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ABSTRACT
Activation of the PI3K/mTOR pathway has been shown to be correlated with 

resistance to chemotherapy in ovarian cancer. We aimed to investigate the effects of 
combining inhibition of mTORC1 and 2 using the mTOR kinase inhibitor vistusertib 
(AZD2014) with paclitaxel in in vitro and in vivo ovarian cancer models. The 
combination of vistusertib and paclitaxel on cell growth was additive in a majority of 
cell lines in the panel (n = 12) studied. A cisplatin- resistant model (A2780Cis) was 
studied in vitro and in vivo. We demonstrated inhibition of mTORC1 and mTORC2 
by vistusertib and the combination by showing reduction in p-S6 and p-AKT levels, 
respectively. In the A2780CisR xenograft model compared to control, there was a 
significant reduction in tumor volumes (p = 0.03) caused by the combination and 
not paclitaxel or vistusertib alone. In vivo, we observed a significant increase in 
apoptosis (cleaved PARP measured by immunohistochemistry; p = 0.0003). Decreases 
in phospholipid and bioenergetic metabolites were studied using magnetic resonance 
spectroscopy and significant changes in phosphocholine (p = 0.01), and ATP (p = 
0.04) were seen in tumors treated with the combination when compared to vehicle-
control. Based on this data, a clinical trial evaluating the combination of paclitaxel 
and vistusertib has been initiated (NCT02193633). Interestingly, treatment of ovarian 
cancer patients with paclitaxel caused an increase in p-AKT levels in platelet-rich 
plasma and it was possible to abrogate this increase with the co-treatment with 
vistusertib in 4/5 patients: we believe this combination will benefit patients with 
ovarian cancer.

INTRODUCTION

Over 225,000 patients are diagnosed with ovarian 
cancer each year, with more than 14,200 deaths reported 
annually worldwide [1]. The most common form of ovarian 
cancer is high grade serous ovarian cancer; other important 
subtypes include clear cell and low grade ovarian cancer. 

Current treatment options include surgery followed 
by chemotherapy and if metastatic patient survival is 

approximately 3–4 years. The most frequently used 
chemotherapeutic agents for treatment include platinum 
agents (cisplatin/carboplatin) [2], paclitaxel [3] and 
liposomal doxorubicin [4]. Targeted agents have been 
introduced into the care of patients with ovarian cancer 
with the registration of antibodies against VEGF: 
bevacizumab [5] and PARP inhibitors [6]. 

Despite initial responses to chemotherapy in 
the metastatic setting, chemo-resistance is inevitable. 
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Multiple mechanisms of resistance to chemotherapy 
have been explored and activation of the PI3K/mTOR 
pathway has been shown to be associated with resistance 
to chemotherapy [7, 8]. Our laboratory quantified the 
levels of phosphorylation of S6K, AKT and GSK3ß in 
ovarian cancer cells isolated from ascites. The levels 
of phosphorylation of S6K were found to be correlated 
with resistance to subsequent chemotherapy in patients 
who were chemo-naïve and those who had had previous 
chemotherapy, while the levels of phosphorylation of AKT 
were correlated with resistance to future chemotherapy 
if the patients were chemo-naïve. Other groups have 
also shown that activation of the PI3K/mTOR pathway 
is correlated with resistance to chemotherapy in ovarian 
cancer [9]. 

Building on this body of data, we hypothesized that 
inhibiting mTORC1 and 2 (therefore decreasing the levels 
of p-AKT and p-S6K) in combination with chemotherapy 
may improve the outcomes of patients with ovarian 
cancer. We planned to investigate a combination of 
paclitaxel and the mTORC1/2 inhibitor vistusertib in our 
experiments. We chose paclitaxel because it is used in the 
treatment of advanced ovarian cancer in weekly schedules, 
allowing co-administration and interaction with vistusertib 
on a weekly basis. Vistusertib is a well characterized 
mTORC1/2 inhibitor which inhibits signaling of S6K by 
inhibiting mTORC1, and AKT by inhibiting mTORC2 
[10–12].  

We aimed to: a) study the effects of growth on a 
panel of ovarian cancer cell lines following treatment with 
paclitaxel, vistusertib and the combination; b) examine the 
effects of signaling and apoptosis of the combination in a 
cisplatin-resistant cell line model; c) investigate the effects 
of paclitaxel, vistusertib and the combination treatment on 
tumors in vivo to gain mechanistic insights into growth, 
apoptosis, angiogenesis and tumor metabolism; d) to 
recapitulate any effects seen in human tissue in patients 
treated with paclitaxel and vistusertib.

RESULTS

Growth inhibition

Vistusertib and paclitaxel caused growth inhibition 
across a panel of 12 human ovarian cancer cell lines 
(Figure 1A). Using a quantitative synergy score based on 
the Loewe model of additivity and a cut-off synergy score 
of > 5, one cell line (OAW42) showed synergistic growth 
inhibition of the concomitant combination of vistusertib 
and paclitaxel and the rest showed additive effects on 
growth (Figure 1B). 

Changes in signaling 

We chose to study A2780cis as it represented the 
cisplatin resistance seen in advanced ovarian cancer and 

was representative of the median of the synergy index 
in the panel of ovarian cancer cell lines studied. We 
quantified p-S6K (S235/236) and p-AKT (S473) levels in 
cells exposed to paclitaxel and vistusertib for 24 h. There 
was robust inhibition of signaling to targets of mTORC1 
(S6K, S6) and mTORC2 (AKT) in A2780Cis treated with 
vistusertib or the combination of paclitaxel and vistusertib. 
In addition, we observed induction of the tumor suppressor 
protein PDCD4 (programed cell death protein 4), which is 
negatively regulated by S6K, confirming robust inhibition 
of S6K activity in this model (Figure 2).

Evaluation of the combination in vivo

We chose to evaluate the combination of vistusertib 
and paclitaxel in vivo in an A2780cis xenograft model. 
A2780Cis xenograft-bearing mice were treated with a 
vehicle control (V), vistusertib (A), paclitaxel (P) and 
the combination of vistusertib and paclitaxel (A + P). 
Following treatment for two weeks, tumors grew in all 
four arms: V arm with a median of 480% (25% and 75 
% interquartile ranges (IQR) of 420–660), A 250% (IQR 
160–640), P 490% (IQR 300–940), A + P 220% (IQR 
100–370). There was a statistically significant difference 
between the volumes of tumor in the A + P group vs the 
V group (p = 0.03; Figure 3A). Reduced p-AKT (S473) 
and p-S6 (S240/244) levels were observed in A and A + 
P-treated xenografts and not in V or P arms, consistent 
with mTORC1/2 inhibition (Figure 3B). Importantly, there 
was increased apoptosis (cleaved caspase 3 positive cells) 
observed in the A + P arm vs the V arm: 0.83 vs 0.34; p = 
0.0003 (Figure 3C). Furthermore, there was an increased 
percentage of cells showing morphological features of 
necrosis in the A + P arm and the V arm: 50 vs 30; p = 0.03 
(Figure 3D). A study of angiogenesis in tumors quantified 
as the number of vessels stained by CD34 did not show 
any significant differences between the A + P and any 
other treatment arms (Figure 3E). Studies quantifying 
proliferation as measured by Ki67-positive nuclei within 
tumors did not reveal any significant differences between 
the A + P and other treatment arms (Figure 3F). 

To assess the effects of the different treatments on 
metabolism, we analyzed the A2780Cis xenograft samples 
using 31P MRS. We observed significant decreases in 
phosphocholine (PC; p = 0.01), glycerophosphocholine 
(GPC; p = 0.02), phosphoethanolamine (PE; p = 0.04), 
and adenosine triphosphate (ATP; p < 0.05), together with 
reduced expression of choline kinase in the combination-
treated tumors when compared to vehicle-controls, 
suggesting that the combination had significant effects on 
phospholipid and bioenergetics metabolism (Figure 4).

Study of changes in signaling in patients

Patients with ovarian cancer who received paclitaxel 
and vistusertib on a phase I study had platelet-rich plasma 
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(PRP) collected at 4 h following dosing with either 
agent alone or in combination. Interestingly, there was a 
statistically significant increase in p-AKT (S473) levels 
following administration of paclitaxel (p = 0.0225) and 
reduction of p-AKT levels in 5 out of 7 patients following 
dosing with vistusertib (p = 0.634). The addition of 
vistusertib to paclitaxel reduced the p-AKT levels that 
were induced following paclitaxel dosing in 4 out of 5 
patients (p = 0.0996; Figure 5). 

DISCUSSION

Paclitaxel chemotherapy has been used for the 
treatment of ovarian cancer for more than three decades. 
While the majority of its use is in combination with 
platinum chemotherapy in a three weekly schedule [3, 
13], weekly administration of paclitaxel, often in patients 
who have received prior 3-weekly paclitaxel is a well-
recognized palliative treatment for high grade serous 
ovarian cancer. The response rates to weekly paclitaxel 
in a platinum-resistant setting are approximately 25–40%, 
with a progression-free survival of approximately 3–4 
months [5, 14]. There have been multiple trials that have 
tried to combine novel anticancer drugs with weekly 
paclitaxel and these have led to licensing of the anti-VEGF 
antibody bevacizumab for the treatment of platinum-
resistant ovarian cancer [5].

mTORC1 inhibitors have been licensed for use in 
breast cancer in combination with aromatase inhibitors 
[15] and as a single agent in renal cancer [16]. The first 
generation of mTOR inhibitors was developed as allosteric 
inhibitors of mTOR and do not target the mTORC2 
component of the mTOR complex. In some tumor types, 
this leads to feedback re-activation of AKT observed as 
an increase in AKT phosphorylation [17]. Vistusertib is a 
dual mTORC1/2 inhibitor [12] that has completed phase 
I evaluation and is being tested in multiple cancer types 
[11]. The mechanism of action of mTOR inhibitors can be 
multifactorial: inhibiting growth, angiogenesis, increasing 
apoptosis and altering metabolism within cancer cells and 
we aimed to study these features [18].

We were able to inhibit signaling within the 
PI3K/mTOR pathway; in particular, mTORC1 (S6) and 
mTORC2 (AKT) by vistusertib alone and in combination 
with paclitaxel in ovarian carcinoma cell lines. Inhibition 
of the PI3K/mTOR pathway in combination with 
paclitaxel has been described previously [19–21].

Our results suggest that there is additive growth 
inhibition caused by the combination of paclitaxel 
and vistusertib in a panel of ovarian cancer cell lines. 
This is consistent with previous reports evaluating 
the combination of paclitaxel and mTOR inhibitors, 
which have shown additive/synergistic activity of the 
combination, depending on the methods used to evaluate 

Figure 1: Growth inhibition by vistusertib and paclitaxel in a human ovarian cancer cell line panel. (A) GI50 of vistusertib 
and paclitaxel in ovarian cancer cell lines. (B) Synergy score using Loewe model of additivity. Only one cell line showed a synergy score 
of > 5.
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growth inhibition [22, 23]. Our in-vitro studies used a 
panel of established ovarian cancer cell lines. It is possible 
organoid models using freshly isolated cells from patients 
will better reflect chemoresistance in patients. 

In vivo, the molecular targets of mTORC1 and 
mTORC2 were found to be inhibited in tumors treated 
with vistusertib alone or in combination with paclitaxel, 
as shown by the reduced expression of pS6 and p-AKT 
levels, respectively. It was possible to show significant 
growth inhibition in the combination arm, when 
compared to vehicle control and no significant change in 
tumor growth was found in the vistusertib or paclitaxel 
treatment alone when compared with vehicle control, 

indicating that the combination treatment had significant 
anti-tumor effects in A2780CisR xenografts while the 
single agents did not. We used the A2780Cis xenograft 
model as we thought it reflected a platinum resistant 
state of patients with advanced ovarian cancer. There is 
growing evidence that patient derived xenografts can be 
used to test drug efficacy/resistance and could be used 
as alternative models. In the xenograft model studied 
there was increased apoptosis (cleaved caspase 3 positive 
cells) and necrosis (by hematoxylin & eosin staining) 
in tumors treated with a combination of vistusertib and 
paclitaxel when compared to vehicle control, indicating 
that the combination therapy induced tumor cell death. We 

Figure 2: Effects of vistusertib and paclitaxel on signal transduction. (A) Cells were exposed to paclitaxel (5 nM, 10 nM), 
vistusertib (500 nM, 1000 nM) or both for 24 h. Figure representative of western blot analysis was done in duplicate. Total protein was 
normalized to vinculin as loading control while each phosphoprotein was normalized to their total protein. There is reduction in levels of 
p-S6K, p-S6 and p-AKT and an induction in PCD4. (B) Quantification of protein expression using Syngene software showing mean of two 
experiments.
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have studied cleaved caspase as a marker of reflective of 
apoptosis. Other markers such as cleaved PARP or cleaved 
cytokeratin 18 could be used to further characterize this. 
Increases in apoptosis by the combination of paclitaxel 
and PI3K/mTOR inhibition in ovarian cancer models has 
been shown before [20]. At the time-point studied in this 
model, there was no significant decrease in angiogenesis 
(CD34+ stained vessels) or proliferation (Ki67 positive 
cells). Anti-angiogenic agents such as bevacizumab 
are licensed for use in ovarian cancer [5] and mTORC1 
inhibitors are known to have anti-angiogenic effects. 

It was possible to further show that reduced 
phospholipid metabolism and compromized bioenergetics 
occurred in tumors treated with the combination of 
vistusertib and paclitaxel and not in tumors treated 
with either of the single agents alone. Phospholipid 
compounds are major components of cell membranes 
and are also involved in the regulation of cell functions. 
Elevated levels of PC and choline kinase (a cytosolic 
enzyme that catalyzes the phosphorylation of choline 
to form PC) are found in cancer cells and tumors and 

are associated with cell proliferation and malignant 
transformation in addition to being regulated by several 
major signaling pathways such as the PI3K-AKT-mTOR 
pathways [24] . Inhibition of PI3K, AKT or mTORC1 
resulted in reduced PC and choline kinase expression and 
activity in cancer cells [25–27]. These literature reports 
are consistent with our findings of decreased PC and 
choline kinase expression in ovarian carcinoma tumors 
in the combination arm but not in the vistusertib alone 
group at this time-point. Further studies will be required 
to examine whether these parameters have changed in 
the vistusertib group alone at a different time-point. 
Furthermore, increases in PC and PE are associated with 
rapid tissue growth or membrane synthesis [28], whereas 
GPC and glycerophosphoethanolamine are produced 
during membrane breakdown [29]. Our observation of 
decreased PC, PE and GPC levels in tumors following 
the combination treatment indicates reduced membrane 
turnover and is consistent with its delay in tumor growth 
when compared with vehicle controls. This study also 
demonstrates that the combination treatment leads to a 

Figure 3: Growth and molecular response of A2780CisR xenografts following 2 weeks of treatment with vistusertib. 
(A) alone, paclitaxel (P) alone, the combination of vistusertib and paclitaxel (A+P) and vehicle (V). (A) Changes in tumor volume after 2 
weeks of treatment. (B) western blots of pSer473-AKT and p-Ser240/244-S6 protein and β-actin (loading control). (C)Immunohistochemistry 
was used to stain cleaved Caspase-3 for apoptosis. (D) H&E for necrosis (E), CD34 for microvessel density. (F) Ki67 for proliferation . 
Data are expressed as median and interquartile ranges (25% and 75%). *p < 0.05 and ***p < 0.001; n = 9 in each treatment group.
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decreased ATP pool, which is not observed in either of 
the single agents. These compromized bioenergetics could 
ultimately lead to cell death and tumor growth inhibition. 

Though not studied in tumor tissue in patients, it was 
interesting to demonstrate, for the first time, an induction of 
p-AKT levels in PRP caused by paclitaxel and abrogation 
of this following the addition of vistusertib in ovarian 
cancer patients receiving paclitaxel and vistusertib. This 
provided proof-of-concept that it was possible to achieve 
drug concentrations in patients which do recapitulate 
signaling changes such as down-regulation on AKT 
signaling by vistusertib observed in preclinical models. 

To conclude, it was possible to demonstrate additive 
growth inhibition across a panel of ovarian cancer cell 
lines. Both in vitro and in vivo studies suggest additive 

growth inhibition and this is being tested in clinical trials. 
The changes in signaling have been further validated in 
tumor tissue. The in vivo model studied showed significant 
increases in apoptosis and necrosis, compromized tumor 
bioenergetics and reduced membrane turnover, which 
is consistent with increased growth delay seen in the 
combination group. This suggests these metabolic and 
anti-tumor effects were caused by the combination over 
either single agents alone and this gives a mechanistic 
insight into the combination therapy. Part of this data was 
used as the basis for the ovarian cancer expansion of the 
TAX-TORC study (NCT02193633). Data generated from 
this study has led to the evaluation of the combination in 
a randomized phase II study in platinum- resistant ovarian 
cancer (OCTOPUS study).

Figure 4: Metabolic response and choline kinase status of A2780CisR xenografts following 2 weeks of treatment 
with vistusertib. (A) alone, paclitaxel (P) alone, the combination of vistusertib and paclitaxel (A+P) and vehicle (V). Choline kinase 
expressions were measured by western blotting and β-actin is used as a loading control. Tumor phospholipid and bioenergetic metabolites 
were measured by 31P-MRS of tumor extracts. Data are expressed as median and interquartile ranges (25% and 75%). * p < 0.05; minimum 
n = 7 in each treatment group.
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MATERIALS AND METHODS

Cell lines and chemicals 

All cell lines were obtained from ATCC, Teddington, 
UK or were available in labs within The Institute of Cancer 
Research, London, UK and short tandem repeat typed. 
Paclitaxel was purchased from Sigma and vistusertib was 
provided by AstraZeneca. 

Cell proliferation

The cell proliferation assay was determined by 
measuring the number of Hoechst-stained nuclei. Briefly, 
cells were seeded in 96-well plates (3000–5000 cells per 
well) and exposed to increasing concentrations of vistusertib 
and paclitaxel for 72 hours. Cells were fixed in 3.7% 
formaldehyde, stained with Hoechst 33258 (Invitrogen), 

and counted on CellInsight (Thermo Scientific). Cell 
numbers were normalized to day 0 and GI50 for each cell 
line was determined using Genedata Screener 12 software. 

Calculation of synergy score

A panel of 12 ovarian cancer cell lines, representing 
different subtypes of ovarian cancer, was screened to 
identify cell lines in which vistusertib synergizes with 
paclitaxel to inhibit proliferation. Cells were treated with 
increasing concentrations of vistusertib and paclitaxel or 
the combination in a 6 × 6 dosing matrix and cell number 
was measured after 5 days of treatment using SYTOX 
Green endpoint. Two-dimensional dose response matrix 
and curve fitting were processed in the combination 
extension of Genedata Screener 12™. 

The combination was evaluated in a 6 × 6 dose 
matrix format, which allows the drug combination activity 

Figure 5: Modulation of AKT phosphorylation following 4h of treatment with paclitaxel alone on cycle 1 day 1 (C1D1 
4 h), vistusertib alone on cycle 1 day 3 or 4 (C1D3/4 4 h) and the combination of vistusertib and paclitaxel on cycle 1 
day 8 (C1D8 4h) compared to pre-dose (C1D1 pre) in platelet-rich plasma (PRP) of 7 ovarian cancer patients. p-AKT 
levels in PRP were measured by MSD electrochemiluminescent immunoassay and normalized to the total AKT levels. *p < 0.05 paired  
t test; minimum n = 5 at each time point. 
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to be analysed over a wide concentration range. Using a 
quantitative synergy score based on the Loewe model of 
additivity [30], relative synergy scores were calculated.

A2780CisR xenograft model

NCr female nude mice were injected subcutaneously 
in the flank with 5 × 106 A2780CisR human cisplatin-
resistant ovarian carcinoma cells. Tumor volume was 
calculated by measuring the length, width, and depth 
using callipers and the formula L × W × D × (π/6). Once 
an appropriate tumor volume (~80 mm3) was established, 
mice were randomly divided into four groups (n = 9 in 
each group), they were treated for two weeks with: (i) 
paclitaxel alone at 20 mg/kg/1 day/week iv (P); (ii) 
vistusertib alone at 50 mg/kg/3 days/week po (A); (iii) 
a combination of paclitaxel at 20 mg/kg/1 day/week 
iv and vistusertib at 50 mg/kg/3 days/week po (A+P); 
(iv) vehicle (10% of DMSO) for 20 mg/kg/1 day/week 
iv and 50 mg/kg/3 days/week po (V). Three hours after 
the last dose at week 2 (day 9), tumors were excised for 
31P-magnetic resonance spectroscopy (MRS) and western 
blotting analysis. Animals were treated in accordance with 
local and national research ethics committee requirements 
and in accordance with the United Kingdom Coordinating 
Committee on Cancer Research Guidelines for the Welfare 
of Animals in Experimental Neoplasia [31].

In vitro 31P-MRS of A2780CisR tumor extracts

Freeze-clamped A2780CisR tumors were extracted 
using a dual phase method [32]. Neutralized extracts were 
freeze-dried and reconstituted in 700 µl D2O and 600 µl 
of this solution was then analyzed. Ethylenediamine tetra-
acetic acid (EDTA; 50 µl, 60 mM) was added to chelate 
metals ions, and methylenediphosphonic acid (MDPA; 50 
µl, 5 mM) added as a chemical shift and quantification 
reference. 31P-MRS spectra were acquired on a Bruker 500 
MHz MR system (Bruker Biospin, Coventry, UK), using 
a power-gated composite pulse 1H decoupling sequence, 
30oC flip angle, 5 s repetition delay, spectral width of 
50 ppm and 32 K data points. Spectral processing and 
metabolite quantitation were performed as previously 
described [33]. 

Immunohistochemistry 

Expression of caspase-3 (apoptotic marker), CD34 
(micro-vessel density) and ki67 (proliferation marker) 
were determined by immunohistochemistry, using the 
streptavidin-biotin peroxidase technique. Briefly, sections 
of 5 µm were de-paraffinized in xylene and rehydrated in 
different percentages of ethanol up to distilled water for 
30 min. Antigen retrieval was performed by microwaving 
the sections in 10 mM sodium citrate buffer pH6 at 10 
min intervals for a total of 20 min and cooling for 1h at 

room temperature (RT). Endogenous peroxidase activity 
was blocked by incubating the sections in a solution of 3% 
hydrogen peroxide for 20 min at RT. After washing in PBS 
(phosphate buffer saline), sections were incubated with 
the primary polyclonal rabbit anti-human caspase-3 (1:50, 
ABCAM ab2302), monoclonal rabbit anti-human CD34 
(1:200, ABCAM ab81289), mouse monoclonal anti-human 
Ki67 (1:75 DAKO M7240), overnight at 4°C. The sections 
were washed with PBS and incubated with a biotinylated 
secondary antibody for 45 min, followed by an incubation 
with streptavidin-biotin horseradish peroxidase complex 
(DAKO) for another 45 min, at RT. Staining was carried 
out using a solution 3,3’-diaminobenzidine (DAB-Sigma), 
and lightly counter-stained with Harris’s hematoxylin.

Sections known to express high levels of caspase-3 
(pancreas), CD34 (liver) and Ki67 (tonsil) were included 
as positive controls, while negative control slides were 
incubated with PBS. Immuno-stained slides were assessed 
by light microscopy and scored semi-quantitatively using 
Image J (1.50i). Cells positive for caspase-3 expression 
showed strong nuclear staining, were scored and averaged. 
Vascular structures with lumen were semi-quantified 
and were positive for CD34 as a brown staining with 
cytoplasmic distribution in endothelial cells. Ki67 staining 
index for each section was calculated as the percentage of 
positively stained tumor nuclei and the caspase-3 apoptotic 
index as a mean value of apoptotic cells and bodies in 3 
randomly selected field of views. 

Western blotting

As described previously [34], protein expressions 
on tumor lysates were analysed by western blotting. 15ug 
tumor protein lysate was transferred onto Immobilon-P 
membranes (Millipore: Bedford, MA, USA) and the blots 
incubated with pS6 ribosomal protein (Cell Signalling 
9205), p-AKT (Cell Signalling 9271) and Cho-K (Sigma 
HPA024153). b-actin (Cell Signalling 4967) was used 
as loading control. The membranes were then incubated 
with anti-rabbit secondary antibody (GE Healthcare, UK). 
Specific-binding antibody-target protein interactions 
were detected using enhanced chemiluminescence 
(Amersham Biosciences, UK) and exposure to X-OMAT 
Kodak (Kodak, USA) autoradiography film. For in vitro 
analysis cells were lysed in Pierce RIPA buffer (Thermo 
Scientific), supplemented with protease inhibitor 
cocktail (Roche), and PhosSTOP phosphatase inhibitor 
(Roche). Antibodies were diluted in 5% milk-PBS-
Tween and signal detected using SuperSignal West Dura 
HRP substrate followed by visualization on a Syngene 
ChemiGenius Imager.

Antibodies used for p70S6K (CST 9202, 1:1000); 
p70S6K pT389 (CST 9205, 1:500); AKT (CST 9272, 
1:1000), pAKT S473 (CST 9271, 1:500), S6 (CST 2317, 
1:1000), pS6 S235/236 (CST 4858, 1:000), PDCD4 (CST 
9535, 1:1000), vinculin (Sigma V9131, 1:5000).
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Human pharmacodynamic monitoring

Blood samples were collected after obtaining 
informed consent (The Institute of Cancer Research and 
The Royal Marsden Committee for Clinical Research: 
CCR no. 3667). Blood samples were obtained from 
patients with ovarian cancer at scheduled time-points: Pre-
dose on cycle 1, day 1 (C1D1; pre), 4 h post-paclitaxel 
dose on cycle 1, day 1 (C1D1; 4 h), 4 h post-vistusertib on 
cycle 1, day 3 or 4 (C1D3/4; 4 h) and 4 h post-combination 
dose of paclitaxel and vistusertib on cycle 1 day 8 (C1D8; 
4 h). All patients received 80 mg dose of paclitaxel, 
with vistusertib doses ranging from 25 – 100 mg on two 
schedules of 3 days on, 4 days off or 2 days on, 5 days 
off. Pharmacodynamic (PD) biomarkers of AKT signaling 
including p-AKT (Ser473 residue) were measured in PRP 
using previously published Mesoscale Discovery (MSD®) 
multiplex electrochemiluminescent immunoassays 
validated for Good Clinical Practice applications by The 
Institute of Cancer Research [35]. 

Statistics

The tumor volume, immunohistochemical 
and metabolite data were expressed. As median and 
interquartile ranges (25% and 75%). Non-parametric 
Kruskal-Wallis test followed by Dunn’s multiple 
comparison test were used to compare the control and the 
treatment groups (GraphPad Prism 6, GraphPad Software 
Incorporated, USA). p < 0.05 was considered significant. 

Abbreviations

ATP: adenosine triphosphate, C: cycle, D: day, GPC: 
glycerophosphocholine, h: hour, IV: intravenously, PC: 
phosphocholine, PDCD4 : programed cell death protein 
4, PE: phosphoethanolamine, PRP: platelet-rich plasma, 
SEM: standard error of the mean.
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