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The thermostability of proteins is a key factor considered during enzyme engineering,
and finding a method that can identify thermophilic and non-thermophilic proteins will be
helpful for enzyme design. In this study, we established a novel method combining mixed
features and machine learning to achieve this recognition task. In this method, an amino
acid reduction scheme was adopted to recode the amino acid sequence. Then, the
physicochemical characteristics, auto-cross covariance (ACC), and reduced dipeptides
were calculated and integrated to form a mixed feature set, which was processed
using correlation analysis, feature selection, and principal component analysis (PCA)
to remove redundant information. Finally, four machine learning methods and a dataset
containing 500 random observations out of 915 thermophilic proteins and 500 random
samples out of 793 non-thermophilic proteins were used to train and predict the data.
The experimental results showed that 98.2% of thermophilic and non-thermophilic
proteins were correctly identified using 10-fold cross-validation. Moreover, our analysis
of the final reserved features and removed features yielded information about the
crucial, unimportant and insensitive elements, it also provided essential information for
enzyme design.

Keywords: thermophilic protein, reduced amino acids, mixed features, machine learning methods, non-
thermophilic protein

INTRODUCTION

Proteins denature when the environmental temperature increases dramatically (Tang et al., 2017).
However, thermophiles can survive in temperatures ranging from 41◦C to 122◦C (Takai et al., 2008;
Fan et al., 2016) and produce enzymes that react well at higher environmental temperatures, such
as 120◦C (Fan et al., 2016). In enzyme engineering, identifying the functional mechanisms of these
proteins will provide insights into the design and optimization of enzymes (Tang et al., 2017).

Protein thermostability has been shown to be related to hydrophobicity (Gromiha et al.,
2013), hydrogen bonding (Bleicher et al., 2011), hydrophobic free energy (Gromiha et al., 1999;
Saraboji et al., 2005), and residue (Meruelo et al., 2012) and inter-residue contacts (Gromiha,
2001). Moreover, Das and Gerstein (2000) found that salt bridges are essential for maintaining
protein thermostability in thermophilic bacteria. The distribution of amino acids in proteins
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(Fukuchi and Nishikawa, 2001; Zhou et al., 2008) and the
presence of dipeptide (Ding et al., 2004; Zhang and Fang,
2006a,b) also affect protein thermostability. In a study by Vieille,
the composition of Arg is greater in thermophiles than in
mesophiles (Vieille and Zeikus, 2001). Guo also showed that
expurgation of water-accessible thermo-labile residues, such as
Gln and Met, affects the thermostability of enzymes expressed by
thermophiles (Guo et al., 2014). Besides, Chen et al. (2016) found
the pseudo amino acid composition had a big effect on the protein
identification task, and constructed a web server to give a free way
to use their algorithm1.

Sequence-based protein identification provides an alternative
method for studies of protein thermostability (Zhang and Fang,
2007; Wu et al., 2009; Li and Fang, 2010; Liu et al., 2011, 2019;
Zuo et al., 2013; Fu et al., 2018; Wang et al., 2018; Zhang
et al., 2018; Cheng et al., 2019; Yu et al., 2019b). Wang et al.
(2011) introduced a feature selection method to identify vital
features from the pseudo amino acid composition, amino acid
composition, physicochemical features, composition transition,
and distribution features using a support vector machine (SVM)
to detect thermophilic proteins. Additionally, Tang proposed a
two-step discrimination method with 94.44% accuracy using 5-
fold cross-validation. Lin et al. constructed a dataset containing
915 thermophilic proteins and 793 non-thermophilic proteins,
and predicted 93.8% thermophilic proteins and 92.7% non-
thermophilic proteins using SVM. The same conclusion was
also reached by Nakariyakul et al. (2012), who obtained 93.3%
identification accuracy in the same database used by Lin.
In another study, Fan et al. (2016) integrated information
on the amino acid composition, evolution information, and
acid dissociation constant to identify thermophiles by SVM,
yielding an overall accuracy of 93.53%. Modarres et al. (2018)
proposed a new thermophilic protein database, which contained
14 million protein sequences. In this database, all sequences
were categorized according to the thermal stability and protein
family property. Not only the sequences but also structures of
thermophilic proteins were contained in the database. This online
database gave the developers a powerful tool in the thermophilic
protein prediction task.

In this study, we integrated 188 physicochemical characteristic
features, auto-cross covariance (ACC) information, and
dipeptide compositions of reduced amino acids to obtain a
mixed feature set. Redundant features were then removed using
correlation analysis, and dimensions were reduced using the
max-relevance-max-distance (MRMD) method and principal
component analysis (PCA). Finally, the SVM and other three
machine learning methods were used to identify thermostability.

MATERIALS AND METHODS

The main framework of the method used in this study could
be divided into the following four parts: (a) transforming
thermophilic protein sequences to a reduced amino acid form; (b)
extracting useful features; (c) using the SVM to train the extracted

1http://lin-group.cn/server/Lypred/

features; (d) predicting the test data by machine learning (Yu
et al., 2017a,b; Zou et al., 2017a,b; Zhang et al., 2019a). The
framework is shown in Figure 1.

Datasets
We used the dataset constructed by Lin et al. (Lin and Chen,
2011), whose data were chosen from the Universal Protein
Resource (UniProt). The temperature of thermophilic proteins
in this dataset was set to above 60◦C and the temperature
of non-thermophilic proteins was set to be less than 30◦C.
After removing redundancy and homology bias, there were 915
thermophilic and 793 non-thermophilic proteins. These data can
be downloaded from http://www.labio.info/index-1therm.html.

Reduced Amino Acid Composition
(RAAC)
In order to improve phylogenetic estimates, it is possible to
recode the amino acids in the protein sequence (Susko and
Roger, 2007). Furthermore, some reduced amino acid schemes,
including the “Dayhoff classes” (AGPST, DENQ, HKR, ILMV,
FWY, and C), have attracted attention (Susko and Roger, 2007).

In order to maximize the ratio of the expected number of
substitutions within bins under the JTT model, Susko et al.
proposed their reduced amino acid alphabet, which contains 30
schemes. In this study, we chose the final scheme as follows: A, C,
D, E, F, G, H, IV, K, L, M, N, P, Q, R, S, T, W, Y. Thus, the 20 amino
acids were classified into 19 types in the above scheme (Susko and
Roger, 2007), in which Ile (I) and Val (V) were viewed as a single
type, while every one of other categories had only one amino
acid. Under this reduced scheme, we use the webserver of Zuo
(Zheng et al., 2019) to calculate the RAAC of the thermophilic
and non-thermophilic proteins.

Furthermore, dipeptides of proteins, like AA, A∗A (λgap = 1),
and A∗∗A (λgap = 2), AK, A∗K, A∗∗K, etc., were also obtained
using this webserver (Chen et al., 2016; Yang et al., 2019). The
following formula was used to calculate the values of those
features:

f λ361
(
j
)
=

yλ
361(j)∑
j y

λ
361(j)

λ = 0, 1, 2, · · · , 361,

where yλ
361(j) denotes the number of λ-gap dipeptides of type j in

a protein sequence.

Feature Extraction
Physicochemical Characteristics
To quantitatively identify proteins, the physicochemical
characteristics were obtained using a method (temporarily called
188d), which could extract sequence information and amino acid
properties (Song et al., 2014; Xu et al., 2014, 2018; Fu et al., 2019;
Liu, 2019; Zhu et al., 2019). The first 20 elements in the results
of this method denoted the frequency of the 20 original amino
acids (Zhu et al., 2019); the next 24 features reflected the group
proportion corresponding to three groups (Qu et al., 2019); the
following 120 dimensions were the distributions of three groups
in five local positions (Cai et al., 2003); the last 24 features were
the numbers of three types of dipeptides.
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FIGURE 1 | The whole framework of the proposed method in this manuscript.

ACC
Auto covariance (AC) and cross-covariance (CC) calledACC, can
reflect the relationship between amino acids with certain length
features and contains AC and CC (Dong et al., 2009; Liu et al.,
2015). The formula of CC transforms a protein sequence to a
vector form Liu et al. (2016):

P′ = [ϕ1, ϕ2, ϕ3, · · ·, ϕ N ∗ (N − 1) ∗ lg)]T,

where N denotes the number of properties. ϕi can be calculated
as:(Guo et al., 2008)

ϕn = AC
(
i, lg

)
=

1
N − lg

∑L−lg

j=1
(Si,j − Si)(Si,j+lg − Si),

where i is a residue, Ldenotes the length of the whole protein
sequence, Si,j represents the i-th property of the j-th amino acid,
and Si reflects the mean value of the i-th property (Qu et al.,
2019). In our experiment, the value of lg was set to 2.

Correlation Analysis
Some pairs in our feature set were found to be highly
correlative, indicating that the effects of these two features

were similar. Furthermore, this phenomenon denotes redundant
and repeated information were present in the feature set.
However, without the preprocess of discarding redundant
information, machine learning models are associated with a
risk of overfitting (Hua et al., 2009; Mwangi et al., 2014;
Zeng et al., 2019b).

Thus, a correlation analysis-based redundant information
expurgate method was proposed to discard one feature from
each of the highly relevant feature pairs. As a prepare step, all
feature values need to be normalized to [0,1] using the following
equation:

xni =
xi − x̄

xmax − xmin
,

where xi(i = 1, 2, 3, · · · ) denotes the i-th value in the feature set,
x̄represents the mean value of the current feature vector, andxmax,
xmin correspondingly reflect the maximum and minimum values
of the feature vector.

Then, Pearson’s correlation was used to evaluate the
correlations between any two features. Its value was written as
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follows:(Thibeault and Srinivasa, 2013; Jin et al., 2019)

ρ (X,Y) =
1

n− 1

n∑
i=1

(
Xi − X̄
σ(X)

)(
Yi − Ȳ
σ(Y)

),

where X and Y are two given feature vectors, X̄and Ȳ represent
the mean value of X and Y , respectively, and σ(X) and σ(Y)
denote the standard deviations of X and Y , respectively.

In our experiment, for any feature pair X and Y , if the value
of ρ (X,Y) was larger than the threshold T, then X and Y were
considered a highly correlated feature pair. In the next step, we
decided whether to remove one of the features from the feature
set while retaining the other in the feature set. Thus, for the first
feature pair, a removed feature set D and a reserved feature set R
were created and set as an empty set. Then, one feature was set to
belong to D, while the other was set to belong to R randomly. In
the following computation, the rule for assigning features could
be expressed as follows: assuming that X-Y is a highly correlative
feature pair,

• If X /∈ D and X /∈ R : Y /∈ D and Y /∈ R→ Y ∈ D, X ∈ R
• If X /∈ D and X /∈ R : Y ∈ D→ X ∈ R
• If X /∈ D and X /∈ R : Y ∈ R→ X ∈ D
• Elseif X ∈ R : Y /∈ D and Y /∈ R→Y ∈ D
• Elseif X ∈ D : Y /∈ D and Y /∈ R→ Y ∈ D

Let D =
{
f
′

1, f
′

2, f
′

3, · · · , f
′

M

}
denote the final removed feature

set. After all M features in D were removed from the feature set,
the correlation between feature pairs was decreased dramatically.
The threshold T used in our experiment was set as 0.85.

MRMD Feature Selection
Dimensionality reduction is a key process in machine learning
research and application (Bhola and Singh, 2018). The MRMD
method, as presented by Zou et al. (2016), was used to
rank features in descending order and reduce the feature
number. There were two object functions; the first reflected the
relationship between the current feature and the target class,
which could be written as follows (Zou et al., 2016):

PPC
(
−→
Fi ,
−→
Ci

)

=

1
N−1

∑N
k=1

(
fi,k − fi

) (
Ci,k − Ci

)
√

1
N−1

∑N
k=1

(
Ci,k − Ci

)2
√

1
N−1

∑N
k=1

(
fi,k − fi

)2
,

max MRi =
∣∣∣PPC (−→Fi ,−→Ci

)∣∣∣ ,
where fi,k and Ci,k represent the k-th element in the feature vector
Fi and Ci, respectively. The other object function was expressed
in the following form Zou et al. (2016):

ED
(
EX, EY

)
=

√√√√ N∑
k=1

(
xk − yk

)2
,

maxMDi = EDi =
1

M − 1

∑
ED

(
−→
Fi ,
−→
Fk
)

.

Integrating the above two functions, we obtained the final
objective function, which was written as follows:

max(MRi + MDi)

Solving this function, when the function reached the
maximum ACC value, the iteration was stopped automatically,
giving a feature dimension reduced set.

PCA
Principal component analysis (Price et al., 2006) is a widely
used tool that can transform the features of observation into an
uncorrelated feature set (Zeng et al., 2017, 2019a; Xiao et al.,
2018; Zhang et al., 2019b). The main steps of PCA are as
follows: (1) normalize the feature vector value; (2) calculate the
covariance matrix by

∑
=

1
mX · XT ; (3) use the singular value

decomposition method (U, S, VT);= SVD(6); (4) extract the
first k singular vectors from U and (5) calculate the i-th eigenvalue
λi, i = 1, 2, 3, · · ·

We used ρ to evaluate the cumulative contribution value of

the singular vectors; this value was defined as ρ =

∑p
i=1 λi∑m
i=1 λi
≥ T′,

where m denotes the dimension of the transformed features. The
above function denotes there is enough information to serve
as the optimal feature set for the identification 0task when the
cumulative contribution value of singular vectors from the first
one to the λ-th one reaches a value, namely, the threshold T′.
Thus, through the threshold T′, only a part of features were
selected and then formed an optimal feature set, which made the
model simple and fast to run.

Machine Learning Methods
In order to distinguish between thermophilic and non-
thermophilic proteins, SVM (Ding et al., 2016a,b; He et al.,
2018; Qiao et al., 2018; Wei et al., 2018; Fu et al., 2019; Wang
et al., 2019b), random forest [RF, (Ding et al., 2017; Wang et al.,
2019a)], decision tree (Mohasseb et al., 2018; Li et al., 2019),
and naïve Bayes [NB, (Rajaraman and Chokkalingam, 2014)]
methods were used in our experiment. The first two methods
were implemented and optimized in the python 3.7 environment
with our edited code. All four methods were also tested in the
Weka environment, yielding similar results.

Evaluation of Performance
In order to evaluate the model performance, we used a 10-fold
cross-validation scheme in our experiment and adopted three
commonly used accuracy indicators for quantification (Jiang
et al., 2013, 2018; Zeng et al., 2016; Wei et al., 2017a,b; Lu
et al., 2018, 2019; Xiong et al., 2018; Chen et al., 2019; Ding
et al., 2019; Lin et al., 2019; Shan et al., 2019; Shen et al., 2019;
Xu et al., 2019; Yu and Gao, 2019; Yu et al., 2019a). The first
indicator was sensitivity (Sn), which represents the ratio of the
correctly identified thermophilic proteins and could be calculated
as follows:

Sn =
TP

TP + FN
× 100%,

where TP, TN, FP, and FN represent the number of the correctly
identified thermophilic proteins, the number of the correctly
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indemnified non-thermophilic proteins, the number of non-
thermophilic proteins predicted as thermophilic proteins, and
the number of the thermophilic proteins predicted as non-
thermophilic proteins, respectively (Lin and Chen, 2011).

The second indicator was specificity (Sp), which denotes the
percentage of the correctly identified non-thermophilic proteins
among all non-thermophilic observations. Sp was defined as
follows:

Sp =
TN

TN + FP
× 100%.

The last indicator was accuracy (ACC), which reflected
the percentage of correctly recognized thermophilic and non-
thermophilic proteins among all observations, written as follows:

ACC =
TN + TP

TN + FP + FN + FP
× 100%.

RESULTS

Our experiments were performed on the basis of qualitative
evaluation, quantitative analysis, and comparison with other
counterparts, as shown in Figure 2. The data were calculated
using 500 randomly selected thermophilic proteins and 500
randomly selected non-thermophilic proteins, and experiments
were evaluated in 10-fold cross-validation format.

First, we evaluated the proposed method using qualitative
analysis. In this analysis, all feature data were reduced to
12 dimensions through the PCA method. Furthermore, the
t-SNE method (van der Maaten and Hinton, 2012; van der
Maaten, 2014) is one of the powerful visualization tools for
showing the structure of high-dimension data. Thus, we used
the t-SNE method (van der Maaten and Hinton, 2012; van
der Maaten, 2014) to differentiate thermophilic and non-
thermophilic proteins in the figure. Additionally, the t-SNE
method used here was not a part of the proposed model,
but was a display tool of the experiment data. The first two
features of the results using the t-SNE method are plotted in
Figure 2A; from these data, a distinct boundary was observed
for separating thermophilic and non-thermophilic observations.
Moreover, it was easy to distinguish thermophilic proteins from
non-thermophilic proteins.

In order to verify these findings, SVM was used to train
and test the 12-dimensional data, and the results are shown in
Figure 2B. Both types of proteins were separated successfully
using this method. This phenomenon directly demonstrated that
our proposed data had good separation quality and the SVM
method had strong recognition ability for thermophilic proteins
and non-thermophilic data.

Second, the processed data were tested using the other three
machine learning methods, as detailed in Figure 2C. For every
method, we also calculated three accuracy indicators: Sn, Sp,
and ACC. The results showed that the SVM yielded the highest
values for all three indicators, and all values reached at least
98.2%. NB also showed higher accuracy, with values of 96.25%,
97.56%, and 96.89%, respectively. The accuracy of the random
forest model was higher than that of J48, for which the average
value was only 91.48%.

Our method was also compared with the results of Lin (Lin
and Chen, 2011) and the method of using the same dataset (Fan
et al., 2016). The results are shown in Figure 2D. Notably, our
method got the highest accuracy values based on the results
of the MRMD methods, which denotes our proposed method
outperformed the method described by Lin (Lin and Chen, 2011).
Additionally, the performance of the proposed method was better
than the effects described by Fan et al. (2016) too, suggesting
that the proposed method could be a state-of-the-art model in
current research.

Features using the original dipeptides were also tested in
our study. All reduced features in our feature set were replaced
with the original dipeptides. From the accuracy data shown in
Figure 2D, the ability to distinguish thermophilic proteins from
non-thermophilic ones was lower than that using the reduced
amino acid dipeptides. Additionally, the receiver operating
characteristic (ROC) curve was also plotted, which could be seen
in Figure 3A. It is easy to found that the results of the ROC curve
verified the identification efficiency of the proposed method too.

Finally, the newly released thermophilic protein database
(Mohasseb et al., 2018) is also tested through the proposed
method in this manuscript. In the experiment, we selected 106
thermophilic proteins and 101 psychrophilic proteins from the
database. All those data can be downloaded on the website:
http://www.labio.info/index-1therm.html. In the experiment, we
did three experiments using three different thresholds in the
correlation analysis step. The experiments are given in Figure 3B,
from which it was easy to find that the identification accuracy
was bigger than 0.97 in most cases when using the threshold
of 0.95 and 0.90. It also showed that the classification efficiency
was not ideal when using the threshold 0.85. The reason
for this phenomenon may be the calculated features of the
current data have a stronger correlation between each other
than the previous thermophilic protein database. Thus, in this
condition, a big value than 0.85 is needed to identify the
thermophilic proteins accurately. It is worth noting that the
results in this figure verified the perfect identification ability of
the proposed method.

DISCUSSION

Many features are removed from the original feature set during
correlation analysis and MRMD feature selection. Moreover,
these removed features are typically not crucial or redundant
for performing thermophilic protein recognition. However, the
selection of features to remove and retain is essential, and further
studies are needed to evaluate such approaches. Thus, in this
study, we evaluated the removed features, as depicted in Figure 4.

The 10 most critical original features are shown in Figure 4A,
and under our proposed model framework, the feature values
of K∗H, KR, TF, P∗M, F∗∗N, I∗∗Y/V∗∗Y, MW, and WQ
(where ∗ represents a gap in the residues) showed significant
contributions to the recognition of thermophilic proteins.
Additionally, residue K also plays a vital role in enhancing
thermostability. Interestingly, our conclusions regarding residue
K were consistent with the results of Lin (Lin and Chen, 2011).
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FIGURE 2 | The figure of model performance. (A) The first two dimensions of the result of compression characteristics of the TSNE method; (B) the figure of the
ultra-classification surface of SVM method; (C) The accuracy values of four different models; (D) the comparison results with other methods.

FIGURE 3 | The comparison results of experiments. (A) The receiver operation characteristic (ROC) curve of three methods; (B) the results of experiments over the
database (Fan et al., 2016).

For the removed features, the results are shown in Figures 4B–
D. There were four types of components in the final feature
set: ACC features, physicochemical characteristics, amino acid
frequencies (the first 20 features in the 188D feature),
and reduced amino acid dipeptides. Approximately half of

the physicochemical characteristics were deleted from the
original feature set, and there were only a few reserved
physicochemical characteristics in the first 50 crucial features.
Thus, we concluded that the physicochemical characteristics
were essential features, but not the most essential features,
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FIGURE 4 | The critical and removed features in the proposed method: (A) the most important features; (B) the deleted amino acid frequency features; (C) the
deleted reduced-depiptides (I); (D) the deleted reduced-depiptides (II). The symbol “*” means any one of the 20 amino acids, it may be “A”, “C”, “P”, or others.
Besides, “**” has the same meaning; it represents a two-letter combination of 20 amino acids, “AA”, “DC”, “VP”, for example.

for this recognition task. Accordingly, we did not analyze the
details of the removed physicochemical characteristics. We also
showed that only three ACC features were excluded from the
final feature set, and the remaining 15 ACC features were
retained, reflecting the crucial roles of the ACC features in this
recognition task.

The amino acid frequency, which was one of the first 20
features in the 188D feature set, included only four residues
removed from the feature set. These four residues were V
(Ile and Val), A, E, and K, which had little contribution
to recognizing thermophilic protein and non-thermophilic
proteins. Interestingly, the reduced amino acid V, which included
both Ile and Val, was also deleted. It is worth noting that the
amino acid V appeared later in this manuscript denotes the
reduced V, namely, both Ile and Val. This finding indicated that
both Ile and Val were redundant and did not contribute to the
identification task. If we used the original amino acid dipeptide
features, additional useless features, including IA, I∗A, and I∗∗A,
etc., would also be observed in the feature set. The number of
additional redundant features in the original dipeptides could be
as high as 39 if compared with the reduced amino acid dipeptides.
As shown in Figure 2D, the smallest prediction accuracy was
obtained, and represented those many additional useless features
caused the classification model fail in the overfitting state when

using the original dipeptides. Additionally, this observation could
explain why the accuracy increased significantly when using the
reduced amino acid dipeptides.

There were three types of dipeptides, expressed as AA (λ =
0), A∗A (λ = 1), and A∗∗A (λ = 2). The numbers of these
types of removed dipeptides were 60, 61, and 71, respectively.
To conveniently visualize these data, we counted the numbers
of the same dipeptide (omitting the symbols ∗ and ∗∗). If a
dipeptide appeared more than twice, it was drawn in the figure.
Thus, if the dipeptide NV was shown in the figure, there were
at least two types of dipeptides, i.e., NV, N∗V, or N∗∗V, in the
removed feature set.

All discovered dipeptides were classified into two parts, as
shown in Figures 4C,D. The reduced dipeptides in Figure 4C
were dipeptides having relationships with the reduced residue V,
verifying the reduced power of the recognition task in the above
analysis. Moreover, residue V enabled the discovery of seven
related dipeptides in the removed features. This phenomenon
demonstrated that residue V and some dipeptides containing
V were insensitive to the recognition task under our proposed
model framework. Figure 4D also shows another seven removed
dipeptides, including VV, AV, AE, AL, LE, LL, and LR.

These results provide insights into the design of stable mutants
to increase protein thermostability.
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CONCLUSION

In this study, we aimed to develop an approach to distinguish
thermophilic proteins from non-thermophilic proteins; to this
end, a recognition method that combined mixed features of
proteins and a machine learning method was established.
First, an amino acid reduction method was introduced to
reduce the categories of amino acids. Nest, we calculated the
physicochemical characteristics, ACC, and reduced dipeptides of
thermophilic and non-thermophilic proteins. After performing
a dimension reduction step using correlation analysis, the
MRMD method, and PCA, an optimal feature set was
obtained. Finally, machine learning methods were used to
train and predict feature data, and the results revealed that
the proposed model could identify 98.2% of thermophilic
proteins and non-thermophilic proteins if the data were operated
in a 10-fold cross-validation mode. Furthermore, the feature
values of K∗H, KR, TF, P∗M, F∗∗N, V∗∗Y, MW, and WQ
were found to play vital roles in thermostability, and some
residues and dipeptides, including V (Ile and Val), A, E,
K, NV, VG, VA, AE, AL, and LE, were not important for
identifying thermostability. As discussed in previous studies
(Liu and Li, 2019; Liu and Zhu, 2019), the web-server
is very important. In our future work, our research will
focus on developing a free webserver that could provide a

platform to test the currently proposed method using an easily
accessible approach.
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