition	Index,	of	groups	of	BMI	communities	within	
a	watershed.	This	model	can	account	 for	66%	of	among‐watershed	variation	 in	 the	
mean	biotic	 integrity	of	communities.	These	observations	 imply	a	role	for	co‐occur‐
rence	networks	in	assessing	the	current	status	of	biotic	integrity	for	BMI	communities,	
as	well	as	their	potential	use	in	assessing	other	ecological	communities.
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1  | INTRODUC TION

Humanity	can	be	considered	a	global	scale	force	for	ecosystem	en‐
gineering	 (Guerry	et	 al.,	 2015;	 Laurance,	 Sayer,	&	Cassman,	2014;	
Vörösmarty	et	al.,	2010).	Subsequent	 to	 the	 rise	of	anthropogenic	

stressors	on	the	environment,	there	has	been	the	recognition	of	the	
need	for	ecological	monitoring,	which	can	match	the	scale	of	human	
activity	(Bergseth,	Russ,	&	Cinner,	2015;	Corona,	Chirici,	McRoberts,	
Winter,	&	Barbati,	2011;	Foley	et	al.,	2013;	Schmeller	et	al.,	2015;	
Steenweg	et	al.,	2017).
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Among	the	ecosystems	being	monitored,	streams	have	been	of	
long‐term	and	ongoing	 interest.	Human	activities	are	both	depen‐
dent	upon	their	ecological	services	(Anderson,	Glibert,	&	Burkholder,	
2002;	 Dudgeon	 et	 al.,	 2006)	 and	 dependent	 upon	 frequently	 a	
source	of	their	environmental	stress	(Carpenter	et	al.,	1998;	Paerl	et	
al.,	2016).	Human‐dominated	environments,	such	as	farms,	tend	to	
cover	large	areas.	For	this	reason,	there	have	been	efforts	to	monitor	
the	state	of	streams	across	entire	watersheds	rather	than	individual	
streams	 (Grönroos	 et	 al.,	 2013;	 Socolar,	Gilroy,	Kunin,	&	Edwards,	
2016),	especially	in	light	of	the	importance	of	regional	versus	local	
measures	of	habitat	quality	with	stream	communities	(Stoll,	Breyer,	
Tonkin,	 Früh,	 &	 Haase,	 2016).	 These	 biomonitoring	 efforts	 have	
typically	 focused	 either	 on	 the	 presence	 of	 certain	 indicator	 taxa	
(Fausch,	Lyons,	Karr,	&	Angermeier,	1990;	Vieira,	Séneca,	Sérgio,	&	
Ferreira,	2012)	or	on	comparing	the	composition	of	communities	to	
an	 “undisturbed”	 reference	 (Kerans	&	Karr,	 1994;	 Lakew	&	Moog,	
2015;	Masese,	Raburu,	&	Muchiri,	2009;	Mazor	et	al.,	2015;	Silva,	
Herlihy,	Hughes,	&	Callisto,	2017;	Vile	&	Henning,	2018).

Historically,	bioassessments	of	stream	have	tended	to	be	based	on	
data	sets	composed	on	particular	communities,	such	as	BMIs	(Cuffney,	
Brightbill,	 May,	 &	 Waite,	 2010;	 Maxted	 et	 al.,	 2000),	 organized	 by	
morphological	 classifications.	 With	 the	 advent	 of	 high‐throughput	
metagenomic	 sequencing,	 there	 now	 exists	 the	 potential	 for	 rapidly	
constructing	a	picture	of	community	composition	with	greater	breadth	
(Elbrecht,	Vamos,	Meissner,	Aroviita,	&	Leese,	2017;	Stein	et	al.,	2014),	
taxonomic	resolution,	and	reliability	(Baird	&	Hajibabaei,	2012;	Sweeney,	
Battle,	Jackson,	&	Dapkey,	2011).	There	is	an	opportunity	then	to	create	
a	bioassessment	framework	for	BMI	communities	in	which	one	could	
readily	 incorporate	 community	 composition	 data	 constructed	 from	
metagenomic	methods	(Goodwin	et	al.,	2017;	Hering	et	al.,	2018).

Here,	 we	 propose	 the	 use	 of	 co‐occurrence	 networks	 to	 the	
task	of	ecological	monitoring.	These	networks	represent	the	 likeli‐
hoods,	represented	by	edges,	of	various	unique	categories	of	taxa,	
represented	by	nodes,	 co‐occurring	 in	a	 landscape	defined	by	 the	
spatial	extent	of	the	communities	sampled	and	studied.	These	net‐
works	 can	 be	 constructed	 from	basic	 ecological	 data,	 such	 as	 the	
presence	or	 absence	of	 a	 set	of	 taxonomic	groups	across	 a	 set	of	
sites	 (Arita,	 2016;	 Gotelli,	 2000;	 Morueta‐Holme	 et	 al.,	 2016).	

Co‐occurrence	networks	have	been	 investigated	as	a	means	of	 in‐
ferring	ecological	patterns,	particularly	when	direct	measurement	of	
ecological	 interactions	proves	 infeasible.	For	example,	 the	cluster‐
ing	of	microbial	species	into	distinct	modules	within	co‐occurrence	
networks	has	been	used	to	infer	physiochemical	niches	for	various	
prokaryotic	 groups	 (Fuhrman	&	 Steele,	 2008;	 Larsen	 &	Ormerod,	
2014;	Mandakovic	et	al.,	2018;	Ruan	et	al.,	2006;	Steele	et	al.,	2011;	
Widder	et	al.,	2014).	In	studies	of	larger	organisms,	topological	mea‐
sures	of	these	networks	have	also	been	used	to	 illustrate	a	 loss	 in	
both	 diversity	 and	 the	 number	 of	 significant	 co‐occurrences	 be‐
tween	reptiles	in	response	to	habitat	degradation	(Kay	et	al.,	2018).	
The	previous	diversity	of	 scenarios	where	 co‐occurrence	network	
topology	 has	 been	 used	 in	 ecological	 analysis	 then	 implies	 that	 it	
could	also	be	used	to	develop	a	framework	for	the	assessment	of	the	
biotic	 integrity	of	streams	across	an	entire	catchment	area	 (Ahn	&	
Kim,	2017;	Moyle	&	Randall,	1998;	Smith	&	Lamp,	2008).

We	hypothesized	a	number	of	 relationships	between	ecolog‐
ical	stress	and	five	measures	of	co‐occurrence	network	topology	
(Table	 1).	We	 chose	 these	measures	 based	 on	 prior	 analyses	 of	
co‐occurrence	networks	and	their	relationships	with	environmen‐
tal	 stress,	 for	 example,	 spatial	 aggregation	 of	 species	 across	 an	
environmentally	 heterogeneous	 landscape	 due	 to	 variations	 in	
their	 ecological	 attributes	 (Bellisario,	 Cerfolli,	 &	 Nascetti,	 2010;	
Borthagaray,	 Arim,	 &	 Marquet,	 2014).	 These	 hypotheses	 were	
then	 tested	 using	 co‐occurrence	 networks	 generated	 from	 the	
presence/absence	 data	 for	 benthic	 macroinvertebrates	 (BMIs)	
gathered	 in	 streams	 across	 the	 state	 of	California.	We	used	up‐
stream	 land	 use	 as	 our	measure	 of	 stress	 as	 it	was	 consistently	
measured	at	every	sample	sited,	and	has	been	found	to	be	a	broad	
measure	of	anthropogenic	stress	in	stream	communities	(Novotny,	
Bartošová,	 O'Reilly,	 &	 Ehlinger,	 2005;	 Vander	 Laan,	 Hawkins,	
Olson,	&	Hill,	2013).

1.1 | Ecological stress and co‐occurrence 
network topology

Prior	 observations	 of	 BMI	 communities	 under	 stress	 have	 shown	
two	trends:	first,	a	decline	in	taxonomic	richness	(Lenat	&	Crawford,	

Topological 
measure Ecological relevance

Hypothesized rela‐
tionship with stress

Network	size The	number	of	unique	types	of	taxa	across	a	
set	of	communities.

(−)

Connectance The	fraction	of	significant	co‐occurrences	real‐
ized	compared	to	theoretical	maximum	for	a	
network.

(+)

Mean	co‐occur‐
rence	strength

Correlation	strength	between	unique	types	of	
taxa.

(+)

Modularity How	strongly	patterns	of	co‐occurrence	are	
partitioned	into	subcommunities.

(+)

Degree 
heterogeneity

How	skewed	the	distribution	of	the	number	of	
co‐occurrences	per	unique	type	of	taxa	is	in	a	
community.

(−)

TA B L E  1  Topological	measures	of	
co‐occurrence	networks,	their	ecological	
relevance,	and	predicted	relationship	with	
an	increase	in	stress	due	to	upstream	land	
use:	network	size,	connectance,	mean	
co‐occurrence	strength,	modularity,	and	
degree	heterogeneity
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1994;	Stepenuck,	Crunkilton,	&	Wang,	2002;	Voß	&	Schäfer,	2017);	
and	second,	a	predominance	of	members	of	generalist	groups	with	
broad	ecological	niches	(Büchi	&	Vuilleumier,	2014;	Ducatez,	Tingley,	
&	Shine,	2014;	Mykrä	&	Heino,	2017).	Starting	with	these	trends,	we	
then	hypothesized	relationships	between	five	topological	measures	
and	ecological	stress.

1.1.1 | Network size

The	sizes	of	our	networks	were	determined	by	the	number	of	unique	
BMI	genera	present	within	a	given	set	of	sampling	sites.	Ecological	
stress	in	BMI	communities	has	been	found	to	be	associated	with	a	
decline	in	local	taxonomic	richness	(Ourso	&	Frenzel,	2003;	Paul	&	
Meyer,	2001;	Stepenuck	et	al.,	2002;	Wallace	&	Biastoch,	2016).	This	
is	especially	the	case	where	the	stress	 is	due	to	an	increase	in	up‐
stream	land	use	 (Allan,	2004;	Sponseller,	Benfield,	&	Valett,	2001;	
Stepenuck	 et	 al.,	 2002).	Given	 then	 the	 correspondence	 between	
the	taxonomic	richness	present	in	a	group	of	sites,	and	the	number	
of	 nodes	 in	 any	 resulting	 co‐occurrence	 network,	 we	 expect	 net‐
work	size	to	be	negatively	correlated	with	stress	(H1).

1.1.2 | Connectance

As	 the	number	of	edges	 in	a	variety	of	ecological	networks	may	be	
sensitive	to	the	number	of	unique	taxonomic	groups	(Dormann,	Frund,	
Bluthgen,	&	Gruber,	2009;	Goldwasser	&	Roughgarden,	1997;	Nielsen	
&	Bascompte,	2007),	we	then	also	calculated	the	connectance	 (Bell,	
King,	Bohan,	&	Symondson,	2010).	Generalists	are	expected	to	have	
a	greater	likelihood	of	co‐occurring	with	a	wider	variety	of	organisms	
(Fridley,	 Vandermast,	 Kuppinger,	 Manthey,	 &	 Peet,	 2007),	 and	 BMI	
communities	 in	 degraded	 environments	 tend	 to	 contain	 relatively	
more	groups	classified	as	generalist	(von	der	Ohe	&	Goedkoop,	2013;	
Suga	&	Tanaka,	2013).	We	then	expect	stress	to	be	positively	corre‐
lated	with	the	fraction	of	realized	versus	the	potential	number	of	edges	
(significant	co‐occurrences),	that	is,	the	connectance,	of	a	resulting	co‐
occurrence	network	(H2).	With	an	expected	increase	in	connectance	
associated	with	stress,	as	well	as	a	decline	in	number	of	nodes	(number	
of	unique	BMIs)	(Blann,	Anderson,	Sands,	&	Vondracek,	2009;	Shaver,	
Maxted,	Curtis,	&	Carter,	1994),	we	also	expect	a	decline	in	the	number	
of	edges.

1.1.3 | Mean co‐occurrence strength

To	make	additional	inferences	on	shifts	in	community	co‐occurrence	
patterns	in	relation	to	environmental	stress,	we	then	determined	the	
mean	 strength	 of	 the	 co‐occurrences	 found	within	 each	 network	
(Araújo	&	Rozenfeld,	2014).	For	this	value,	we	used	the	mean	value	
of	all	of	the	significant	correlations,	as	described	by	standardized	ef‐
fect‐size	scores	(Morueta‐Holme	et	al.,	2016),	within	a	network.	For	
any	two	unique	categories	of	organisms	found	in	a	group	of	commu‐
nities,	the	standardized	effect‐size	score	represents	the	conditional	
probability,	as	compared	to	a	null	model,	of	observing	one	organism	
given	the	presence	of	the	other.	The	mean	strength	of	correlations	

defining	significant	co‐occurrences	in	a	network	has	been	observed	
to	decline	with	the	number	of	edges	(Cazelles,	Araújo,	Mouquet,	&	
Gravel,	2016).	We	then	expect	the	number	of	edges	in	a	co‐occur‐
rence	network	to	decline	with	stress,	as	described	by	a	mean	meas‐
ure	of	upstream	land	use	within	a	watershed,	along	with	a	positive	
correlation	 between	 stress	 and	 the	mean	 co‐occurrence	 strength	
(H3).

1.1.4 | Modularity

Prior	evidence	suggests	shifts	 in	communities	 in	response	to	en‐
vironmental	 changes	 can	 be	 better	 illustrated	 not	 just	 from	 the	
number	or	 strength	of	 co‐occurrences,	 but	 from	 their	 structural	
arrangement	 (Fortuna	 et	 al.,	 2010;	 Thébault	 &	 Fontaine,	 2010;	
Tylianakis,	 Laliberté,	 Nielsen,	 &	 Bascompte,	 2010).	 To	 measure	
these	structural	changes	in	our	co‐occurrence	networks,	we	used	
the	topological	measures	of	modularity,	defined	here	as	the	pro‐
portion	of	edges	that	occur	within	subnetworks	less	the	expected	
proportion	 of	 such	 edges	 (Clauset,	 Newman,	 &	 Moore,	 2004).	
With	highly	modular	networks,	this	would	be	expected	to	lead	to	
a	 co‐occurrence	 network	 composed	 of	 sparsely	 interconnected	
subnetworks.

Prior	 observations	 of	 stressed	 watersheds	 have	 shown	 both	 a	
decline	in	local	diversity	and	a	rise	in	landscape	diversity	as	a	result	
of	declining	 taxonomic	 similarities	between	 individual	 stream	com‐
munities	(Hawkins,	Mykrä,	Oksanen,	&	Vander	Laan,	2015;	Simons,	
Mazor,	Stein,	&	Nuzhdin,	2019).	Given	these	prior	observations,	with	
regard	to	changes	in	patterns	of	diversity	across	watersheds	in	rela‐
tion	to	stress,	we	expect	the	taxonomic	“space”	for	co‐occurrences	
to	shrink	with	a	rise	in	stress	due	to	land	use	(Figure	1),	and	with	it	
a	trend	toward	the	fracturing	of	assembled	co‐occurrence	networks	
into	weakly	connected	subnetworks.	Similar	relationships,	between	
the	 modularity	 of	 co‐occurrence	 networks	 and	 ecological	 stress,	
have	also	been	observed	in	various	ecological	communities	(Hu	et	al.,	
2017;	Kay	et	al.,	2018).	To	assess	 these	 trends,	we	use	modularity,	
the	degree	to	which	networks	are	organized	into	clusters	of	weakly	
interconnected	subnetworks	(Barberán,	Bates,	Casamayor,	&	Fierer,	
2012;	 Clauset	 et	 al.,	 2004).	With	 stress	 expected	 to	 drive	 greater	
dissimilarity	between	communities,	we	then	expect	a	positive	 rela‐
tionship	between	the	modularity	of	co‐occurrence	networks	and	the	
levels	of	stress	experienced	by	the	communities	from	which	they	are	
constructed	(H4).

1.1.5 | Degree heterogeneity

To	 further	 investigate	 changes	 in	 the	 arrangement	 of	 co‐occur‐
rences,	we	determined	the	degree	heterogeneity	of	each	network,	
a	measure	of	how	skewed	 the	distribution	of	edges	per	node	 in	a	
network	is	toward	the	most	connected	nodes	(Yan,	Martinez,	&	Liu,	
2017).	The	distribution	of	edges	per	node	in	ecological	networks	can	
be	indicative	of	the	structure	of	ecological	communities,	such	as	the	
likelihood	of	co‐occurrence	between	generalist	and	specialist	 spe‐
cies	(Dormann	et	al.,	2009;	Williams,	2011).
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Prior	observations	of	 co‐occurrence	networks	assembled	 from	
communities	at	increasing	levels	of	anthropogenic	disturbance	have	
shown	 a	 trend	 toward	 the	 preferential	 loss	 of	 taxa	 of	 low	degree	
(Fournier,	 Mouly,	 &	 Gillet,	 2016;	 Tulloch	 et	 al.,	 2016).	 Additional	
trends	regarding	ecological	networks	have	also	displayed	trends	to‐
ward	the	loss	of	highly	keystone	taxa	due	to	environmental	stresses	
(Araújo	&	Rozenfeld,	2014;	Morriën	et	al.,	2017).	Given	both	of	these	
trends,	the	loss	of	taxa	of	both	high	and	low	degrees,	we	then	ex‐
pect	 co‐occurrence	 networks	 assembled	 by	 communities	 under	
stress	 have	 a	 narrow	 degree	 distribution	 and	 thus	 a	 low	 degree	
heterogeneity.

Using	 prior	 arguments	 regarding	 connectance	 (H2),	 we	 also	
make	an	additional	argument	regarding	our	expected	trends	in	the	
degree	with	respect	to	land	use.	With	ecological	networks,	connec‐
tance	has	been	found	to	be	negatively	correlated	with	the	skewness	
of	 their	degree	distributions	 (Poisot	&	Gravel,	 2014).	With	degree	
heterogeneity	being	a	measure	of	skew	for	the	degree	distribution	
of	a	network,	 this	 then	 implies	 that	 the	stress	experienced	by	 the	
communities	used	to	construct	co‐occurrence	networks	will	be	neg‐
atively	correlated	with	their	degree	heterogeneity	(H5).

2  | MATERIAL S AND METHODS

2.1 | Sample scope

The	 initial	 scope	of	data	covered	 in	 this	analysis	consists	of	4,984	
stream	samples	from	2,997	unique	geographic	locations	across	the	
state	of	California,	constituting	a	23‐year	period	(1994–2016)	(Mazor	
et	al.,	2015).	Every	sample	contains	 the	 following	data:	BMIs	enu‐
merated	and	sorted	to	a	standardized	level	(generally	a	genus‐level	
identification	except	chironomids,	which	were	identified	to	subfam‐
ily;	Richards	and	Rogers,	2006),	sample	site	altitude	in	meters,	U.S.	
Geological	Survey	Hydrologic	Unit	Code	8	level	watershed	(Seaber,	
Kapinos,	&	Knapp,	1987),	and	the	percent	developed	land	use	(ag‐
ricultural,	 urban,	 and	managed	 landscapes)	 within	 a	 5	 km	 clipped	
buffer	of	 the	watershed	upstream	of	 the	sampling	site,	and	a	bio‐
assessment	 index	score	 (California	Stream	Condition	 Index	 [CSCI])	
based	on	a	composite	of	taxonomic	and	functional	diversity	within	
BMI	assemblages	(Mazor	et	al.,	2015).

2.2 | Sample acquisitions and classifications

Approximately	55%	of	the	BMI	communities	were	sampled	through	
a	reach‐wide	protocol	of	Peck	et	al.	(2006),	with	the	remainder	col‐
lected	using	a	targeted	riffle	protocol,	both	of	which	produce	com‐
parable	data	(Gerth	&	Herlihy,	2006;	Herbst	&	Silldorff,	2006;	Rehn,	
Ode,	&	Hawkins,	2007).	Taxa	were	identified	to	one	of	334	genera,	
with	 each	 genus	 then	 assigned	 to	 one	 of	 eight	 functional	 feeding	
groups	using	CAMLnet	(Ode,	2003).	Of	these	eight	functional	feed‐
ing	groups,	we	could	conclusively	assign	five	of	them	to	either	gen‐
eralist	or	specialist	categories	(Barbour	et	al.,	2006;	De	Castro	et	al.,	
2016;	Feld	&	Hering,	2007;	Mihuc,	1997;	Rawer‐Jost,	Böhmer,	Blank,	
&	Rahmann,	2000).	Using	this	information,	we	produced	a	measure	
of	the	number	of	generalist	and	specialist	genera	per	sample	site.

2.3 | Calculating the CSCI

Our	measure	of	community	biotic	integrity	at	a	given	stream	sample	
site	was	done	using	the	CSCI.	This	index	compares	observed	taxa	and	
metrics	to	values	expected	under	undisturbed	reference	conditions	
based	on	site‐specific	landscape‐scale	environmental	variables,	such	
as	watershed	 area,	 geology,	 and	 climate	 (Mazor	 et	 al.,	 2015).	 This	
index	comprises	two	sets	of	measurements	using	a	standardized	tax‐
onomy	for	BMI	communities	(Richards	and	Rogers,	2006):	the	first	
being	a	ratio	of	observed‐to‐expected	taxa	(O/E),	and	the	second	a	
predictive	multimetric	index	(pMMI)	made	of	six	metrics	related	to	
ecological	structure	and	function	of	the	BMI	assemblage	describing	
the	composition	of	community	within	a	site.	The	CSCI	and	its	com‐
ponents	were	designed	to	have	minimal	influence	from	major	natural	
gradients.	This	in	turn	has	allowed	for	it	to	be	used	as	a	measure	of	
biological	conditions	with	a	consistent	meaning	in	different	environ‐
mental	settings	(Reynoldson,	Norris,	Resh,	Day,	&	Rosenberg,	2006;	
Hawkins,	Olson,	&	Hill,	2010).

2.4 | Land use

The	type	and	geographic	extent	of	 land	use	in	the	upstream	vicin‐
ity	 of	 each	 sampling	 site	 data	 is	 derived	 from	 the	 National	 Land	
Cover	Data	 set	 (NLCD)	 (Homer	 et	 al.,	 2007),	with	 developed	 land	

F I G U R E  1  An	example	of	a	stressor	
reducing	both	the	taxonomic	richness	of	
three	communities,	from	an	initial	state	
(α1,	α2,	α3)	to	a	degraded	state	(�

′

1
,�′

2
,	�′

3

),	and	the	number	of	unique	categories	
of	taxa	held	in	common	between	
communities
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cover	measured	by	the	total	percent	of	 land	cover	 in	a	designated	
area	dedicated	 to	agriculture,	urbanization,	or	otherwise	managed	
vegetative	landscapes	such	as	golf	courses.	The	designated	area	for	
calculating	percent	developed	land	cover	at	each	site	is	defined	using	
a	5	km	watershed‐clipped	buffer	upstream	of	a	stream	sampling	site	
using	ArcGIS	tools	 (version	10.3;	Environmental	Systems	Research	
Institute)	 (Mazor	et	al.,	2015).	The	values	 for	 land	use	were	calcu‐
lated	from	NLCD	measurements	acquired	in	the	year	2000,	though	
it	should	be	noted	that	the	sample	sites	in	our	study	were	located	in	
areas	where	 the	percent	developed	 land	use	was	not	 significantly	
correlated	with	time	over	the	duration	of	this	study	(r	=	−.02,	p	=	.27).

2.5 | Sample group selection

We	first	filtered	our	initial	data	by	selecting	watersheds	with	15	or	
more	unique	samples.	This	filtering	reduced	our	overall	data	set	from	
4,984	to	4,619	unique	samples	in	2,694	unique	geographic	locations	
across	 67	 watersheds,	 while	 containing	 sample	 groups	 with	 suf‐
ficient	data	density	for	co‐occurrence	network	construction.	From	
these	remaining	samples,	we	then	divided	both	upstream	land	use	
and	 sample	 site	 altitude	 into	 quintiles.	 Samples	 for	 network	 gen‐
eration	 were	 then	 selected	 by	 randomly	 subsampling	 10	 samples	
within	 each	watershed	within	 quintiles	 of	 upstream	 land	 use	 and	
sample	 site	 altitude.	 For	 each	 group	of	10	 samples,	we	 calculated	
the	mean	sample	site	altitude	(altitude)	and	the	mean	percent	devel‐
oped	upstream	land	use	(land	use),	and	for	mean	geographic	sepa‐
ration	distance	in	meters	between	samples	(distance),	we	used	the	
distm	function	within	the	R	package	geosphere	(Hijmans,	Williams,	&	
Vennes,	2012).	To	obtain	a	measure	of	environmental	heterogeneity	
within	 each	 sample	 group,	we	 also	 calculated	 the	 standard	 devia‐
tions	on	altitude	and	land	use.

2.6 | Network construction

Co‐occurrence	networks	were	then	constructed	using	the	R	package	
netassoc	 (Morueta‐Holme	et	al.,	2016),	with	 the	presence/absence	
site	by	BMI	genera	 as	 input.	We	chose	 to	 convert	our	 abundance	
data	 to	 the	 presence/absence	 as	 the	most	 conservative	 approach	
with	 representing	 our	 assembled	 database	 of	 BMI	 communities.	
Observed	co‐occurrences	were	compared	against	100	randomized	
null	communities	with	the	same	taxonomic	richness	as	the	observed	
community.	 The	 resulting	 edges	were	 filtered	 so	only	 correlations	
representing	co‐occurrences,	as	calculated	by	standardized	effect‐
size	scores,	with	a	significance	and	false	discovery	rate	less	that	10–4 
were	kept.	This	process	was	repeated	100	times,	with	a	set	of	8,208	
co‐occurrence	networks	kept	for	analysis.

2.7 | Topological measures

Topological	 measures	 of	 our	 networks,	 such	 as	 size	 and	 con‐
nectance,	were	calculated	using	the	packages	igraph	(v.1.2.2)	(Csárdi	
&	Nepusz,	2014)	and	network	(v.1.13.0.1)	(Butts,	2015)	in	R	(v.3.5.1).	
The	mean	co‐occurrence	strength	values	were	calculated,	using	the	

R	 package	netassoc	 (Morueta‐Holme	 et	 al.,	 2016),	 as	 the	 network	
mean	of	the	significant	standardized	effect‐size	scores.	Modularity,	
defined	as	the	proportion	of	edges	that	occur	within	subnetworks	
less	the	expected	proportion	of	such	edges,	was	calculated	using	the	
modularity	function	within	the	igraph	package	(Clauset	et	al.,	2004).	
Degree	heterogeneity	was	calculated	as	𝜁 = <k2>

<k>2
,	where	k	represents	

the	mean	number	of	edges	per	node	in	a	network	(Yan	et	al.,	2017).

2.8 | Modeled biotic integrity index

Using	the	 lm	function	in	the	stats	R	package	(v3.5.1,	R	Core	Team,	
2018),	we	constructed	a	best‐fit	 linear	model	 to	predict	 the	mean	
CSCI	score	of	a	set	of	samples,	our	measure	of	biotic	integrity,	given	
the	topological	measures	of	their	co‐occurrence	networks.	We	then	
applied	a	backwards	elimination	method	in	order	to	select	topologi‐
cal	measures,	which	make	 a	 significant	 contribution	 to	 our	model	
(Pearman,	1997;	Snodgrass,	1997).	 In	comparing	the	AIC	scores	of	
linear	 models	 after	 the	 removal	 of	 each	 topological	 measure,	 we	
found	all	five	were	significant.	We	calculated	coefficients	for	our	lin‐
ear	models	using	a	10‐fold	cross‐validation,	with	100	repeats,	within	
the	 “train”	 function	within	 the	R	package	 “caret”	 (Kuhn,	2008).	To	
determine	 the	 relative	 importance	 of	 each	 topological	measure	 in	
our	linear	models,	and	to	adjust	for	any	collinearity	between	meas‐
ures	as	a	result,	the	function	calc.relimp	was	used	within	the	relaimpo 
R	package	 (Grömping,	2015).	The	 relative	 importance	of	 land	use,	
altitude,	and	distance	in	describing	variations	in	both	the	mean	CSCI	
score	 and	our	modeled	CSCI	 scores	was	 also	done	using	 the	calc.
relimp	function.

3  | RESULTS

In	 analyzing	8,208	 co‐occurrence	networks,	 generated	 from	 com‐
munities	 collected	 from	within‐watershed	 groups	with	 similar	 val‐
ues	for	sample	site	land	use	and	altitude,	we	found	general	support	
(Table	2)	for	our	hypotheses	(Table	1).

3.1 | Trends in co‐occurrence network topology

The	size	of	our	co‐occurrence	networks	declined	significantly	with	
a	rise	in	land	use	(r	=	−.81,	p < 10–4).	This	reflects	a	general	decline	
in	both	 the	number	of	genera	 found	 in	an	 individual	 sampling	site	
(r	 =	 −.52,	 p < 10–4)	 and	 the	 number	 of	 functional	 feeding	 groups	
(r	=	−.44,	p < 10–4),	in	relation	to	land	use.

While	 network	 size	 was	 found	 to	 have	 a	 strong	 negative	 cor‐
relation	with	 land	 use,	 along	with	 the	mean	 number	 of	 edges	 per	
node	 (r	 =	 −.56,	p < 10–4),	we	 still	 found	 that	 connectance	 tended	
to	be	larger	in	co‐occurrence	networks	constructed	from	groups	of	
stressed	communities	with	a	rise	in	land	use	(r	=	.31,	p < 10–4).	This	
positive	association	between	stress	and	connectance	appears	to	re‐
flect	 a	 greater	 relative	 decline	 in	 the	 number	 of	 nodes	 relative	 to	
land	use	(r	=	−.81,	p < 10–4)	than	with	the	number	of	edges	(r	=	−.70,	
p < 10–4).
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These	trends,	a	rise	in	connectance	despite	a	decline	in	network	
size,	may	also	reflect	our	observations	regarding	the	relative	abun‐
dance	 of	 unique	 genera	 classified	 by	 membership	 of	 a	 generalist	
or	 specialist	 functional	 feeding	 groups	 to	 land	 use.	We	 found	 the	
proportion	of	genera	from	specialist	functional	feeding	groups	(e.g.,	
shredders	and	scrapers)	tended	to	decline	with	land	use,	while	those	
of	generalist	functional	feeding	groups	(e.g.,	gatherers,	filterers,	and	
omnivores)	tended	to	increase	with	land	use	(Table	3).

In	addition	to	a	 rise	 in	connectance,	networks	assembled	from	
communities	with	higher	 land	use	were	on	average	 found	 to	have	
stronger	co‐occurrences	(r	=	.25,	p < 10–4).	We	also	found	evidence	of	
a	negative	relationship	between	both	mean	co‐occurrence	strength	
and	the	number	of	co‐occurrences	(r	=	−.32,	p < 10–4),	and	connec‐
tance	(r	=	−.24,	p < 10–4).	This	potentially	indicates	a	preferential	loss	
of	weak	co‐occurrences	 in	networks	assembled	from	communities	
under	high	levels	of	land	use.

Weaker	 trends	were	observed	with	 regard	 to	variables,	modu‐
larity	and	degree	heterogeneity,	which	describe	structural	arrange‐
ments	 of	 co‐occurrences.	 The	 mean	 modularity	 of	 our	 networks	
(0.35)	was	 found	 to	be	both	greater	 than	 the	common	modularity	
threshold	 of	 0.3	 (Newman	&	Girvan,	 2004)	 and	 greater	 than	 that	
of	 our	 randomized	 null	 co‐occurrence	 networks	 (0.22).	 Using	 a	
Wilcoxon	 signed‐rank	 test,	 we	 found	 additional	 evidence	 for	 sig‐
nificant	nonrandom	structuring	in	our	networks	as	their	modularity	
values	were	significantly	larger	than	their	randomized	null	counter‐
parts	 (p < 10–4).	However,	despite	evidence	of	significant	network	
modularity	there	was	only	a	relatively	weak	positive	correlation	with	
its	value	and	land	use	(r	=	.11,	p < 10–4).

Across	 our	watersheds,	we	observe	 a	 trend	where	 land	 use	 is	
associated	with	 a	 slight	 decline	 in	 degree	 heterogeneity	 (r	 =	 −.10,	
p < 10–4).	However,	we	did	 find	support	 for	our	hypothesis	 that	a	
decline	 in	 degree	 heterogeneity	would	 be	 driven,	 at	 least	 in	 part,	

by	a	 rise	 in	connectance	 (r	=	−.60,	p < 10–4).	Similar	 to	our	 results	
with	modularity,	we	found	evidence,	using	a	Wilcoxon	signed‐rank	
test,	for	significantly	higher	values	for	degree	heterogeneity	in	our	
co‐occurrence	 networks	 than	 their	 randomized	 null	 counterparts	
(p < 10–4).	The	higher	mean	degree	heterogeneity	of	our	co‐occur‐
rence	 networks	 (1.82),	 as	 compared	 to	 that	 of	 the	 null	 networks	
(1.14),	 indicates	our	networks	are	skewed	more	toward	a	relatively	
small	 number	 of	 highly	 connected	 nodes	 than	what	would	 be	 ex‐
pected	by	chance.

3.2 | Linear models of watershed biotic integrity 
using co‐occurrence network topology

Using	 five	measures	 of	 co‐occurrence	 network	 topology,	 network	
size	(N),	connectance	(C),	mean	co‐occurrence	strength	(S),	modular‐
ity	(M),	and	degree	heterogeneity	(ζ),	a	linear	model	was	constructed	
to	best	predict	the	mean	value	of	the	CSCI	score	for	a	set	of	samples	
(Table	2).	The	relationship	between	these	topological	measures	and	
our	first	modeled	mean	CSCI	score	per	sample	group	is	as	follows:

This	modeled	 index	of	watershed	biotic	 integrity	was	found	to	
be	strongly	correlated	with	the	observed	variation	in	the	mean	value	
of	the	CSCI	score	for	a	set	of	samples	(Figure	2).	After	performing	
a	10‐fold	cross‐validation,	this	model	could	still	account	for	approx‐
imately	66%	of	the	observed	variation	in	the	mean	CSCI	score.	This	
modeled	biotic	integrity	index	was	also	found	to	vary	in	accordance	
with	altitude,	land	use,	and	distance	for	a	set	of	samples	in	a	similar	
fashion	as	the	mean	CSCI	score,	although	this	first	modeled	 index	
was	less	sensitive	to	altitude	and	the	standard	deviation	on	land	use	
than	the	mean	CSCI	score	(Table	4).	We	also	observed	that	most	of	
the	variations	observed	in	both	the	mean	and	our	first	modeled	CSCI	

MeanCSCI=0.3+4.6×10
−3

×N−1.2×C−1.8×10
−2

×S+0.3×M+0.1×�

Topological 
measure

F (1, 8,208)
(Model 1)

Relative importance 
(%)
(Model 1)

F (1, 8,208)
(Model 2)

Relative importance 
(%)
(Model 2)

Network	size 1.4	×	104 44.8 NA NA

Connectance 704.3 10.0 2,086 19.3

Modularity 151.4 1.3 39.9 1.8

Mean	co‐occur‐
rence	strength

868.6 7.5 2,462 13.4

Degree 
heterogeneity

91.6 2.7 387.1 3.3

TA B L E  2  The	relative	importance	
of	the	topological	measures	used	in	our	
modeled	stream	health	indices	(p < 10–4)

 

Generalist functional feeding groups
Specialist functional feed‐
ing groups

Gatherers Filterers Omnivores Scrapers Shredders

Coefficient	
(land	use)

1.6	×	10–3 1.5	×	10–4 3.5	×	10–4 −9.0	×	10–5 
(p < 10–2)

−1.5	×	10–4

Coefficient	
(altitude)

8.0	×	10–6 
(p < 10–2)

−1.3	×	10–5 −5.8	×	10–6 −9.0	×	10–5 1.1	×	10–5

TA B L E  3  Coefficients	of	sample	site	
altitude	and	land	use	in	linear	models	
describing	linear	models	of	the	percent	
of	genera	of	BMIs	per	sample	site	per	
functional	feeding	group	(All	p < 10–4 
unless	otherwise	noted)
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scores	were	driven	by	land	use	and	the	standard	deviation	on	land	
use	(Table	4).

Both	network	size	and	the	CSCI,	our	measure	of	biotic	integrity,	
represent	measures	 based	 on	 the	 taxonomic	 diversity	 of	 sampled	
communities.	 To	 focus	on	 the	potential	 role	 of	 the	 characteristics	
and	 configuration	of	 our	 co‐occurrences,	 rather	 than	measures	 of	
local	diversity	alone,	we	then	generated	a	second	model	of	the	mean	
CSCI	with	network	size	 removed	from	our	 list	of	 topological	mea‐
sures	(Tables	2	and	4).	After	performing	a	10‐fold	cross‐validation,	
we	found	this	second	linear	model	can	account	for	38%	of	the	ob‐
served	variation	in	the	mean	CSCI	score	per	group	of	samples,	and	it	
exhibits	a	similar	trend	compared	to	the	mean	CSCI	as	with	our	first	
model	(Figure	3).

4  | DISCUSSION

We	 found	changes	 in	patterns	of	 co‐occurrence	between	genera	
of	BMIs	can	play	a	role	in	describing	effects	of	land	use	on	regional	
measures	of	biotic	integrity.	This	is	reflected	in	evidence	support‐
ing	our	hypotheses	 regarding	 the	 relationships	between	 land	use	
and	the	connectance	of	our	co‐occurrence	networks	(H2),	and	the	
mean	strength	of	 their	co‐occurrences	 (H3).	Evidence	supporting	
our	hypothesis	regarding	a	negative	correlation	between	network	
size	and	land	use	(H1)	reflects	a	well‐established	link	between	envi‐
ronmental	stress	and	both	the	loss	of	biodiversity	and	measures	of	
biotic	integrity	(Freeman	&	Schorr,	2004;	Garie	&	McIntosh,	1986;	
Jun	et	 al.,	 2016,	 2011).	We	 find	 the	 importance	of	 network	 size,	
along	with	network	connectance	and	co‐occurrence	strength,	re‐
inforces	prior	observations	on	the	importance	of	both	regional	and	
local	measures	of	environmental	quality	in	BMI	communities	(Stoll	
et	al.,	2016).

Trends	relating	the	arrangement	of	co‐occurrences	within	of	our	
networks,	as	described	by	our	hypotheses	regarding	modularity	(H4)	
and	degree	heterogeneity	(H5),	were	less	clear.	This	may	reflect	lim‐
itations	in	our	use	of	co‐occurrence	rather	than	co‐abundance	net‐
works.	However,	prior	evidence	from	assessments	of	biotic	integrity	

for	 stream	 communities	 of	 BMIs	 has	 shown	 a	 strong	 correlation	
between	 results	 generated	 using	 community	 data	 sets	 described	
through	the	abundance	or	presence/absence	(Beentjes,	Speksnijder,	
Schilthuizen,	Schaub,	&	Hoorn,	2018).	The	more	fundamental	issue	
may	stem	from	differences	between	networks	assembled	from	co‐
occurrences	rather	than	interactions.

Analyses	of	co‐occurrence	networks	have	been	used	to	 iden‐
tify	 candidate	 keystone	 taxa	 (Berry	 &	 Widder,	 2014),	 potential	
species	interactions	(Veech,	2013),	and	the	simplification	of	com‐
munities	 under	 ecological	 stress	 (Araújo,	 Rozenfeld,	 Rahbek,	 &	
Marquet,	2011).	Though	inferring	co‐occurrences,	rather	than	ver‐
ifying	interactions,	is	a	far	more	tractable	problem	in	complex	eco‐
logical	systems,	we	must	acknowledge	that	co‐occurrences	do	not	
necessarily	imply	interactions.	An	underlying	caveat	with	analyses	
involving	co‐occurrences	is	that	various	types	of	ecological	inter‐
actions,	such	as	mutualism	or	similar	environmental	requirements,	
may	 produce	 similar	 patterns	 of	 co‐occurrence	 (Ovaskainen,	
Hottola,	 &	 Siitonen,	 2010).	 In	 the	 context	 of	 our	 study,	 we	 ob‐
served	 trends	 between	 land	 use	 and	 both	 network	 connectance	
and	 co‐occurrence	 strength	 with	 our	 BMI	 communities,	 which	
may	reflect	changes	 in	patterns	of	 interaction	between	members	
of	 generalist	 genera.	However,	 our	 co‐occurrence	networks	may	
also	 be	 incorporating	 information	 beyond	 potential	 interactions	
between	species,	such	as	the	tendency	of	organisms	with	similar	
ecological	niches	 to	 form	co‐occurrences,	or	 for	dispersal	 limita‐
tion	to	tend	to	limit	them	(Morueta‐Holme	et	al.,	2016).	While	co‐
occurrence	networks,	such	as	the	ones	we	have	constructed,	may	
only	describe	potential	 interactions,	 they	 can	 still	 provide	useful	
indications	 of	 changes	 in	 ecological	 systems	 (Freilich,	 Wieters,	
Broitman,	Marquet,	&	Navarrete,	2018).

Even	with	these	limitations	we	found,	a	simple	linear	model	com‐
posed	 of	 topological	 measures	 of	 co‐occurrence	 networks	 could	
describe	 a	 significant	 portion	 of	 the	 observed	 variation	 in	 the	 bi‐
otic	 integrity	 of	 our	BMI	 communities	 (Table	 4).	Analysis	 of	 these	
models	also	suggests	the	topology	our	networks	reflect	more	than	
changes	in	local	biodiversity.	While	network	size	contributes	a	size‐
able	portion	of	the	observed	variation	in	biotic	integrity,	its	removal	
still	leaves	more	than	half	of	the	remaining	explanatory	power	of	our	
linear	model	of	the	mean	CSCI	score	(Table	4).	This	suggests	that	we	
are	not	simply	observing	a	decline	 in	 local	diversity	 in	response	to	
stress	but	a	change	in	landscape	diversity	as	well.

Variations	 in	 our	models	 appeared	 to	 be	 driven	more	 by	 both	
land	use	and	the	standard	deviation	on	land	use	than	either	altitude	
or	geographic	separation	distance	 (Table	4).	This	 reflects	our	prior	
observations	of	this	system	(Simons	et	al.,	2019),	whereby	both	the	
mean	 and	 standard	 deviation	 of	 land	 use	 are	 strongly	 correlated	
with	degree	of	taxonomic	dissimilarity	between	communities.	These	
results	are	also	 in	agreement	with	studies	of	other	BMI	communi‐
ties	where	measures	of	environmental	heterogeneity,	such	as	vari‐
ations	 in	 upstream	 land	 use	 between	 sample	 sites	 (Astorga	 et	 al.,	
2012;	Sponseller	et	al.,	2001),	appear	to	drive	significant	changes	in	
patterns	of	co‐occurrence	(Heino,	2013;	Larsen	&	Ormerod,	2014;	
Shostell	&	Williams,	2007;	Zhang	et	al.,	2014).

F I G U R E  2  A	comparison	of	the	first	modeled	CSCI	and	mean	
CSCI	colored	by	land	use	(r	=	.81,	p < 10–4).	CSCI,	California	Stream	
Condition	Index
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These	 trends	 may	 reflect	 co‐occurrence	 patterns	 unique	 to	
stream	 communities	 of	 BMIs.	 However,	 the	 framework	 we	 have	
used	to	test	these	hypotheses	is	not	dependent	upon	the	particular	
identities	of	taxa	present	in	communities	and	may	have	the	potential	
to	be	applied	to	other	systems.	Assessments	of	the	biotic	integrity	
of	freshwater	ecosystems	have	been	carried	out	at	a	variety	of	spa‐
tial	scales	(Booth	et	al.,	2004;	King,	Baker,	Kazyak,	&	Weller,	2011;	
Pratt	&	Chang,	2012),	regions	(Jun,	Won,	Lee,	Kong,	&	Hwang,	2012;	
Waite	et	al.,	2010;	Weigel	&	Dimick,	2011),	and	biological	commu‐
nities	(Ferreira,	Paiva,	&	Callisto,	2011;	Fetscher	et	al.,	2014;	Zalack,	
Smucker,	&	Vis,	2010).	With	co‐occurrence	networks,	we	then	as‐
sert	the	potential	for	the	development	of	a	more	flexible	framework	
for	the	monitoring	of	freshwater	ecosystems,	and	find	this	direction	
warrants	further	research.

4.1 | Synthesis and future directions

It	 is	 increasingly	 becoming	 feasible	 to	 characterize	 entire	 eco‐
logical	communities,	from	prokaryotes	through	metazoa,	through	
metagenomic	approaches	(Baird	&	Hajibabaei,	2012;	Bohmann	et	
al.,	2014;	Deiner,	Fronhofer,	Mächler,	Walser,	&	Altermatt,	2016;	
Jackson	et	al.,	2016).	With	the	ability	to	generate	such	broad	and	
deep	pictures	of	multiple	communities,	 there	 is	a	commensurate	
need	to	create	a	framework,	which	could	evaluate	in	general	pat‐
terns	in	ecological	systems	in	order	to	evaluate	the	biotic	integrity	
of	 ecosystems.	 Using	 these	 stream	 communities	 as	 an	 example,	
our	study	suggests	significant	relationships	exist	between	ecologi‐
cal	stress	and	the	structure	of	co‐occurrence	networks.	We	found	
our	co‐occurrence	networks	reflected	changes	in	the	structure	of	
within‐watershed	communities	in	accordance	with	both	the	mean	
and	 standard	 deviation	 on	 land	 use	 and	 altitude,	 potentially	 re‐
flecting	segregation	 in	BMI	communities	with	a	 rise	 in	measures	
of	 environmental	 heterogeneity.	 Using	 only	 a	 small	 number	 of	
topological	measures,	we	were	also	able	to	construct	a	simple	lin‐
ear	model	with	a	close	correspondence	to	a	well‐accepted	 index	
of	biotic	integrity.	These	networks	are	based	on	patterns	derived	
from	 the	 co‐occurrences	 of	 unique	 organisms,	 rather	 than	 their	
identities.	For	 such	 reasons,	we	believe	co‐occurrence	networks	
may	have	the	potential	to	describe	the	biotic	integrity	of	a	diverse	
array	of	ecological	communities.
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 CSCI
Modeled 
index 1 Modeled index 2

Proportion	of	variation	due	to	altitude,	F 
(1,	8,208)

690.5 9.0	(p < 10–2) 189.2

Proportion	of	variation	due	to	the	stand‐
ard	deviation	on	altitude,	F (1,	8,208)

26.6 51.8 302.9

Proportion	of	variation	due	to	land	use,	
F (1,	8,208)

2.2	×	104 1.6	×	104 3,082

Proportion	of	variation	due	to	the	stand‐
ard	deviation	on	land	use,	F (1,	8,208)

776.2 212.5 217.7

Proportion	of	variation	due	to	distance,	
F (1,	8,208)

28.4 168.4 2.8

Relative	importance	of	altitude	(%) 11.6 5.2 7.3

Relative	importance	of	the	standard	
deviation	on	altitude	(%)

7.4 4.1 2.7

Relative	importance	of	land	use	(%) 33.6 35.2 11.9

Relative	importance	of	the	standard	
deviation	on	land	use	(%)

20.7 18.4 9.3

Relative	importance	of	distance	(%) 1.0 3.3 0.4

Proportion	of	variance	explained	by	
model	(%)

74.2 66.3 31.6

Abbreviation:	CSCI,	California	Stream	Condition	Index.

TA B L E  4  The	relative	importance	of	
altitude,	standard	deviation	on	altitude,	
land	use,	standard	deviation	of	land	use,	
and	distance	in	describing	our	linear	
models	of	the	mean	value	of	the	CSCI	and	
modeled	index	per	HUC	8	watershed	(All	
p < 10–4	unless	otherwise	noted)

F I G U R E  3  A	comparison	of	the	second	modeled	CSCI	and	mean	
CSCI	colored	by	land	use	(r	=	.61,	p < 10–4).	CSCI,	California	Stream	
Condition	Index
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