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Abstract
Introduction  Infants can experience pain similar to 
adults, and improperly controlled pain stimuli could 
have a long-term adverse impact on their cognitive and 
neurological function development. The biggest challenge 
of achieving good infant pain control is obtaining objective 
pain assessment when direct communication is lacking. 
For years, computer scientists have developed many 
different facial expression-centred machine learning 
(ML) methods for automatic infant pain assessment. 
Many of these ML algorithms showed rather satisfactory 
performance and have demonstrated good potential to 
be further enhanced for implementation in real-world 
clinical settings. To date, there is no prior research 
that has systematically summarised and compared the 
performance of these ML algorithms. Our proposed meta-
analysis will provide the first comprehensive evidence on 
this topic to guide further ML algorithm development and 
clinical implementation.
Methods and analysis  We will search four major public 
electronic medical and computer science databases 
including Web of Science, PubMed, Embase and IEEE 
Xplore Digital Library from January 2008 to present. All 
the articles will be imported into the Covidence platform 
for study eligibility screening and inclusion. Study-level 
extracted data will be stored in the Systematic Review 
Data Repository online platform. The primary outcome will 
be the prediction accuracy of the ML model. The secondary 
outcomes will be model utility measures including 
generalisability, interpretability and computational 
efficiency. All extracted outcome data will be imported into 
RevMan V.5.2.1 software and R V3.3.2 for analysis. Risk of 
bias will be summarised using the latest Prediction Model 
Study Risk of Bias Assessment Tool.
Ethics and dissemination  This systematic review and 
meta-analysis will only use study-level data from public 
databases, thus formal ethical approval is not required. 
The results will be disseminated in the form of an official 
publication in a peer-reviewed journal and/or presentation 
at relevant conferences.
PROSPERO registration number  CRD42019118784.

Introduction
Neonates and infants feel and experience 
pain much like or even more sensitively than 
adults, but their pain management is under-
emphasised even for today.1 2 Historically, 
some clinicians and scientists believed that 
babies’ brains are not fully developed enough 
to experience pain as adults do. Combined 
with the fear of usage of pain medications 
in infants due to potential side effects, pain 
relief treatments are inadequately provided to 
infants and neonates receiving painful proce-
dures despite the fact that these treatments 
are provided to elder children and adults 
every day.3–7 However, previous research 
has found that individuals’ pain experience 
during infancy can have both short-term 

Strengths and limitations of this study

►► This research will be the first systematic review 
and meta-analysis quantitatively comparing accu-
racy among current facial expression-based ma-
chine learning neonatal and infant pain prediction 
algorithms.

►► This research will be the first study to compre-
hensively assess accuracy, generalisability, inter-
pretability and computational efficiency of these 
machine learning algorithms by both model char-
acteristics (eg, algorithm type, task type, data input 
format, etc) and patient/procedure characteristics 
(eg, age, disease type, procedure type, etc).

►► The major limitation of this study will be the poten-
tial clustering effects due to the limited number of 
infant facial expression databases collected in real-
world clinical environments or controlled trials avail-
able for modelling research.

►► Many of these machine learning prediction studies 
will use the same database for modelling, and we 
will use mixed-effects meta-regression to address 
this clustering effect.
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and long-term adverse influences on their cognitive 
and neurological function development.8–11 Therefore, 
appropriate pain relief for infants is a necessity, and there 
is a need for development of a systematic guideline for 
infant and neonatal pain management.

The biggest challenge to developing an infant and 
neonatal pain management guideline is the accurate 
measurement of pain. Infant pain is known to be diffi-
cult to evaluate because infants cannot accurately assess 
and verbally communicate their pain experience. The 
current evaluation system heavily relies on observer-based 
measurements obtained by trained clinicians and nurses. 
These observer-based assessment tools commonly inte-
grate both physiological variations (eg, breathing pattern, 
heart rate, oxygen saturation, etc) and behavioural 
changes (eg, facial expression, crying, body activity, 
sleeping state, etc), and a summarised score is calculated 
based on clinical observations and physiological moni-
toring results.12–14 In the last decades, several indicator-
based pain scale systems have been developed and 
validated for infant and neonatal pain assessment.15–20 
Nevertheless, these pain scale-based systems have two 
major limitations: subjectivity and human resource 
expense. Because pain measures are obtained by human 
observers, the pain assessment process is inevitably subjec-
tive and suffers from observer bias.21 22 Depending on the 
practitioner’s clinical experience, training level and even 
spontaneous or personalised factors, their assessment 
results can be vastly different and inaccurate, which could 
be either overly sensitive or fail to discriminate between 
different levels of pain or pain from normal physiolog-
ical activities (eg, discomfort, hunger, stress, etc). In 
addition, these tools are human-resource intensive and 
require a considerable amount of training to master. 
Under scenarios when continuous frequent pain moni-
toring is needed (eg, postoperation, necrotising entero-
colitis, abdominal colic, epidermolysis bullosa, etc), the 
traditional human observer-based assessment method is 
inefficient and resource-intensive.

In the emerging field of computer vision and 
emotion research, human facial expression, a prom-
ising behavioural indicator for emotion and pain recog-
nition, has been studied and used for automated infant 
pain assessment for years.23 Modern data scientists can 
use state-of-the-art machine learning (ML) algorithms 
to extract, track and analyse human facial expressions 
from recorded images and video data to predict pain and 
emotions. Compared with traditional observer-based pain 
scale systems, the ML algorithm has a unique opportunity 
to provide objective and continuous pain detection and 
assessments for neonates and infants. The first published 
ML-based infant pain evaluation study, known as the Clas-
sification of Pain Expressions (COPE) project, collected 
facial image data in four routine clinical procedures and 
used three different face classifiers (principal component 
analysis, linear discriminant analysis and support vector 
machine) to recognise infant painful expressions.24 Since 
then, researchers have developed several different ML 

methods (eg, Probabilistic Neural Network, Gaussian, 
Nearest Mean, Convolutional Neural Networks, Boosted 
Gabor Features, etc) to classify pain/no-pain images using 
COPE or similar databases, and many have shown satis-
factory performance.25–28 In recent years, there have also 
been several modern projects directly analysing infant 
facial video sequences using deep learning methods to 
recognise and assess pain, which have also presented 
considerable high accuracy.29–31 ML-based automated 
pain assessment algorithms have the potential to control 
observer/recording bias from human observations, help 
reduce the training costs and relieve human resource 
burden when continuous or high-frequency clinical pain 
measurements are required. However, no research has 
quantitatively analysed and compared the performance 
of these pain prediction methods. In addition, these 
computational algorithms are rarely published in general 
or professional medical journals, therefore their clinical 
utility and interpretability are limited. In our proposed 
project, we will conduct a systematic review and meta-
analysis to provide summarised and quantitative evidence 
on the performance of facial expression-based ML 
methods for infant pain assessment.

Objectives
The primary objective of our study is to assess the accu-
racy (outcome) of automatic facial expression ML algo-
rithms (test measurement method) compared with 
various indicator-based pain assessments (gold-standard) 
in assessing pain intensity for infants experiencing pain 
(population). Additionally, we plan to perform subgroup 
analyses to compare model accuracy, generalisability, 
interpretability and computational efficiency by both 
model and study population characteristics.

Methods and analysis
Our study team prepared this study protocol following 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis Protocols checklist.32

Research question development (PICO/PECO)
Our research question was developed based on the 
PICO/PECO research framework.33 Details are reported 
in table 1.

Eligibility criteria
Our proposed project will systematically search and 
include all eligible ML methodological and application 
studies that use facial information to automatically assess 
pain among infants. The population of our study will be 
infants experiencing pain. Infants will be defined as young 
children no more than 12 months, including newborn or 
neonate, full term, premature and postmature infants. 
Infant pain can be heel stick, arterial puncture, intrave-
nous cannula, finger stick, nasal aspiration or postop-
eration pain. We intend to include computer science 
algorithms papers (methodology and performance evalu-
ation), clinical research (application studies), systematic 
reviews and meta-analysis research for analysis. Regular 
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Table 1  PICO/PECO research question development

Name Description

Population Infants experiencing pain.

Intervention/
Exposure

The intervention/exposure will be pain assessment 
using automatic facial recognition ML algorithms.

Control The study control will be indicator-based pain 
assessment gold-standard (eg, pain scale, pain 
score and category).

Outcome Primary outcome:
Model accuracy by predicted assessment 
measures type:
1.	 Numeric score: mean SE or equivalence;
2.	 Categorical pain degree (yes/no; no/moderate/

severe):
Concordance statistic (AUC ROC) or equivalence.

Secondary outcomes:
1.	 Generalisability;
2.	 Interpretability;
3.	 Computational efficiency and related costs.

Definition of infants: infants will be defined as young children no more 
than 12 months, including newborn or neonate, full term, premature 
and postmature infants.
AUC ROC, area under the curve for receiver operating characteristic 
curve.

reviews and qualitative studies will be excluded from the 
analysis, but their reference lists will be screened to iden-
tify potential eligible studies. Systematic review and meta-
analysis will be used for the extraction of citations for 
reducing publication bias. The study exclusion criteria 
will include: (1) algorithm not for automatic infant pain 
assessment; (2) algorithm not using facial expression 
information; (3) not computer science algorithms paper 
(methodology and performance evaluation), clinical 
research (application studies) or systematic reviews and 
meta-analysis concerning ML methods; (4) no measure-
ment of algorithm accuracy (primary outcome); (5) facial 
expression data not in image or video format; (6) chil-
dren more than >12 months and adults; (7) research not 
written in English language.

Search strategy
An experienced medical librarian (LLP) with system-
atic review expertise will conduct searches in four 
major public electronic medical and computer science 
databases including Web of Science, PubMed, Embase 
and IEEE Xplore Digital Library from January 2008 to 
present. We will search from 2008 onwards because to 
the best of our knowledge, major advances in ML tech-
niques, especially for deep learning methods (eg, Convo-
lutional Neural Network), started to rapidly evolve and be 
widely applied within the most recent 5–6 years due to the 
unprecedented functional improvement of hardware (eg, 
GPU for computing) and parallel-computing capacity 
(eg, Hadoop).34 35 Thus, algorithms developed 10 or 20 
years ago may not be applicable or clinically meaningful 
because new modern algorithms would easily outper-
form them. In our study, we intend to include a balanced 
collection of both classic and modern algorithms, so we 

have decided to search for studies starting from January 
2008 to assure an extended 10-year long search period for 
good coverage of ML studies. To account for publication 
bias, we will include qualitative review articles and system-
atic review and meta-analysis articles to identify missing 
unpublished literature through their reference lists. We 
will perform forward and backward citation screening 
through citations and reference lists of systematic reviews 
to find more relevant papers. We will also search related 
professional meeting abstracts and preprints (eg, IEEE 
conferences, Conference on Computer Vision and 
Pattern Recognition, Conference on Neural Information 
Processing Systems, Topics and Advances in Pediatrics, 
Florida Academy of Pain Medicine, 2018 and 2019 Annual 
Scientific Meeting, ​arXiv.​org). We will use keywords and 
subject headings related to three concepts: infants, pain 
and ML. Multiple synonyms for each concept will be 
incorporated into the search. Details of search strategies 
are provided in table 2.

Study selection
Two authors (DL and DC) will independently review and 
screen searched article records to identify eligible studies 
according to our inclusion and exclusion criteria using 
the Covidence digital platform. A third investigator (HD 
or WZ) will resolve the disagreements between these 
two evaluators. In this step, two authors will screen titles 
and abstracts of searched articles for primary exclusion 
on the Covidence platform. We will pilot the process by 
screening the first 10 studies under the principal investi-
gator (PI)’s supervision. Since our study topic is uniquely 
focused on ML algorithms on infant pain prediction, it 
will require expertise in two fields including computer 
science and medicine. We believe that it will be prefer-
able and time-efficient to have both the computer scien-
tist and the physician work together to review the full-text 
to avoid selection bias (ie, only read the sections they are 
familiar with) in the full-text screening process. It would 
be ideal to have two independent groups of specialists 
(two computer scientist-physician pairs as review teams), 
but our research team has only one data scientist (DL). 
Therefore, in our study, two authors DL (computer scien-
tist) and DC (physician) will screen the full-text together 
to decide the eligibility of included studies after the title 
and abstract screening round. The PI (HD) will resolve 
the conflicts or answer questions when needed. More-
over, because many health-related computer science 
studies are reported with limited details,36 it is difficult 
for a single field specialist (either a computer scientist 
or a physician) to understand and extract the necessary 
information alone. We will further discuss this issue in the 
‘Discussion’ section. Once eligible studies are identified, 
we will extract study information for data synthesis. The 
measures in the identified studies contain both quantita-
tive and qualitative data, thus we will perform quantita-
tive data synthesis or qualitative summary as appropriate. 
Excluded studies will be listed in the PRISMA flow chart 
with specific reasons for exclusion in figure 1.
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Table 2  Search strategy

PubMed

#1 ‘Infant’(Mesh)

#2 (infant*(Title/Abstract)OR neonat*(Title/Abstract)OR baby(Title/Abstract)OR babies(Title/Abstract)OR newborn*(Title/Abstract))

#3 #1 OR #2

#4 ‘Pain’(Mesh) OR ‘Pain Measurement’(Mesh)

#5 (pain*(Title/Abstract)OR hurt*(Title/Abstract)OR agony(Title/Abstract)OR agonising(Title/Abstract)OR agonising(Title/Abstract)OR 
suffer*(Title/Abstract)OR distress*(Title/Abstract))

#6 #4 OR #5

#7 (‘Machine Learning’(Mesh) OR ‘Algorithms’(Mesh:NoExp)OR ‘Expert Systems’(Mesh) OR ‘Limit of Detection’(Mesh) OR 
‘Artificial Intelligence”(Mesh:NoExp)OR ‘Neural Networks (Computer)“(Mesh) OR ‘Facial Recognition”(Mesh) OR ‘Biometric 
Identification”(Mesh:NoExp)OR ‘Facial Expression”(Mesh:NoExp)OR ‘pattern recognition, automated”(mesh))

#8 (‘facial recognition’(title/abstract)OR ‘pain recognition’(title/abstract)OR ‘pain detection’(Title/Abstract)OR ‘detecting pain’(title/abstract)
OR automated(Title/Abstract)OR automatic(title/abstract)OR ‘recognising pain’(title/abstract)OR ‘machine learning’(Title/Abstract)OR 
‘deep learning’(Title/Abstract)OR algorithm*(Title/Abstract)OR ‘neural network’(Title/Abstract)OR ‘neural networks’(Title/Abstract)OR 
SVM(Title/Abstract)OR ‘support vector machine’(Title/Abstract)OR ‘support vector machines’(Title/Abstract)OR ‘computer vision’(Title/
Abstract)OR ‘artificial intelligence’(Title/Abstract)OR RVM(Title/Abstract)OR ‘relevance vector machine’(Title/Abstract)OR ‘relevance 
vector machines’(Title/Abstract)OR AAM(Title/Abstract)OR ‘active appearance model’(Title/Abstract)OR ‘active appearance models’(Title/
Abstract)OR ‘K NN’(Title/Abstract)OR ‘k nearest neighbour’(Title/Abstract)OR ‘random forest trees’(Title/Abstract)OR ‘random forest 
tree’(Title/Abstract)OR PNN(Title/Abstract)OR ‘gaussian classifier’(Title/Abstract)OR ‘gaussian classifiers’(Title/Abstract)OR ‘nearest mean 
classifier’(Title/Abstract)OR ‘nearest mean classifiers’(Title/Abstract))

#9 #7 OR #8

#10 #3 AND #6 AND #9 AND (“2008/01/01”(PDAT) : ‘3000/12/31’(PDAT))

Embase

#1 'infant'/exp

#2 infant*:ab,ti OR neonat*:ab,ti OR baby:ab,ti OR babies:ab,ti OR newborn*:ab,ti

#3 #1 OR #2

#4 'pain'/exp OR 'pain measurement'/de

#5 pain*:ab,ti OR hurt*:ab,ti OR agony:ab,ti OR agonising:ab,ti OR agonising:ab,ti OR suffer*:ab,ti OR distress*:ab,ti

#6 #4 OR #5

#7 'algorithm'/de OR 'machine learning'/exp OR 'expert system'/de OR 'limit of detection'/exp OR 'artificial intelligence'/exp OR 'pattern 
recognition'/exp

#8 'facial recognition':ab,ti OR 'pain recognition':ab,ti OR 'pain detection':ab,ti OR 'detecting pain':ab,ti OR automated:ab,ti OR 
automatic:ab,ti OR 'recognising pain':ab,ti OR 'machine learning':ab,ti OR 'deep learning':ab,ti OR algorithm*:ab,ti OR 'neural 
network':ab,ti OR 'neural networks':ab,ti OR svm:ab,ti OR 'support vector machine':ab,ti OR 'support vector machines':ab,ti 
OR 'computer vision':ab,ti OR 'artificial intelligence':ab,ti OR rvm:ab,ti OR 'relevance vector machine':ab,ti OR 'relevance vector 
machines':ab,ti OR aam:ab,ti OR 'active appearance model':ab,ti OR 'active appearance models':ab,ti OR 'k nn':ab,ti OR 'k nearest 
neighbour':ab,ti OR 'random forest trees':ab,ti OR 'random forest tree':ab,ti OR pnn:ab,ti OR 'gaussian classifier':ab,ti OR 'gaussian 
classifiers':ab,ti OR 'nearest mean classifier':ab,ti OR 'nearest mean classifiers':ab,ti

#9 #7 OR #8

#10 #3 AND #6 AND #9 AND(2008–2019)/py

IEEE 2008 to present
(infant* OR neonat* OR baby OR babies OR newborn*) AND (pain* OR hurt OR hurts OR hurting OR agony OR agonising OR agonising 
OR suffer OR suffering OR suffers OR suffered OR distress*)

Web of 
Science

#1 TOPIC: (infant* or neonat* or baby or babies or newborn*)

#2 TOPIC: (‘facial recognition’ OR ‘pain recognition’ OR ‘pain detection’ OR ‘detecting pain’ OR automated OR automatic OR ‘recognising 
pain’ OR ‘machine learning’ OR ‘deep learning’ OR algorithm* OR ‘neural network’ OR ‘neural networks’ OR SVM OR ‘support vector 
machine’ OR ‘support vector machines’ OR ‘computer vision’ OR ‘artificial intelligence’ OR RVM OR ‘relevance vector machine’ OR 
‘relevance vector machines’ OR AAM OR ‘active appearance model’ OR ‘active appearance models’ OR ‘K NN’ OR ‘k nearest neighbour’ 
OR ‘random forest trees’ OR ‘random forest tree’ OR PNN OR ‘gaussian classifier’ OR ‘gaussian classifiers’ OR ‘nearest mean classifier’ 
OR ‘nearest mean classifiers’)

#3 TOPIC: (pain* or hurt* or agony or agonising or agonising or suffer* or distress*)

#4 #3 AND #2 AND #1
Refined by: PUBLICATION YEARS: (2019 OR 2010 OR 2018 OR 2009 OR 2017 OR 2008 OR 2016 OR 2015 OR 2014 OR 2013 OR 2012 
OR 2011)Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC.

AAM, active appearance model; PNN, probabilistic neural network; RVM, relevance vector machine; SVM, support vector machine.
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Figure 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2009 flow diagram.

Data management
We will import all eligible study records information 
including author, title and abstract into the Covidence 
platform. This online tool will facilitate the literature 
review process by integrating all reviewing activities on 
one platform with logged records. We will design a digital 
data extraction form to store study information using the 
Systematic Review Data Repository (SRDR) online repos-
itory website. Moreover, we will upload related data for 
each step and will update our protocols and analytic plans 
on the Open Science Framework website for transparency 
and version control purposes (https://​osf.​io/​f9t4v/).

Data extraction
We will extract the study-level data from all eligible 
studies using a prepared data extraction form created by 
the SRDR online tool. We will divide items within the data 
collection form into four blocks: (1) study information 

including publication year, author information, funding 
or sponsorship information, type of study, journal name 
and PICO elements; (2) database information including 
name, subject size, image or video size; (3) patient demo-
graphic information including gender, age, race, disease 
diagnosis and types of pain; (4) ML methodological 
information including ML model name, type, format of 
input feature, optimisation algorithm, objective function, 
feature extraction methods, type of extraction feature 
and computational efficiency and cost, etc. An example 
of the data extraction form is presented in table 3.

Machine learning methods
The most commonly used ML methods for this partic-
ular question could include multiple general categories 
of models such as support vector machine, relevance 
vector machine, active appearance model and k-nearest 
neighbour, random forest trees, probabilistic neural 

https://osf.io/f9t4v/
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Table 3  An example of variables collected in data 
extraction table

Study information

 � Study year Year of the study published

 � Author information Last name of author, whether clinical 
practitioners participated in the study

 � Type of study Prospective cohort study or study that 
used a published database

 � Journal name Journal name

 � PICO/PECO elements PICO/PECO elements in summary

Database information

 � Database name Name of the database used for 
modelling

 � Host organisation Name of the hosting organisation of the 
database

 � Sample size Sample size of the database (image or 
video)

 � Sponsorship The funding or sponsorship information

Patient demographic information

 � Gender Gender of infants (both, only boy, only 
girl)

 � Age Age distribution

 � Race Race/country of participants

 � Disease diagnosis Disease diagnosis

 � Medical procedures Procedure categories

Machine learning method information

 � Model name The name of the model

 � Model type Machine learning model type

 � Model task Classification, regression or both

 � Objective function The objective function for modelling

 � Optimisation algorithm The optimisation method for modelling

 � Format of input feature Frame, sequence or image

 � Positive/negative size 
input

The size of positive and negative for 
modelling

 � Feature extraction 
method

The methods of feature extraction

 � Type of extracted 
feature

Pixel feature, AU, landmark or 
transformed feature

 � Model performance Performance metrics and score of 
performance

 � Computational 
efficiency and cost

Computational efficiency (speed, cloud 
space, etc) and cost related to the 
algorithm (eg, require GPU resources, 
large cluster, etc)

AU, action unit; PICO/PECO, population, intervention (exposure), 
control, outcome.

network (PNN), Gaussian and nearest mean classi-
fier, etc. In order to summarise and analyse these ML 
methods systematically, each ML algorithm will be 
presented and partitioned into a set of technical prop-
erties including: (1) feature: which features the algo-
rithm uses (eg, pixel feature, action units, landmarks or 
transformed feature); (2) model: the underlying math-
ematical model (eg, artificial neural networks, random 

forests); (3) optimisation: the computational algorithm 
to find the optimum solution (eg, stochastic gradient 
descent, Bayesian variational inference); (4) perfor-
mance: the measures for assessing the performance of 
the model (eg, our primary outcome accuracy, compu-
tational efficiency, etc). In this study, we will first collect 
the qualitative and descriptive information of these 
properties and then explore whether we can manually 
categorise them into fixed and organised classes. If 
enough data points can be obtained for each class, we 
will further perform an intraclass correlation analysis 
for subgroup analysis.

Study outcomes
Our primary outcome will be the measurement of model 
prediction accuracy (eg, area under the curve for receiver 
operating characteristic curve (AUC ROC), F1 score and 
proper score function such as Brier score if available). 
The secondary outcomes will be model utility measures 
including generalisability, interpretability, computational 
efficiency and cost.

Primary outcome: standardised measurement of model 
prediction accuracy
Based on our previous experience,23 36 it is likely that the 
experimental setting, patient population, methods and 
results reporting styles in these eligible studies could 
be heterogeneous in presentation but clustered by used 
infant pain databases. To describe the model prediction 
accuracy, we will extract both qualitative descriptions and 
quantitative measures from original texts in these studies. 
The accuracy of the model prediction usually comprises 
two pieces of information: calibration and accuracy. 
Considering computer science studies usually use a 
different system for model reporting (eg, SEs and correla-
tion coefficients) compared with statistical learning (eg, 
discrimination, calibration, Brier score, etc), our study will 
mainly focus on the discrimination domain of the model. 
After collecting the qualitative description of these accu-
racy measures, we will perform standardisation proce-
dures on them for further quantitative meta-analysis. For 
regression algorithms, error measurements (eg, mean 
absolute error) will be standardised and converted to 
mean square error (MSE) for parallel comparisons. All 
correlation measurements (eg, Pearson’s correlation) 
will be converted to ranked correlation (eg, Spearman’s 
correlation). For classification algorithms, all accuracy 
measures will be converted to AUC ROC and F1 score 
for comparisons. The measures that cannot be stan-
dardised will be qualitatively reported as original values 
and excluded from the analysis. If diagnostic test accuracy 
measures such as sensitivity and specificity are reported, 
this information will also be collected.

Secondary outcomes: generalisability, interpretability and 
computational efficiency
We will conduct qualitative assessment of model general-
isability and interpretability as study secondary outcomes. 
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These qualitative assessments will be performed by our 
study staff (DL or DC) in the form of judgement ranks. 
The levels of judgement rank for secondary outcomes will 
include high, moderate, low and very low. Computational 
efficiency and cost data of models will be analysed if data 
are available for quantitative analysis. Otherwise, they will 
be assessed qualitatively in judgement ranks.

Incomplete information and missing data
We will try to collect missing study information by 
contacting the authors if we cannot find the information 
through public channels. If we cannot obtain sufficient 
data, then these missing data will be omitted from the 
data synthesis and analyses.

Risk of bias assessment
The risk of bias assessment will be performed by two 
authors (DC and DL) using the Prediction model study 
Risk of Bias Assessment Tool (online supplementary 
appendix 1).37 It includes 20 signalling questions across 
four domains (participants, predictors, outcome and 
analysis). Based on the ratings of signalling questions, risk 
of bias for each domain will be ranked as low risk, high 
risk or too unclear for judgement.

Assessment of reporting quality
Liu et al found that the reporting of studies evaluating 
ML models was often incomplete and non-standardised, 
which increasingly became a barrier to robust evalua-
tion of artificial intelligence-based models.38 Collins et 
al highlighted that complete and transparent reporting 
of the key aspects of ML prediction model studies is vital 
to ensure the quality and interpretability of the studies 
in medical and technical fields.39 In order to assess the 
reporting quality of eligible studies, we will use Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis (online supplementary 
appendix 2) checklist.40 Each item will be ranked as no 
report, inadequate report and adequate report, scored as 
0, 1 and 2, respectively. To account for specific method-
ological aspects of ML algorithms studies, we developed a 
customised ML-specific reporting checklist for this study 
as the supplementary ML-method reporting assessment 
tool (online supplementary appendix 3). This assess-
ment checklist includes description of database, research 
team, data preprocessing, method and approach, objec-
tive function, optimisation technique and computational 
efficiency. Each item will be ranked as no report, inade-
quate report and adequate report, scored as 0, 1 and 2, 
respectively.

Statistical analysis and data synthesis
Extracted outcome data stored in the SRDR website 
will be imported into RevMan V.5.2.1 software and R 
V.3.3.2 for analysis. Because reported model outputs 
may be different across individual studies, we will use 
standardised measures to synthesise model accuracy and 
calibration. In order to assess accuracy, we will use the 
C-statistic (AUC ROC) for classification models and MSE 

for regression models along with their 95% CIs. To assess 
calibration, we will use the Hosmer-Lemeshow χ2 test and 
ranked correlation, if applicable. To measure heteroge-
neity, we plan to use a Galbraith plot and Higgins and 
Thompson’s I2. A fixed-effects model will be used only if 
there is no evidence of statistical heterogeneity. We will 
pool the summary measures across the studies using a 
random effects model optimised using DerSimonian and 
Laird’s method, if considerable heterogeneity is indi-
cated (I2>50%). Furthermore, we will also explore the 
possible sources of heterogeneity from both clinical and 
methodological perspectives to provide an explanation 
or conduct subgroup analysis. Meta-regression will be 
conducted if applicable.

Subgroup analysis
We intend to conduct subgroup analyses by ML model 
types (eg, regression vs classification, neural networks 
vs traditional ML), facial data input format (eg, images 
vs landmarks) and medical procedure type (eg, acute 
procedural pain vs postoperative pain). More post hoc 
exploratory subgroup analyses will be decided during the 
process of data extraction and analysis.

Publication bias
We will search related professional meeting abstracts, 
technical preprints, reference lists of qualitative review 
articles, systematic reviews and meta-analysis articles to 
identify missing unpublished literature (details in ‘Search 
strategy’ section). We will use contour-enhanced funnel 
plots to assess publication bias.

Confidence in cumulative evidence
Confidence in cumulative evidence will be conducted 
in accordance with the Grading of Recommendations, 
Assessment, Development and Evaluations guideline.41 
Inconsistency will be assessed using the I2 test and 
Galbraith plot as described in previous sections. Indirect-
ness will be assessed by examining the collected PICO 
elements of eligible studies and comparing generalis-
ability (one of our secondary outcomes). Imprecision will 
be assessed by examining the study sample sizes and CIs 
of outcomes of interest.

Discussion
Neonatal care has developed rapidly within the last 
decade and has greatly improved survival outcomes 
of premature and sick neonates. However, when large 
numbers of painful and stressful treatment procedures 
were performed on infant patients, only very few were 
accompanied by adequate analgesia.3 Several researchers 
found that neonatal intensive care unit (NICU) admis-
sion rates increased steadily yearly42 and large numbers 
of neonates could be exposed to acute pain from invasive 
procedures or prolonged pain from surgery or inflamma-
tion.43 Traditional observer-based infant pain assessment 
is difficult to train, time-consuming, labour-intensive, 

https://dx.doi.org/10.1136/bmjopen-2019-030482
https://dx.doi.org/10.1136/bmjopen-2019-030482
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subjective and a source of conflict in NICU care. Devel-
oping an automatic pain assessment instrument will be 
resource-saving and improve the quality of care through 
fast and accurate pain assessment.

Infants’ responses to pain and stress are non-specific 
and can be easily misinterpreted. The Newborn Individ-
ualised Developmental Care and Assessment Programme 
(NIDCAP) is widely used for infant stress assessment.44 
Holsti et al also developed multidimensional assess-
ments, including the full NIDCAP to distinguish pain and 
stress.45 However, these human-based instruments are by 
definition labour-intensive and expensive to implement, 
and understanding how pain and stress can affect infant 
development and properly evaluating them is a highly 
specialised practice area requiring substantial training.46 
Mansor et al developed a PNN classifier to distinguish pain 
from other non-pain tasks (rest/cry, air puff, friction) in 
the COPE database, and results were remarkable with the 
classification accuracy >90%.26 This indicates that ML 
methods have the potential to distinguish pain and stress 
when combined with other clinical indicators.

The age of artificial intelligence has come. Computer 
scientists are now equipped with tools and algorithms to 
train machines to identify behavioural and physiological 
indicators associated with pain. Facial expression-based 
ML algorithms have the potential to overcome observa-
tional bias, reduce training costs and provide possibilities 
for continuous infant pain monitoring without clinician 
involvement. It is promising that these ML algorithms will 
provide fast, accurate and continuous pain assessment 
in both routine practice and NICU with better training 
data and more advanced ML methods. Our proposed 
systematic review and meta-analysis will provide the first 
systematic and quantitative report of model accuracy, 
generalisability and interpretation capability of different 
available ML algorithms for neonatal and infant pain 
assessment. Also, it is not common for computer scientists 
to clearly disclose costs related to their algorithms.35 47 We 
hope computer scientists can disclose both training and 
running costs of their algorithms to provide better refer-
ences for cost-effectiveness research for future real-world 
implementation.
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