REPLY TO LETTER

Reply: Autosomal dominant segregation of *CAPN3* c.598_612del15 associated with a mild form of calpainopathy

Babi Ramesh Reddy Nallamilli¹, Samya Chakravorty^{2,3,4}, Akanchha Kesari¹, Lora Bean¹, Kesari¹, Ke

¹PerkinElmer Genomics, Waltham, Massachusetts

²Department of Pediatrics and Human Genetics, Emory University School of Medicine, Atlanta, Georgia
³Neurosciences Division, Children's Healthcare of Atlanta, Atlanta, Georgia
⁴School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia

Correspondence

Madhuri Hegde, PerkinElmer Inc, 940 Winter St, Waltham, MA 02451, USA. Tel: 470 337 2847; Fax: 4702011321; E-mail: madhuri.hegde@perkinelmer.com

Funding Information

No funding information provided.

Received: 25 August 2020; Accepted: 26 August 2020

Annals of Clinical and Translational Neurology 2020; 7(12): 2541–2541

doi: 10.1002/acn3.51192

Dear Editor,

We were delighted to read the letter published by Dr. Cerino and colleagues noting that "autosomal dominant segregation of CAPN3 c.598_612del15 variant associated with a mild form of calpainopathy.¹ The authors reported familial segregation analysis results along with phenotype, muscle MRI, and calpain 3 protein expression correlation studies in a family with heterozygous 15 base-pair inframe deletion variant c.598_612del15 (p.Phe200_Leu204del) in CAPN3. These findings clearly indicate that this variant is associated with autosomal dominant mild form of calpainopathy similar to previous reports of another in-frame deletion c.643_663del21 (p.Ser215_Gly221del) and missense c.1333G> A (p.Gly445Arg) variants with fatty degenerative changes in muscle.²⁻⁵ As reported previously we identified this in-frame 15 bp deletion c.598_612del15 in total of 16 patients without a second pathogenic variant in CAPN3 indicating autosomal-dominant inheritance.⁶ We fully agree that this in-frame 15 base pair deletion is associated with autosomal dominant mild form of calpainopathy. This further enhances our understanding of the genotype-phenotype spectrum of calpainopathies. Our study⁶ and this report by Cerino and colleagues suggest that autosomal dominant forms and milder presentations of calpainopathy should be considered in the clinical and molecular diagnostic practice.

Conflict of Interest

The authors have no conflict of interest to declare.

References

- Cerino M, Bartoli M, Riccardi F, et al. Autosomal dominant segregation of CAPN3 c.598_612del15 associated with a mild form of calpainopathy. Ann Clin Transl Neurol 2020; In press.
- 2. Vissing J, Barresi R, Witting N, et al. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy. Brain 2016;139(Pt 8):2154–2163.
- Straub V, Murphy A, Udd B, group Lws. 229th ENMC international workshop: Limb girdle muscular dystrophies -Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscul Disord 2018;28:702–710.
- Martinez-Thompson JM, Niu Z, Tracy JA, et al. Autosomal dominant calpainopathy due to heterozygous CAPN3 C.643_663del21. Muscle Nerve 2018;57:679–683.
- 5. Cerino M, Campana-Salort E, Salvi A, et al. Novel CAPN3 variant associated with an autosomal dominant calpainopathy. Neuropathol Appl Neurobiol 2020.
- Nallamilli BRR, Chakravorty S, Kesari A, et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018;5:1574–1587.