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Genetic, parental and lifestyle factors influence
telomere length
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The average length of telomere repeats (TL) declines with age and is considered to be a

marker of biological ageing. Here, we measured TL in six blood cell types from 1046 indi-

viduals using the clinically validated Flow-FISH method. We identified remarkable cell-type-

specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as

sex, parental age, and smoking are associated to variations in TL. By analysing the genome-

wide methylation patterns, we identified that the association of maternal, but not paternal,

age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants

revealed differential gene expression in T-cells. Genes negatively associated with TL were

enriched for pathways related to translation and nonsense-mediated decay. Altogether, this

study addresses cell-type-specific differences in telomere biology and its relation to cell-type-

specific gene expression and highlights how perinatal factors play a role in determining TL, on

top of genetics and lifestyle.
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W ith an increasingly ageing worldwide population, age-
related diseases pose a great burden in clinical care
and socioeconomics. Healthy ageing is the goal to

counter this trend, but this term is complex and not easily
defined. Several markers for premature or delayed ageing have
been suggested, including telomere length1,2, DNA methylation3,4

and thymic function5. Telomeres are repetitive DNA structures
located at the chromosome ends and, together with their asso-
ciated proteins, play a fundamental role in chromosomal
stability6,7. Telomeres are known to decrease with age2,8 as a
result of multiple factors, including limiting telomerase activity9,
the end-replication problem1, end-processing10, and oxidative
stress11. Both genetic and environmental factors are known to
influence telomere length. Several genetic loci have been asso-
ciated with telomere length12–16, with heritability estimates ran-
ging from 34%17 to 82%18,19. However, heritability estimates
often cannot distinguish between true genetic determinants and
early life factors such as parental or environmental exposures that
could affect telomere length during adulthood18. This is especially
true in twin-based studies, where the early life exposures are
confounded with genetic effects.

Importantly, most telomere length analyses carried out to date
focused on blood leukocytes and did not explore cell-type- and
tissue-specific variability. A recent study examining the variability
of telomere length in a wide range of post-mortem tissues20

showed that, although whole blood telomere measurements
might be a proxy for and synchronous with those of other
tissues21, there are significant tissue-specific differences. However,
this post-mortem tissue study did not address the possibility of
telomere length differences between different cell types within a
tissue. In addition, most large studies to date have used PCR or
Luminex-based methods to measure relative telomere length in
isolated genomic DNA, and these approaches have shown
reproducibility biases22,23 that could potentially explain the het-
erogeneous and contradicting findings24.

Telomere length may have important physiological
consequences25. It has been proposed that telomere length might
regulate gene expression26–29 but also that gene expression can
directly contribute to telomere length attrition or conservation30,31.
Given the observed variability in telomere length with cell
population20, it is conceivable that this will be related with cell-type-
specific expression patterns, which have not been investigated to date.

Here, we explore telomere variation using Flow-FISH telomere
length measurements in Lifelines Deep (LLD), a well-characterised
population cohort from the Netherlands32. We measured telomere
length in six different cell types in 1046 participants. By combining
this data with genetic information available for LLD participants
and with rich phenotypic information that includes blood cell
counts and immune markers, self-reported diseases, birth-related
phenotypes, parental diseases and behaviour, epigenomics profiles
and single-cell expression patterns in 62 individuals, we determined
the major contributors to telomere length variation. Specifically, we
studied: (1) the difference in telomere length across the six blood
cell types, (2) the relationship between leukocyte telomere length
with other ageing markers, (3) the correlation of telomere ageing
markers with biochemical, parental and clinical phenotypes and
mortality, (4) the contribution of genetic and non-genetic factors to
variations in telomere length and (5) the cell-type-specific changes
in gene expression associated with cell-type-specific telomere length
variation, which may pinpoint major functional pathways related to
telomere variability.

Results
Telomere length captures biological variability other than age.
LLD32 is a population cohort from the northern Netherlands that

includes participants with a wide age range (mean 43.9
years ± 13.7 sd, min 18.0, max 81.4) for whom we have deep
phenotypic and molecular information [available data illustrated
in Supplementary Fig. 1, for descriptive statistics see Supple-
mentary Data 1]. In 1046 LLD participants, Flow-FISH33 was
used to measure the telomere length of six blood cell types:
granulocytes, lymphocytes, B-cells (CD45RA+CD20+ ), naïve
T-cells (CD45RA+CD20−), memory T-cells (CD45RA−) and
NK-cells/fully differentiated T-cells (CD45RA+CD57+) (here-
after referred to as NK-cells) [Fig. 1a]. We found that all six cell-
type-specific telomere lengths decreased with age [Fig. 1b] and
were, on average, shorter in males than females over the entire
age range [Fig. 1c] [Supplementary Fig. 2b for all cell types]. We
also observed a similar moderate negative correlation between age
and telomere length among cell types (Pearson correlation,
maximum r=−0.43, minimum r=−0.33) [Fig. 1d]. These
findings agree with those of a Flow-FISH‒based study in a North
American cohort9, although the two cohorts differed in their
participant recruitment selection criteria. Nevertheless, in the
overlapping age ranges, both studies find comparable telomere
lengths [Supplementary Fig. 2a], which supports the accuracy of
our measurements. We observe that naïve T-cells and B-cells have
the longest telomeres on average, whereas NK- and memory
T-cells show significantly shorter telomeres than other cell types
(paired Wilcoxon-test, p < 2 × 10−16). While naïve T-cells showed
the highest mean telomere length [Fig. 1a], they also showed the
largest negative association of telomere length and age (linear
model, slope of −0.034), from an average 8.59 Kb in the <32.9
years age group (first quartile) to an average 7.32 Kb in indivi-
duals >52.7 years (fourth quartile) [Fig. 1b]. The rate of telomere
loss we observe in naïve T-cells matched previous observations9

and does not support production of naïve T-cells from more
primitive precursors after puberty and thymus involution34.
Instead, we assume that naïve T-cells are maintained after pub-
erty by homeostatic mechanisms that are likely to involve cell
divisions that result in telomere loss, but these processes are
currently poorly understood.

Next, we compared telomere length with other biological age
markers, including the methylation-based Hannum35 age-index
and signal joint T-cell receptor excision circles (sjTRECs)
expression (CT values of a qPCR), which represents thymic
TCR maturation for a given individual36. Here, we observed that
both methylation age and sjTREC were more strongly associated
with chronological age than telomere length, and neither was
highly correlated with telomere length [Fig. 1d]. After removing
the variability attributed to chronological age, methylation age
and sjTREC were negatively associated (Pearson correlation,
r=−0.36), but we found no association to telomere length.
Telomere lengths remained highly correlated between different
cell types [Supplementary Fig. 2d].

Overall, these findings suggest that telomere length captures
biological variation other than chronological age, and the source
of this variation is distinct compared to other ageing markers
measured, specifically methylation age and thymic function.

Genetic contribution to telomere length. To explore to what
extent genetics can explain variation in telomere length, we first
performed a heritability analysis. We used genotype data to infer
genetic relations and fit a GREML model, while controlling for
age and sex. This analysis provides an estimate of the total telo-
mere length variability attributable to the additive effects of
common genetic variants. The results show a median SNP-based
heritability of 45%, with a maximum of 51% (naïve T-cells) and a
minimum of 19.6% (NK-cells). Although the standard errors of
the estimates were high, with a median of 22% [Fig. 2a], the
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heritability estimate falls in a similar range to those of previous
reports37–39 and the corresponding P values were below 0.05 for
all cell types except NK-cells (p= 0.15). This result supports the
idea that genetic factors contribute significantly to telomere
length and can partially explain the inter-individual variability.
The higher genetic contribution to naïve T-cell telomere length
that we observe might be explained by the fact that these cells
reflect less environmental influence. On the other hand, envir-
onmental factors will impact telomeres in memory T-cells,
including NK-cells, because antigen-mediated clonal expansion of
these cells is typically triggered by environmental factors (e.g.,
infections), and thus telomere length will decrease due to the
number of replications.

To further explore the genetic contribution to telomere length, we
performed a genome-wide association study (GWAS) of ~7.5 million
genotyped or imputed SNPs on telomere length in each cell type.

First, we tested if we could replicate previously published loci
associations. For this, we used the 20 genome-wide significant loci
from a recent meta-analysis published by ref. 15. Of the 17 published
SNPs for which we also had information, six were replicated in at
least one cell type with p < 0.05 and consistent allelic direction
[Supplementary Data 2]. Similarly, we could replicate 6/12
European-associated genome-wide significant loci from a large
trans-ethnic study16 [Supplementary Data 2]. We then looked at de
novo associations and identified one significant association after
applying permutation-based false discovery rate (FDR) correction:
The A allele of rs33961405 (1000 Genomes European population
allele frequency= 0.49) located in an intron of the telomerase reverse
transcriptase (TERT) gene was associated with decreased telomere
length of T-cells (effect size=−0.19, SE= 0.03) [Fig. 2b] [Supple-
mentary Fig. 3] (summary statistics of associations p < 1 × 10−5

presented in [Supplementary Data 3]). Other genetic variants located
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near the TERT gene were previously found to affect leukocyte
telomere length; however, rs33961405 is novel and is in moderate
linkage disequilibrium (LD) with a previously published lead SNP in
TERT (rs2736100, LD r2= 0.47 in 1000 Genomes, European
population)12,13.

To reproduce previous GWAS associations at cell type level,
we computed a Polygenic Risk Score (PRS) from a large GWAS
on telomere lengths15 (see Methods) and correlated it to our
telomere length data. This analysis identified highly significant
positive associations. The strongest genetic associations were seen
in cell types with longer telomeres: naïve T-cells (linear model
(lm), effect estimate= 1.5, p= 7.61 × 10−13) and B-cells (lm,
effect estimate= 1.19, p= 6.78 × 10−10). Cell types with shorter
telomeres, memory T-cells (lm, effect estimate= 0.89,
p= 7.47 × 10−6) and NK-cells (lm, effect estimate= 0.97,
p= 1 × 10−5), showed weaker associations of the genetic

determinants. An exception to this trend was granulocytes,
which showed a similar association range to B-cells and NK-cells
(lm, effect estimate= 0.95, 6.02 × 10−6), despite having one of the
longest average telomere lengths.

Telomere ancestry—parental age and smoking contribute to an
individual’s telomere length. We exploited the extensive phe-
notypic information available for LLD study participants to
uncover which environmental factors are correlated with telo-
mere length. The phenotypic information consisted of 90 differ-
ent parameters, including blood parameters (e.g., leukocyte
counts), anthropometric measurements (e.g., BMI), physiological
parameters (e.g., blood pressure), various pre-existing diseases
(e.g., hypertension or cancer) and lifestyle factors (e.g., smoking),
as well as parental phenotypes and habits including parental
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diseases, smoking and age at participant’s birth [Supplementary
Data 4].

To associate telomere length with different phenotypes, we
built a linear model using telomere length as the dependent
variable and the standardised phenotype measurement as the
regressor, while controlling for age and sex. Of the non-genetic
factors, blood cell counts were strongly associated with telomere
lengths (Supplementary Data 5). Since cell counts might act as a
confounder for other associations (as cell types have different
telomere length and thus might confound the observed inter-
individual differences), we included cell counts as covariates in
the model. Using this new model, we identified 37 associations of
12 phenotypes with telomeres of any cell type using an
FDR < 0.05 threshold (summary statistics can be found in
Supplementary Data 6).

Several parental factors were consistently associated with
telomere lengths in different cells. Smoking phenotypes such as
‘any parent smoking’, ‘father smoking during your childhood’
and ‘mother smoking during pregnancy’ were negatively
associated with the telomere lengths of almost all cell types
(with the exception of NK-cells). ‘Age of father when you were
born’ and ‘age of mother when you were born’ were positively
associated with the telomere lengths of four cell types. In a
model combining both paternal and maternal age (on an l1
penalisation, see Methods), we found paternal age to shrink to
near 0 while maternal age was kept constant (with the exception
of granulocytes), highlighting that the effect of maternal age on
telomere length is independent of paternal age effects. Sig-
nificant negative correlations with smoking were only observed
with the paternal, parental and maternal-during-pregnancy
smoking habits. However, all cell types also showed nominally
significant associations (p < 0.05) with maternal smoking.
Maternal smoking associations showed weaker effect sizes than
paternal (lm, 0.06 average difference, SE: 0.01, p= 3.2 × 10−4)
and fewer participants had mothers who smoked than fathers
who smoked (674 fathers vs. 381 mothers), factors which
together may explain why maternal smoking did not reach FDR
significance. Paternal and maternal smoking were, however,
shown to have additive effects: A model that included a
numeric variable describing the number of parents who were
smokers showed stronger associations than binary smoking
phenotypes (father, mother, or any parent).

We further analysed the associations to other available
smoking phenotypes. Here, we found a negative effect (p < 0.05)
of ‘father smoking’, ‘mother smoking’ and ‘mother smoking
during pregnancy’ in all the cell types tested. In addition, passive
smoking during an individual’s lifetime also influenced telomere
length, with the factor ‘do people smoke near you at work’
associated (p < 0.05) with shorter telomeres in 5/6 cell types.
Conversely, current smoking of the participant was not
significantly associated with any cell type (p > 0.05) [Supplemen-
tary Fig. 4a].

In addition to parental associations, we found four negative
associations with participant’s BMI and three with participant’s
waist circumference. These negative associations with BMI and
waist circumference could be driven by their correlations to other
phenotypes. We, therefore, explored the association of BMI with
other phenotypes in a larger cohort of 10,000 participants from
the same population41 and observed a positive correlation
between BMI and parental smoking (Pearson, p < 4.78 × 10−6)
and a negative correlation between BMI and parental age
(Pearson, p < 9.15 × 10−7). After accounting for potential con-
founding effects of parental age and smoking habits, the
associations between telomere length and BMI phenotypes
remained significant [Supplementary Fig. 4b]. This observation
supports the conclusion that the associations of telomere length

to BMI are not driven by the confounding effects of parental age
or smoking.

In addition, we found one cell-specific (having one cell type
below FDR < 0.05) positive association with poorly healing
wounds (granulocytes) and three cell-specific negative associa-
tions with blood alpha-1 antitrypsin (AAT) (Memory T-cell),
pulse rate (granulocytes) and weight (B-cells) [Fig. 2a] (summary
statistics in Supplementary Data 6).

Finally, we assessed how much of the variation in telomere
length not attributable to participant age could be explained by
intrinsic, parental and genetic factors. For environmental factors,
we included all associated factors with an FDR < 0.05 in at least
two cell types. Genetic factors were addressed using PRS from a
recently published telomere length GWAS15, see Methods. We
fitted four nested models and estimated the added variability (R2)
explained by each (see Methods) [Fig. 3b]. This revealed that
most of the variability is explained by the addition of sex, BMI,
waist circumference and cell counts (from 3.2 to 8%), depending
on the cell type. The addition of parental phenotypes (parental
age and smoking) added less information (0.8%), on average, than
the multiple intrinsic factors. Finally, the contribution of genetics
(average 3.7%) was lower than that of intrinsic factors (average
5.9%, considering sex as an intrinsic factor rather than a genetic
one) in most cells, which is in line with the larger impact of
environmental effects that we observed in the heritability analysis.

Epigenetic changes may mediate the effect of parental pheno-
types on telomere length. It has been proposed that maternal and
paternal phenotypes, such as smoking habits and age at preg-
nancy, may affect a child’s phenotypes by inducing changes in
methylation levels42–47. Several studies have reported an effect of
parental age and smoking on the ‘methylation age’ of the
child43,44,46,48. We, therefore, investigated whether the effect of
parental phenotypes on telomere length could be mediated by
changes in methylation levels. We first performed a GWAS of
parental smoking and age with DNA methylation levels available
for the same samples (N= 749). This resulted in 19 genome-wide
significant associations of methylation probes with parental
phenotypes at a Bonferroni-corrected p < 0.05 (summary statistics
in Supplementary Data 7). Combining these results with the
associations of parental phenotypes with telomere length
(p < 0.05) and of telomere length with methylation (p < 0.05), we
performed mediation analysis for the 17 resulting triplet asso-
ciations. This analysis identified four triplets that showed sig-
nificant mediation of the parental phenotype effect on telomere
length through methylation of various probes (see Methods)
[Supplementary Data 7]. All these significant mediation results
were for the age of mother, even though we tested fewer triplets
for maternal (6 triplets) than paternal age (11 triplets). Maternal
age effects thus appear more likely to be mediated by methylation
than paternal age effects.

One interesting example of this methylation mediation is for
the SRY-related HMG-box gene SOX11. This gene is a known
transcription factor and proliferation gene that plays an
important role in embryonic development, cell fate determination
and cancer. Our results indicate that the positive association of
maternal age at birth with telomere length in NK-cells may be
mediated by decreased methylation of CpG islands located in the
promoter of SOX11 (mediation p < 2 × 10−16), with up to 28% of
the effect mediated through methylation of SOX11 [Fig. 3c]
[Supplementary Data 7].

Telomere length changes show cell-type-specific associations
with gene expression level. To study the relationships between
telomere length variation with gene expression changes, we
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used single-cell RNA-sequencing (scRNA-seq) data generated
on cryopreserved peripheral blood mononuclear cells (PBMCs)
from 62 LLD donors, for which telomere length on six cell types
was measured49. To classify cells, we used the high-resolution
cell-type-annotations predicted by Azimuth50 to closely reflect
the resolution of the Flow-FISH annotations (i.e., naïve and
memory CD4T and CD8T cells, NK- and B-cells) (see Methods)
(Supplementary Data 8). First, we confirmed that the subset of
62 LLD donors had similar telomere length distributions to the
entire study population (1046 LLD donors) (Supplementary

Fig. 5). We then performed telomere length differential gene
expression analyses at single-cell resolution (sc-DEA) by
selecting the matched telomere length measurement and gene
expression level for each of these cell types (see Methods)
(Supplementary Data 8). These analyses revealed DNAJA1 to be
positively associated with telomere length in memory
CD8T cells (effect size= 0.05 log-fold change (LFC) per telo-
mere length unit, FDR= 0.03) (Supplementary Data 9).
DNAJA1 encodes a heat shock protein 70 co-chaperone that
was previously reported to bind telomeres in a study that used

Fig. 3 Non-genetic factors contribute to telomere variation. a Phenotype effect on telomere lengths of different cell types (with at least one significant
association). Dashed lines show 95% confidence interval (estimate ± 2xSE). X-scale is symmetrical log-transformed (denominator constant=−2). BMI
Body mass index, AAT Alpha-1 Antitrypsin Test. b Total variance of the telomere length explained after removing the effect of age. Only phenotypes
associated with at least two cell types (FDR < 0.05) are used. Colour indicates the different partitions of variability. c Mediation effect of methylation of
SOX11 in the maternal age effect on NK-cell telomere length variability.
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in vivo cross-linking, tandem affinity purification and label-free
quantitative mass spectrometry51.

Because we only identified one differentially expressed (DE)
gene, we wondered whether this could be due to insufficient
statistical power. To address this, we performed differential gene
expression analysis on T-cells combining multiple cell types
together (Methods) while controlling for cell type annotation
(Supplementary Data 10). This strategy increased the number of
cells per donor and thus, statistical power. However, in contrast
to analysing each cell type separately, genes identified with this
combined strategy will likely have a similar association with
telomere length across cell types. We identified 97 unique DE
genes, one in CD8T cells, 44 in CD4T cells and 91 in all T-cells
(Fig. 4) (Supplementary Data 11, Supplementary Fig. 6), includ-
ing the DNAJA1 association reported in our previous analysis.

Next, we explored potential mechanisms explaining the
telomere length associations with expression in the set of 97
genes. Several mechanisms have been described by which
telomere length may affect gene expression levels. The first is
the telomere position effect (TPE)26. This mechanism results in
decreased repression of genes located in the subtelomeric region
when telomeres shorten27 and in subsequent overexpression,
which is a process associated with CpG-methylation29. To
determine whether our sets of DE genes were influenced by
TPE, we tested whether there was an enrichment of DE genes in

the subtelomeric region (< 4Mb from chromosome end)
(Supplementary Data 11). In CD4T cells, we found a significant
enrichment of genes positively (5/19, p= 7 × 10−3) but not
negatively associated (0/24, p= 1) with telomere length (Supple-
mentary Fig. 7). We did not observe any enrichment in all T-cells
(8/45, p= 0.05 for positively associated and 4/45, p= 0.58 for
negatively associated genes) (Supplementary Data 11). The
enrichment we observe in the CD4T cells is opposite to what
we expected, i.e., we expected to identify genes that were
negatively associated with telomere length as a result of the lost
repression due to shortening. Our contrasting findings suggest
that other mechanisms might be at work in the associated genes.

A second mechanism by which telomere length may affect gene
expression levels occurs through a telomere position effect over
long distances (TPE-OLD). Such long-distance gene expression
regulation was shown to be the result of telomeres forming
chromatin loops with enhancer and repressor regions of genes
within 10Mb of chromosome ends28. These interactions are
dependent on telomere length but are not linearly related with
shortening of the telomeres. We did not find any enrichment
within our DE gene sets for genes acting through a potential TPE-
OLD mechanism (i.e., 4–10Mb from chromosome end) in either
T-cells (4/45 DE genes positively associated with telomere length,
p= 1; 5/45, DE genes negatively associated with telomere length,
p= 0.8) or CD4 cells (1/19 DE genes positively associated with
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Fig. 4 Differential gene expression changes with telomere length across cell types. a UMAP plot of the cells from the subset of 62 LLD donors with both
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annotations (i.e., naïve and memory -mem- CD4T and CD8T cells, NK- and B-cells). For visualisation purposes, we down-sampled each of Azimuth’s
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annotation on the bar plot shows the total number of cells (nCells) per cell type.
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telomere length; p= 0.7; 4/24 DE genes negatively associated with
telomere length, p= 0.52) (Supplementary Fig. 7) (Supplemen-
tary Data 11). However, the generalised linear mixed model
(GLMM) we used for sc-DEA assumes linearity and therefore
might not allow us to properly test this hypothesis, which
assumes non-linear relations.

Since many of the identified DE genes did not fall into the TPE
or TPE-OLD categories, other unknown effects on gene
expression through telomere length may be at play or, conversely,
the expression of specific genes may affect telomere length. For
several DE genes, we found additional evidence for a telomere
connection in literature (Fig. 4) (Supplementary Data 11). Firstly,
three of our hits (DNAJA1, EEF1A1 and RPL29) were previously
reported in a screen for novel telomere binding proteins,
indicating their direct involvement in telomere maintenance51.
Secondly, CpG methylation of NR4A2 was previously found to be
associated with telomere length in whole blood29. NR4A2 is
involved in T-cell maintenance through regulation of Treg
suppressor functions and repression of aberrant Th1 induction52.
The third line of gene–telomere interaction evidence is the
overlap with leukocyte ageing–associated genes that were
previously identified in whole blood after a deep correction for
cell type composition (8 out of 84 testable genes overlapped; odds
ratio= 3.3, p= 6 × 10−3)53. Finally, four genes also overlapped
with the GenAge human database, the core Human Ageing
Genomic Resources (HAGR) database composed of >300 human
ageing-related genes54. These four were related to
immunosenescence55,56 (IL7R), cellular senescence57,58 (MYC)
and longevity59–62 (EEF1A1 and MT-CO1), in line with telomere
shortening being a well-known hallmark of both cellular
senescence and organismal ageing63,64. However, we did not find
a significant overlap between the genes we identified and the ones
reported in that study (odds ratio= 1.4, p= 0.53).

After exploring individual gene associations, we wondered if
the identified DE genes belonged to similar functional pathways
and could thus highlight the biological interplay between
telomeres and gene expression. To explore this, we performed a
functional enrichment analysis within the different sets of DE
genes. In CD4T cells, the JAK-STAT signalling pathway was
negatively associated with telomere length (enrichment ratio=
18.63, FDR= 4 × 10−3) (Supplementary Data 12). This pathway
has previously been associated with telomerase regulation in
haematologic malignancies65 and immunosenescence56. Among
the DE genes involved in the JAK-STAT signalling pathway,
interleukin-7 receptor (IL7R) plays a critical role in lymphoid cell
development66,67, and its gene expression network has been
proposed as a potential biomarker for healthy ageing55. In all T-
cells, we identified 26 pathways enriched among the genes
negatively associated with telomere length, many of them related
to translation, including peptide chain elongation, eukaryotic
translation elongation or termination and initiation, among
others (Supplementary Data 12). Previous genetic screens in
yeast68–71 and Arabidopsis thaliana72 identified ribosome

biogenesis as one of the largest gene categories linked to telomere
length. On top of that, in human fibroblasts, cellular senescence
triggered through telomere shortening can diminish ribosome
biogenesis, resulting in rRNA precursors and accumulation of
ribosomal proteins (such as RPL29, which we found to decrease
expression with telomere length in T-cells)73,74. In addition, our
set of negatively enriched pathways in T-cells also revealed the
nonsense-mediated decay (NMD) pathway (including PAMPC1
expression75) that has been recently proposed to regulate the
levels of specific mRNAs that are important for telomere
functions76.

Short telomere length associates with all-cause mortality,
independent of age. The most apparent implication of having
abnormal telomere length may be its effect on morbidity and
mortality. We collected all-cause mortality data for the previous 8
years, i.e., since the start of LLD data collection. Eleven study
participants had died at the time of the analysis, and we used a
Cox model while controlling for cell counts, age and sex to assess
the predictive power of telomere length (using the survival time
measured as days as an outcome). Despite the very low sample
size, we found a consistent association of shorter telomeres and
higher all-mortality death risk. The telomere length from all cell
types except NK-cells reached statistical significance [Fig. 5]
[Supplementary Data 13], indicating the effect of the telomere
length is independent of the effect of age in all-death prediction.

Discussion
This work presents the largest study to date on telomere length
variation in a population cohort based on cross-sectional Flow-
FISH33 measurements. We measured telomere lengths in six
immune-related cell types from 1046 participants from the
northern Netherlands LLD cohort32. We investigated the effect of
genetics and 90 phenotypes, including parental factors and a wide
range of general and environment factors, on telomere length.
This identified the most important factors that influence telomere
length and, based on our findings, we propose potential
mechanisms of action for some of these factors. Finally, we
identified cell-type-specific transcriptional modules related with
immunosenescence that might explain the downstream effects of
telomere length attrition.

Previous studies of telomere length variation in population
cohorts have mainly relied on classical terminal restriction frag-
ment measurements77, qPCR-based methods78,79 or computa-
tional methods16 to measure telomere length. In the current
study, we used Flow-FISH in a large epidemiological setting.
Flow-FISH allows accurate measurements of the average telomere
length in different cell types80. This allowed us to observe the
distribution of telomere length in different cell types in addition
to the more commonly studied telomere length of total leukocyte
population15,18,19. Our observations reveal a similar trend of
telomere length decrease with age and a high correlation in

Fig. 5 All-cause mortality risk of telomere length. X axis represents the hazard ratio of all-cause mortality estimated by a Cox regression on each cell
type’s telomere length. Bars indicate estimated 95% confidence interval.
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telomere length between different cell types (Pearson correlation’s
rho minimum 0.70, mean 0.81, maximum 0.94). These finding
overlap with previously published between-tissue telomere length
correlation ranges (leukocyte, skin, skeletal muscle and sub-
cutaneous fat, Pearson's rho from 0.76 to 0.88)81 but show a
smaller range than those reported in post-mortem tissues (highest
Pearson’s rho= 0.40 between transverse and sigmoid colon)20.
Nevertheless, it must be noted that measurements were carried
out using Southern blot in ref. 81, whereas the measurements
in ref. 20 where Luminex-based. These findings agree with pre-
vious studies that indicated that despite having different telomere
lengths in adults, the overall effect of age on telomere length is
similar in different cell types81. Additionally, our results show
high reproducibility with respect to a previous Flow-FISH
population study in a North American cohort9.

The average telomere length in each cell type is a complex
phenotype that reflects cell-type-specific, genetic, intrinsic and
environmental effects. Many previous studies have tried to esti-
mate the role of genetics in explaining the variation of telomere
length in humans18, producing a wide range of estimates. These
differences suggest there are potential environmental effects
confounding the heritability estimates. For instance, sibling-based
studies17,38,82 have the disadvantage of not being able to distin-
guish between genetics and early life or prenatal exposures. In our
study, which more closely resembles approaches that estimate
“chip-based” heritability in unrelated individuals83,84, we esti-
mated narrow sense heritability in six different cell types based on
a mixed model approach using sample-to-sample genotype kin-
ship estimations (GREML)40. One advantage of this study is that
LLD participants were specifically selected to have a common
ancestry but to not be highly related among each other, meaning
that the GREML estimation should not be biased by those factors.
After accounting for age and sex, our GREML estimation indi-
cates a median heritability of 40%, which is in the same range as
previously reported85. However, our estimate does not include the
X or Y chromosomes, which might play a role in telomere
heritability86. In addition, the relatively small sample size of our
study (~1000) hampers the accuracy of our estimation, and we
observe large standard error intervals. Nevertheless, the herit-
ability levels that we find are indicative of a large amount of
telomere variability being caused by environmental factors, which
contrasts with other studies that identified extremely high telo-
mere heritability (0.719, 0.7882, 0.8187). In our GWAS analysis, we
identified one intronic SNP in the TERT gene that was associated
at 5 × 10−8 and in moderate LD (r2= 0.47) with previously
reported associations in this locus. The GWAS analysis in our
cohort was limited by our relatively small sample size (911
individuals), but PRS scores from a recent large telomere
GWAS15 indicate strong association of previously identified
genetic variants with telomere length of all cell types.

Despite the on-going efforts to understand the effect of genetics
on telomere length12–16, a large fraction of unexplained variability
remains, which may be attributed to environment. We therefore
investigated the relation of 90 phenotypes with telomere length.
This analysis pointed to a role for parental phenotypes in the
telomere variations in their children. Higher paternal age has
previously been associated with longer telomere lengths in
humans19. Our results agree with this but also identify a maternal
age effect on telomere length. Given the high correlation between
paternal and maternal age (r= 0.77), the maternal age effect we
observe might be confounded by paternal age. It is known that
sperm telomere length increases with age, whereas telomere
length in somatic tissues, including leukocytes, diminishes with
age88,89 providing a potential explanation for longer leukocyte
telomere length in offspring of older fathers. This effect might
even be additive over consecutive generations90. In addition to

parental age, we identified a novel telomere association with
parental habits in which parental smoking was negatively asso-
ciated with telomere length. This effect could either be prenatal or
early life.

Additionally, even with the possibility of being caused by
common genetic architecture, parental effects in offspring are
more plausibly caused by a mechanism other than genetics, such
as epigenetic modifications. We, therefore, tested whether
methylation might mediate the effect of parental phenotypes such
as age and smoking on telomere length in their children. The
effect of maternal age, and not paternal age, on telomere length
was mediated through methylation of several genes, suggesting
that the maternal age effect is not completely confounded by
paternal age. Here, we highlighted the mediation of telomere
length in NK-cells via the methylation of SOX11. It is not clear
how SOX11 methylation may lead to telomere shortening, as
SOX11 is mostly expressed during embryonic development.
Previous studies have shown that promoter hypermethylation of
SOX11 inhibits SOX11 expression in cancer cells91. In addition,
several studies have shown an anti-senescent effect of SOX4,
which belongs to the same SOXC group as SOX1192. It is
important to stress, however, that this is a proposed mechanism,
and that experimental validation will be needed to resolve the
nature of such associations.

Apart from parental factors, we identified that women have
longer telomeres than men, as previously identified86,93. In
addition, BMI was associated with shorter telomeres20,94. How-
ever, we did not observe other previously reported associations,
such as with participant’s smoking habits20,95. Combining all
identified intrinsic, parental and genetic factors other than age
with significant effects at least in two cell types, we estimate that
only 10%, on average, of the observed telomere length variability
can be explained, with only about 3.7% attributable to genetics
(without accounting for the genetics factors that cause sex dif-
ferences). These findings showcase a greater impact of environ-
mental and intrinsic effects than genetics on telomere length
variation. Nevertheless, it is worth noting that the model applied
in this study does not consider interactions between the different
layers of information, where genetics could potentially impact the
effects of the other environmental features. In addition, we are
only considering highly associated additive SNPs and no other
possible epistatic relationships, which means we are probably
only setting a lower bound on the amount of variability that we
can account for.

Our single-cell transcriptomic analyses identified a set of 97
unique genes that are significantly associated with telomere length
across T-cell types. Three of them (DNAJA1, EEF1A1 and RPL29)
were previously revealed as telomere binding proteins51, indi-
cating that our approach captures genes directly involved in tel-
omere length dynamics. Moreover, our study provides additional
insight into the direction of effect. For example, we found RPL29
to be negatively associated with telomere length, which is in line
with previous studies describing accumulation of RPL29 as a
biomarker of senescence73. Looking at the broader context, we
observed functional enrichment of genes involved in translation
and the NMD pathway within the gene set negatively associated
with telomere length in T-cells, which might have important
physiological consequences.

Even though some of the telomere length–associated genes
were located near the telomere ends (i.e., 12 and 9 DE genes that
fall < 4Mb and between 4–10Mb from the telomere ends,
respectively), in general, our differential expression findings could
not be explained by previously described mechanisms (TPE26,27

and TPE-OLD28). This suggests that there are other mechanisms
by which telomere length regulates gene expression, or vice
versa51. Follow-up experimental perturbation studies will be
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required to make this distinction, for example by inducing telo-
mere shortening (replicative senescence) followed by gene
expression analysis or by inducing gene knockdowns followed by
telomere length measurements.

Finally, by making use of longitudinal data on participant
survival, we were able to replicate a negative association between
telomere length and all-cause mortality96, although the small
number of deceased participants (11) hampers the wider inter-
pretation of these results. Further studies of Lifelines participants
will clarify this predicted relationship97.

Methods
Lifelines deep cohort. Lifelines is a multi-disciplinary prospective population-
based cohort study examining, in a unique three-generation design, the health and
health-related behaviours of 167,729 persons living in the North of the Nether-
lands. It employs a broad range of investigative procedures to assess the biomedical,
socio-demographic, behavioural, physical and psychological factors that contribute
to the health and disease of the general population, with a special focus on multi-
morbidity and complex genetics41. The Lifelines study was approved by the
medical ethical committee from the University Medical Centre Groningen (METc
number: 2017/152). We collected data from the subcohort Lifelines DEEP (LLD,
n= 1057, 57.6% female, mean age (including months) 43.9 years [range 18–81.4
years])32. Extensive information on demographics, health and lifestyle factors
including smoking and diet was collected via detailed questionnaires. Mean BMI of
participants was 25.1 [range 15.8‒44.9]. Common age-related diseases within the
cohort included hypertension (23% of 841 participants with information), type 2
diabetes (1.3% of 1039 participants with information) and hypercholesterolemia
(14% of 900 participants with information). In the cohort, 20% of individuals
smoked currently, 48% smoked for at least 1 year and 37% had mothers and 65%
had fathers who smoked.

Genome-wide genotyping data was generated as described in ref. 32. Genotype
data processing was done as described in ref. 98. Briefly, microarray data were
generated on CytoSNP and ImmunoSNP and then processed on the Michigan
Imputation Server99 to perform phasing using SHAPEIT and imputation using
HRC version R1 as reference100. We excluded SNPs with imputation quality
r2 < 0.5, minor allele frequency (MAF) < 0.05, call rate < 0.95 and Hardy–Weinberg
equilibrium test p < 1 × 10−6, which resulted in 5,327,634 SNPs used in subsequent
analyses. Genotype data was available for 911 samples with non-missing telomere
measurements.

Genome-wide methylation data generation for this cohort was described
previously101. Briefly, the EZ DNA Methylation kit (Zymo Research) was used to
bisulfite-modify 500 ng of genomic DNA, which was hybridised on Illumina 450 K
array. Methylation probes were remapped to ensure their correct genomic location,
and probes with known SNPs at the single base extension site or CpG site were
removed. Next, data were processed using a pipeline described by Tost and
Touleimat102. We used DASEN-normalised data with subsequent quantile
normalisation and probe scaling applied. Methylation data for 418,499 probes was
available for 651 samples with telomere measurements in at least one cell type.

Flow-FISH Telomere length measurement. Telomere length measurements using
automated multicolour flow-fluorescence in situ hybridisation (Flow-FISH) were
performed as described33. Briefly, white blood cells were isolated by osmotic lysis of
erythrocytes in whole blood using NH4Cl. White blood cells were then mixed with
bovine thymocytes of known telomere length (which served as an internal control),
denatured in formamide at 87 °C, hybridised with a fluorescein-conjugated
(CCCTAA)3 peptide nucleic acid (PNA) probe specific for telomere repeats and
counterstained with LDS751 DNA dye. The fluorescence intensity in granulocytes,
total lymphocytes and lymphocyte subsets defined by labelled antibodies specific
for CD20, CD45RA and CD57 relative to internal control cells and unstained
controls was measured by flow cytometry to calculate the median telomere length
from duplicate measurements.

Out of a total of 1388 participants, we could not measure the telomere length in
any cell type in 207. In addition, granulocytes could not be measured in 109
participants, B-cells could not be measured in nine participants and NK-cells could
not be measured in 17 participants (all of these were different participants). We
decided to remove all participants with at least one missing cell type, which resulted
in a final subset of 1046 participants.

sjTREC measurement. DNA from whole blood was isolated using the conven-
tional protocol with Proteinase K digestion followed by phenol extraction and
isopropanol precipitation. Next, we performed a TaqMan quantitative real-time
PCR approach to quantify sjTREC expression (signal joint excision circles pro-
duced during T-cell development) using ViiA™ 7 Real-Time PCR System (Life
technologies). TaqMan qPCR was performed on 75–100 ng DNA in a 12 μl reac-
tion mixture containing 18 µM of each primer for sjTREC (5′‐TCGTGA-
GAACGGTGAATGAAG‐3′ and 5′‐CCATGCTGACACCTCTGGTT‐3′) and for
albumin as housekeeping gene (5′‐TGAACAGGCGACCATGCTT‐3′ and 5′‐

CTCTCCTTCTCAGAAAGTGTGCATAT‐3′) and 5 µM of hydrolysis sjTREC
probe 5′‐(FAM) CACGGTGATGCATAGGCACCTGC‐3′ (TAMRA) and albumin
probe 5′‐(FAM) TGCTGAAACATTCACCTTCCATGCAGA ‐3′ (TAMRA). PCR
runs started with incubation at 50 °C for 2 min, then at 95 °C for 15 min, followed
by 45 cycles of denaturation at 95 °C for 15 s and annealing/elongation at 60 °C for
30 s. All reactions were carried out in duplicate per sample using sjTREC primers
and sjTREC probe as well as albumin as a single-copy albumin gene to normalise
the results, taking into account the amount of input DNA. During PCR, the
amplification mediated the cleavage of the probes, which contain a quencher
(TAMRA) and a reporter (FAM) dye. This, in turn, leads to the separation of the
quencher from the reporter, thereby inducing fluorescence of the reporter dye. The
expression of target (sjTREC and albumin) in analysed samples was established by
measuring the threshold cycle (CT), defined as the cycle number at which the
fluorescence generated by cleavage of the probe passes a fixed threshold above
baseline. We calculated the standard deviation between the duplicates, and the
results were accepted for further analysis when the standard deviation was ≤1.
Next, we considered the average for all the duplicates with standard deviation ≤1,
and the normalised sjTREC expression in each sample was calculated as a differ-
ence between average CT values of albumin and average sjTREC CT values.

Definition of telomere fast and slow agers and comparison between biological
ageing methods. Telomere lengths were used to identify participants with above
or below average telomere length. To do so, we fitted a linear model to each cell
type’s telomere length using age, including months, as regressor. We then identified
participants under one standard deviation of their predicted value. We considered
all participants with at least two cell types passing the one standard deviation
threshold to be fast or slow agers. Participants identified with some cell types above
one standard deviation and some below were excluded. Thus, we defined two
groups of participants: fast and the slow agers. We then performed a logistic
regression using either sjTREC or methylation age as a regressor explaining this
binary category (fast agers or slow agers) while controlling for age, sex and cell
counts.

GREML heritability estimation. We used the GCTA40 software for narrow sense
heritability estimation. We used the microarray SNP data available in LLD to
calculate a genetic relationship matrix (GRM) using variants with a MAF > 1%
(GCTA–make-grm). Next, we used the estimated GRM to calculate the amount of
variance explained by the random effect of genetics in a linear mixed model
(GCTA–reml) while accounting for sex and age as fixed-effect covariates.

GWAS of telomere length. Using a previously described pipeline103, we per-
formed an association analysis of telomere length of each cell type with genome-
wide SNP genotype data by calculating the Spearman correlation coefficient
between telomere length measurements corrected for age and sex and SNP geno-
type dosages. We corrected the results for multiple testing by permuting genotype
labels 10 times to create a null distribution that was used to control FDR at 0.05.

Polygenic risk score calculation. The contribution of genetics was calculated
using a PRS created using 20 independent genome-wide significant loci reported a
large European-descent telomere GWAS study15. A weighted PRS was calculated
for each LLD participant using PLINK 1.9–score sum function104. The PRS was
used as a regressor using chronological age as covariate and telomere length of each
cell type as dependent variables of six different linear models.

Phenotype correlations. We preselected 90 phenotypes for correlation with tel-
omere length based on the relevance and sample size of each phenotype. We used
telomere length as the dependent variable while the phenotype was standardized to
unit variance and used as the explanatory variable. Linear models were fitted in R
(v4.0.1) by ordinary least squares (OLS). We fitted all models while accounting for
the effect of age and sex. We then fitted a second model that also accounted for the
effect of different blood cell counts available per sample, namely granulocytes
(basophils, eosinophils and neutrophils), erythrocytes, lymphocytes, monocytes
and thrombocytes measured per plasma litre. We computed FDR from all P values
using the Benjamini-Hochberg procedure105 as implemented in R base functions.

For some specific diabetes-related and BMI-related phenotypes, such as ‘Waist
circumference in cm’ and ‘Body Mass Index (kg/M2)’, we included paternal and
maternal age and parental smoking habits as additional covariates in the model
discussed above. At the same time, to disentangle maternal and paternal age effects,
we applied a linear model including covariates (age, sex, cell counts) and both
phenotypes, using each telomere length as dependent variable. We included an l1
penalisation (Ridge regression) using glmnet in R106 to shrink the estimates of
superfluous covariates. The strength of the regularisation parameter (λ) was
estimated by a 10-fold cross-validation.

To identify possible confounders in BMI-related phenotypes, we performed
correlations between BMI and parental smoking and parental age using an
additional 10,000 participants from the Lifelines study population41.
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Assessment of total variance explained by phenotypes. To assess the total
variability explained by each layer of information, we selected all phenotypes found
significantly associated with at least two telomere lengths under an FDR of 0.05.
First, we regressed out the effect of chronological age in telomere length. Next, we
fitted three nested models with intrinsic host factors: one adding sex, a second
adding cell counts and a third adding waist circumference and BMI. These were
fitted using a lasso shrinkage model (using glmnet in R106) to explain the residuals
of telomere length after removing the chronological age effect. A fourth model
added the parental phenotypes age and smoking to the intrinsic factors model. The
final model added the PRS (see Polygenic Risk Score calculation) on top of the
parental model. We computed the variance explained (R2) by each model and the
ΔR2 of the variability gained by each layer of information introduced.

Methylation association analyses. We performed a EWAS of all probes with
parental phenotypes using OLS in R. The following five phenotypes were used: age
of mother and father at participant’s birth, maternal smoking during childhood,
maternal smoking during pregnancy and paternal smoking during childhood, all
while correcting for age, sex and cell counts as covariates. Bonferroni multiple
testing correction was applied to correct for 5 × 418,499= 2,092,495 tests. Next, we
assessed the association of methylation and telomere length using a similar linear
model, adjusting for age, sex and cell counts.

Mediation analysis. To test if the parental phenotype effect on telomere length
may be mediated by methylation of certain probes, we performed a mediation
analysis. For this we selected triplets of parental phenotypes (independent variable),
methylation probes (mediator) and telomere length (dependent variable) using the
following criteria: We required that a parental phenotype was associated with the
methylation probe with FDR < 0.05, that methylation at this probe was associated
with telomere length at a p < 0.05 and that the parental phenotype was associated
with telomere length at a p < 0.05. Next, we estimated mediation using the med-
iation R package107, adding age, sex and cell counts as covariates to all models. We
performed a Benjamini-Hochberg multiple testing correction on the average causal
mediation effect (ACME) p value and required that the FDR < 0.05 and the average
direct effect (ADE) p value was >0.05 (meaning that the parental phenotype effect
is mostly mediated by methylation). In addition, we investigated a slightly different
situation where methylation and telomere length are swapped. Here, we checked if
the parental phenotype effect on methylation is mediated by telomere length.
While the real causality directions are very complex and often contain loops, and as
a consequence these swapped ACME P values are often <0.05, we required that a
swapped ACME p value be larger than the main original ACME p value and that
the mediated proportion of the effect for the original direction be larger than for
the swapped scenario.

Differential expression analysis at the single-cell level. To study gene
expression changes with telomere length at the single-cell level, we used a subset of
previously processed scRNA-seq data49 on unstimulated peripheral blood mono-
nuclear cells from 62 LLD donors for whom we collected Flow-FISH telomere
length data for at least one cell type in the current study. This scRNA-seq data was
generated 5 years after collection of the Flow-FISH telomere length data. In short,
scRNA-seq data was generated using the 10X Chromium Single Cell 3’ V2
chemistry and libraries were 150 bp paired-end sequenced on Illumina’s Nova-
Seq6000. The Cellranger v3.0.2 pipeline was used with default parameters to
demultiplex, generate FASTQ files, map reads to the GRCh37 reference genome
and generate a unique molecular identifier (UMI)-corrected count matrix per
cell108. After quality control, 54,373 cells remained. In the original dataset,
k-nearest neighbour clustering was used to cluster the cells. We then performed
automated cell type classification using Azimuth to annotate the cells50. In detail,
we conducted a supervised analysis guided by a reference dataset to enumerate cell
types that would be challenging to define with an unsupervised approach. Thus, we
mapped our scRNA-seq query dataset to a recently published CITE-seq reference
dataset of 162,000 PBMC measured with 228 antibodies50. For this process, we
used a set of specific functions from the Seurat R package v4.0.050,109. First, we
normalised the reference dataset using the SCTransform function. Then, we found
anchors between reference and query using a precomputed supervised PCA
transformation through the FindTransferAnchors function. Afterwards, we trans-
ferred cell type labels and protein data from the reference to the query. We also
projected the query data onto the UMAP structure of the reference. For these two
last steps, we used the FindTransferAnchors function. Finally, the high resolution
cell-type-annotations predicted by Azimuth (celltype.l2) were combined in such a
way to more closely reflect the resolution of the Flow-FISH annotations (i.e., naïve
and memory CD4T and CD8T cells, NK- and B-cells) (Supplementary Data 8).

Telomere length DE analyses were conducted using MAST v1.16.0110 at single-
cell resolution (sc-DEA) by selecting the matched telomere length measurement
and gene expression level for each of these cell types. As a first approach (I), we
performed an independent telomere length sc-DEA for each of the previously
defined cell types (i.e., naïve and memory CD4T and CD8T cells, NK- and B-cells).
We then conducted a second approach (II) in which we combined multiple (sub)
cell types together in the same analysis (i.e., we performed five different sc-DEA
combining: all CD4T, CD8T, naïve T, or memory T and T-cells) while controlling

for cell type annotation (Supplementary Data 8). As our first approach had
indicated that we had insufficient cells to detect telomere length–associated DE
genes in B- and NK-cells, we did not re-analyse these cells using our second
approach. This strategy allowed us to increase the number of cells per donor per
analysis and thereby increase the power to detect potential effects. In both cases, as
input, we used the log-normalised and scaled expression counts from those genes
expressed in at least 10% of the cells. MAST uses a two-part generalised linear
model, specifically a Hurdle model, on zero-inflated continuous data in which the
zero process is modelled as a logistic regression and the continuous process is
modelled as a linear regression. To accommodate the complex experimental design
while controlling for covariates, including both biological variables (sex, age, donor
and cell type) and technical factors (cellular detection rate (CDR) and 10x lane/
experimental batch), we fitted a general linear mixed model (glmer) of the form:

Expri � telomere lengthi þ CDRi þ sexþ ageþ ð1jdonorÞ þ ð1jlaneÞ ðIÞ

Expri � telomere lengthi þ CDRi þ sexþ ageþ celltype:l2i þ ð1jdonorÞ þ ð1jlaneÞ
ðIIÞ

where Expri is the log-normalised, scaled expression of the gene being tested in cell
i; telomere lengthi is the telomere length measurement using Flow-FISH in the
tested cell type; CDRi is the fraction of genes that are detectably expressed in each
cell; celltype.l2i is the high resolution cell type annotation predicted by Azimuth;
sex and age are phenotypic variables from the donors; donor is the donor LLD id
and lane is the experimental batch, here being the lane of a 10X chip. First, we used
the zlm function to fit a glmer (method= ‘glmer’, ebayes= FALSE, fitArgsD= list,
nAGQ= 0, all other parameters set to default). Some of the gene models failed to
converge when considering random effects (i.e., donor and lane), which resulted in
NA estimated coefficients. To mitigate this convergence issue, nAGQ= 0 was
passed to the fitting function. We then used the summary function to perform a
likelihood ratio test (LRT) to test for differences when we drop the telomere length
factor (doLRT= telomere length, fitArgsD= list, nAGQ= 0, all other parameters
set to default).

Finally, genes were considered to be DE with telomere length when gene
expression change was significant at an FDR < 0.05. The EnhancedVolcano
function from EnhancedVolcano R package v1.8.0 was used to visualise the gene’s
significance and log2FC. The pheatmap function from pheatmap R package v1.0.12
was used to visualise the expression pattern (log-normalised counts), clustering and
annotation of the set of 97 unique DE among T-cells. For visualisation purposes,
we down-sampled each of the Azimuth’s predicted T (sub) cell types to 100. To
distinguish the four main expression patterns, the argument cutree_rows= 4 was
set when using the pheatmap function. The pheatmap function was also used to
visualise the LFC per telomere length unit among the set of 97 unique DE genes
identified in T, CD4T and CD8T cells.

Literature validation of single-cell analysis. To validate our sc-DEA findings, we
compared our results to four biologically related studies that: (i) revealed novel
telomere proteins using in vivo cross-linking, tandem affinity purification and
label-free quantitative LC-FTICR-MS51, (ii) identified a set of genes associated with
ageing in whole blood using bulk RNA-seq after correcting for cell type
composition53, (iii) created the GenAge human database as part of the HAGR
databases composed of 307 human ageing-related genes54 and (iv) defined an
association between telomere length and methylated cytosine levels for both blood
and EBV-transformed cell-line DNA samples29. To this end, we overlapped the set
of 97 unique genes we found to be DE with telomere length against these four
previously reported lists of genes and performed a two-sided Fisher’s exact test to
assess whether these overlaps were significant. We could not test the overlap with
ref. 29 since multiple methylated CpG sites are linked to the same gene. For the
tested overlaps, as our background list of genes, we gather the union of all tested
genes in T-, CD4T and CD8T cells. As each study’s background list of genes, we
considered all the tested genes in ref. 53 and all the protein-coding genes (using
Gencode v26, GRCh38 annotation) in refs. 51,54.

Single cell functional enrichment analysis. We performed a functional enrich-
ment analysis through an over-representation analysis using WebGestalt (WEB-
based GEne SeT AnaLysis Toolkit)111. As the input gene list, we used the 44 and 91
DE genes we identified in CD4T and all T-cells, respectively, split by their direction
of effect (i.e., positively or negatively associated with telomere length). As the
background gene set, we used the 2426 and 2427 expressed genes that were tested
in the sc-DEA of the CD4T or all T-cells, respectively. As functional databases, we
used two different pathway databases: KEGG and Reactome. Advanced default
parameters were used (minimum and maximum number of genes for a category: 5
and 2000, multiple test adjustment: BH, significance level: FDR ≤ 0.05, number of
categories expected from set cover: 10, redundancy reduction: affinity propagation
and weighted set cover).

Differentially expressed genes telomere distance analysis. We compared the
shortest distance to the telomere of DE genes compared to non-DE genes in
CD4T cells and T-cells. Gene locations were retrieved using the human Ensembl
BioMart dataset GRCh38.p13112. Chromosome length was used as a proxy for
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telomere location. We took the minimum between the start of the gene position
and the distance between the end of the gene and the end of the chromosome as the
distance from the gene to the telomere. We then performed a one-sided Fisher’s
exact test to examine whether there was an enrichment of genes located at sub-
telomeric regions in the DE sets in comparison to background non-DE sets. We
performed this analysis in positively and negatively telomere-associated genes
separately and in each of the two cell types. To overcome a possible confounder
effect of chromosome length, we subsampled with no replacement genes from the
non-DE gene set while keeping the same chromosome proportions observed in the
DE gene set, and again performed a Fisher’s exact test.

Survival analysis. We obtained survival information for 1044 participants and
ultimately the dates on which 11 participants had died. We measured the number
of survival days since blood was donated. The R ‘survival’ package was used to
perform a Cox regression analysis using survival (days) as dependent variable and
telomere length as explanatory variable, while controlling for age, sex and blood
cell counts. We tested the proportional hazards assumption, both of telomere
length as a covariate and for the whole model (cox.zph function), using a p value
cut-off of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data here presented belongs to Lifelines. Lifelines are specifically organized to make
assessment results available for (re)use by third parties. The biological ageing data used
here, including sjTRECs expression, methylation age predictions, telomere length
measurements, genetics, methylation and phenotypic data can be requested through
Lifelines. A research proposal must be submitted for evaluation by the Lifelines Research
Office.
• Phenotypic data: Researchers must submit a data order (i.e., a selection of variables)
and research proposal in the Lifelines online catalogue.

• Omics data: Omics data are stored in the UMCG HPC. Omics data cannot be
ordered using the Lifelines online catalogue, but are made accessible in full to
researchers with an approved requst. With uniquely made linkage files the researcher
can link an order of phenotypic data to omics data, if requested.

In addition to this, processed (de-anonymized) scRNA-seq data, including a text file
that links each cell barcode to its respective individual, is available at the European
Genome-Phenome Archive (EGA), under accession number: EGAS00001005376. A toy-
example dataset is available to run the single-cell analysis is available in the
MOLGENIS113 cloud and can be access from the following link: https://downloads.
molgeniscloud.org/downloads/combio_andreu_2022/ GWAS summary statistics
generated in this study are available at GWAS catalogue, under the accession numbers:
Granulocytes - GCST90101887; lymphocytes - GCST90101888; naïve T-cells -
GCST90101889; memory T-cells - GCST90101890; B-cells - GCST90101891; NK-cells -
GCST90101892.

Code availability
Analysis scripts are publicly available at: https://github.com/GRONINGEN-
MICROBIOME-CENTRE/Groningen-Microbiome/tree/master/Projects/Telomere_
analysis.
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