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An important step in the preprocessing of resting state functional magnetic resonance
images (rs-fMRI) is the separation of brain from non-brain voxels. Widely used imaging
tools such as FSL’s BET2 and AFNI’s 3dSkullStrip accomplish this task effectively in
children and adults. In fetal functional brain imaging, however, the presence of maternal
tissue around the brain coupled with the non-standard position of the fetal head limit
the usefulness of these tools. Accurate brain masks are thus generated manually,
a time-consuming and tedious process that slows down preprocessing of fetal rs-
fMRI. Recently, deep learning-based segmentation models such as convolutional neural
networks (CNNs) have been increasingly used for automated segmentation of medical
images, including the fetal brain. Here, we propose a computationally efficient end-to-
end generative adversarial neural network (GAN) for segmenting the fetal brain. This
method, which we call FetalGAN, yielded whole brain masks that closely approximated
the manually labeled ground truth. FetalGAN performed better than 3D U-Net model
and BET2: FetalGAN, Dice score = 0.973 ± 0.013, precision = 0.977 ± 0.015;
3D U-Net, Dice score = 0.954 ± 0.054, precision = 0.967 ± 0.037; BET2, Dice
score = 0.856 ± 0.084, precision = 0.758 ± 0.113. FetalGAN was also faster than 3D
U-Net and the manual method (7.35 s vs. 10.25 s vs. ∼5 min/volume). To the best of
our knowledge, this is the first successful implementation of 3D CNN with GAN on fetal
fMRI brain images and represents a significant advance in fully automating processing
of rs-MRI images.

Keywords: fetal rs-fMRI, resting state, segmentation, deep learning, generative adversarial networks (GANs), 3D
U-Net, fetal brain

INTRODUCTION

Resting state functional MRI (rs-fMRI) is an emergent technique for interrogating in-vivo fetal
brain function. A critical step in preparing rs-fMRI images for analyses is separating brain from
non-brain voxels. In most cases, fetal brain masks are generated manually, as imaging tools that
are effectively used for adult whole brain segmentation do not accurately extract the fetal brain.
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This suboptimal performance likely arises from the presence of
surrounding maternal tissue, non-standard orientation of the
fetal head, and reduced gray/white matter contrast in the fetal
brain. While manual segmentation of the fetal brain provides
reasonable brain masks, the process is time consuming and
operator dependent. Automated processes have the potential to
increase efficiency of pipelines and reproducibility of results.

A growing body of literature has demonstrated that deep
learning-based segmentation outperforms traditional approaches
including multi-atlas registration techniques (Huo et al., 2019;
Khalili et al., 2019; Dolz et al., 2020; Zhao et al., 2022).
Deep convolutional neural networks (CNN) such as U-Net
have achieved remarkable success for anatomical medical image
segmentation and have been shown to be versatile and effective
(Ronneberger et al., 2015; Yang et al., 2018; Zhao et al., 2018;
Son et al., 2020). Recently, 2D U-Net has been successfully
applied to fetal resting state functional MRI data (Rutherford
et al., 2021), a crucial step in automating preprocessing of
fetal rs-fMRI. However, there are several limitations in using
CNN-based approaches for segmentation (Ronneberger et al.,
2015; Xue et al., 2018; Li et al., 2019; Rutherford et al.,
2021). Although U-Nets can use skip connections to combine
both low- and high-level features, there is no guarantee of
spatial consistency in the final segmentation map, especially
at the boundaries (Isola et al., 2017; Yang et al., 2018;
Zhao et al., 2018; Dhinagar et al., 2021). To address this
limitation, methods that consider spatial correlations among
neighboring pixels such as conditional random field and other
graph cut techniques are used as post-processing refinement
(Pereira et al., 2016b; Nancy, 2019; Son et al., 2020). Utilizing
pair-wise potentials, however, may cause serious boundary
leakage, especially in low-contrast regions (Vijayanarasimhan
and Grauman, 2010). To prevent leakage and the lack of
spatial consistency, methods such as patch-based networks for
training CNNs and multi-scale, multi-path CNNs with different
input resolutions/network architectures have been used (Pereira
et al., 2016a; Havaei et al., 2017; Kamnitsas et al., 2017;
Chattopadhay et al., 2018; Xiao et al., 2020; Ghimire et al.,
2021; Zhang et al., 2021; Zhu et al., 2021). However, patch-
based training is computationally costly. Moreover, finding the
optimal patch size that achieves superior localization accuracy
is challenging. Generally, traditional CNNs have a tradeoff
between achieving good localization performance/higher level
of semantics (i.e., correctly classifying each voxel’s label) and
crisper, more well-defined boundaries. This is a potential
disadvantage specifically when applied to brain segmentation of
fetal rs-fMRI, which often have low-contrast boundaries, varied
voxel intensities, and features at different scales/orientations
(Ronneberger et al., 2015; Xue et al., 2018; Dolz et al., 2020;
Rutherford et al., 2021).

Recently, generative adversarial networks (GANs) have been
shown to be a robust approach for automated medical image
segmentation and to yield better, stable performance compared to
state-of-the-art CNN-based models (Isola et al., 2017; Xue et al.,
2018; Xun et al., 2021). Using two competing neural networks—
a generator and a discriminator—GANs create exemplar images
that are difficult to distinguish from real (i.e., training) images,

effectively modeling any distribution of data (Gonog and
Zhou, 2019). The generative network creates new examples
of the data while the discriminator simultaneously evaluates
these exemplars in a cyclic fashion effectively giving rise to
a network that self-optimizes its error rate and converges on
a model with high accuracy. Specifically, adversarial losses
enforced by the discriminator network consider higher-order
potentials, as opposed to the pairwise correlations utilized by
voxel-wise loss functions, such as softmax. This adversarial loss
serves as an adaptively learned similarity measure between the
predicted segmentation label maps and the annotated ground
truth that improves localization accuracy while enforcing spatial
contiguity at low contrast regions, including image boundaries.
Various end-to-end adversarial neural networks (e.g., SegAN)
have been proposed as stable and effective frameworks for
automatic segmentation (SegAN) of organs such as the brain,
chest, and abdomen, among others (Frid-Adar et al., 2018;
Giacomello et al., 2020; Xun et al., 2021; Zhu et al., 2021).
Furthermore, a recent study by Chen et al. (2022) showed
that a GAN-based paradigm improved the robustness and
generalizability of deep learning models like graph neural
networks (GNNs). Using their model on multi-modal MRI
data, they identified autism spectrum disorders (ASD) with
higher accuracy (74.7%) compared to other state-ot-the-art deep
learning methods.

Motivated by SegAN, here, we propose FetalGAN, a GAN
based end-to-end architecture for the automated segmentation
of fetal rs-fMRI brain images. FetalGAN addresses the previously
described drawbacks of deep CNNs and may be better suited for
low-contrast fetal rs-fMRI. We hypothesized that FetalGAN will
produce whole brain labels that closely approximate the manually
created ground truth and will outperform deep CNN-based
models (i.e., 3D U-Net) and the commonly used BET2 algorithm.

MATERIALS AND METHODS

Data
We initially evaluated 75 rs-fMRI scans. Out of the 75 datasets,
four were excluded from further analyses: three had image
dimensions (x, y, or z) that exceeded the chosen patch size of
32 × 32 × 32, and one had incomplete demographic data. The
final sample consisted of 71 datasets from 64 healthy fetuses.

Pregnant women were recruited as part of a larger study
investigating brain development in healthy and high-risk fetuses.
All participants had normal ultrasonograms/echocardiograms
and structurally normal brains on MRI. Fetal exclusion
criteria included: dysmorphic features by antenatal
ultrasound, chromosomal abnormalities by amniocentesis,
evidence of congenital infections, presentation after
28 weeks gestational age, and multiple gestation. Maternal
exclusion criteria included: pregnant women with known
psychiatric/metabolic/genetic disorders, complicated/multiple
pregnancies, alcohol and/or tobacco use, maternal medications,
and contraindications to MRI.

Data were collected using a 1.5T GE MRI scanner (GE
Healthcare, Milwaukee, WI) with an 8-channel receiver
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coil. Anatomical single-shot fast spin-echo anatomical T2-
weighted images were collected with the following parameters:
TR = 1,100 ms, TE = 160 ms, flip angle = 90◦, and slice
thickness = 2 mm. Resting-state echo planar images (EPI) images
were collected with the following parameters: TR = 3,000 ms,
TE = 60 ms, voxel size = 2.578 mm × 2.578 mm × 3 mm, flip
angle = 90◦, field of view = 33 cm, matrix size = 128 × 128,
and scan duration = 7 min (140 volumes). On average,
5:21 min (107 volumes) of resting-state data was available
after preprocessing.

Preprocessing
Fetal resting state data were preprocessed up to the point of
brain segmentation using AFNI, unless specified otherwise (Cox,
1996). Briefly, as previously described here (De Asis-Cruz et al.,
2021), fetal EPI images were slice time corrected, trimmed by
removing the first four volumes to stabilize magnetic gradients,
manually oriented to radiologic orientation using landmark
based rigid registration (IRTK1), despiked, and then corrected for
bias-field inhomogeneities (N4BiasFieldCorrection) (Tustison
et al., 2010). At this point, the oriented EPI images were
ready for motion correction. For this step, we used a two-
pass registration approach optimized to correct for the high-
motion typically observed in fetuses and newborns (Joshi
et al., 2011; Scheinost et al., 2018). This method required
two inputs: a reference volume and its mask. For each
resting state (RS) dataset, a reference volume was defined
using AFNI’s 3dToutcount; this identifies the volume with
the lowest fraction of outlier voxels based on signal intensity
trend. A brain mask was then manually drawn (JDC) for
each reference brain volume using ITK-SNAP (Yushkevich
et al., 2006). The goal was to automatically create this whole
brain mask and provide it as input to the motion correction
algorithm. The selected reference volume and the manual brain
mask were utilized as inputs for training the model. During
testing, the reference image was segmented using three different
approaches: FSL Brain Extraction Tool v2 (BET2) (Smith, 2002),
3D U-Net (Çiçek et al., 2016), and FetalGAN. Segmentation
outputs were compared to the manually created mask using
the following metrics: Dice index, Jaccard score, sensitivity,
specificity, and precision. We also reported the computation time
for each method.

SegAN Architecture
We used the GAN framework to automatically segment the fetal
brain from rs-fMRI scans. The algorithm consisted of two neural
networks: the generator (segmenter) based on 3D U-Net, and
the discriminator (critic) based on a fully convolutional decoder
network (Xue et al., 2018).

The generator network received a 3D patch as an input and
consisted of eight residual convolutional blocks with the leaky
rectified linear unit (ReLU) activation, batch normalization, and
maxpooling layers (Figure 1, top; see 3D U-Net Architecture
for details). In the encoding branch, the upsampling layers
had a kernel size of 3 × 3 × 3 with stride 2 × 2 × 2;

1https://github.com/BioMedIA/IRTK

in the decoding branch, the downsampling layers resized by
a factor of 2 and used a kernel size of 2 × 2 × 2. The
discriminator network’s structure was like the deconvolution
block of the generator. Receiving both the ground truth and
predicted label map, the discriminator extracted hierarchical
features to quantify differences between these two input images.
Please see Supplementary Material for a summary of generator
and discriminator parameters.

SegAN learns a loss function that penalizes structural
differences between the discriminator network output and target
(Xue et al., 2018). Rather than computing discriminator loss for
the entire network, we computed loss at each discriminator layer.
The multi-scale loss function Lwas defined by Xue et al. (2018) as,

min
θG

max
θD

L (θG, θD) =
1
N

N∑
n=1

lmae (fD (xn · G (xn)) , fD(xn · yn))

(1)

where x is the training image; y its corresponding ground
truth; N is the number of training images; lmae is the
mean absolute error (MAE) or L1 distance; xn · G(xn) is the
probabilistic map generated by the generator network; xn ·
yn is the input image masked by its corresponding ground
truth; and fD(x) represent the hierarchical features extracted
from image x by the discriminator network. Using a multi-
scale loss function to quantify training error, the network
sequentially learned both global and local features and encoded
long and short-range spatial relationships between voxels. As
training progressed, the generator network was able to produce
probabilistic predictions that more closely approximated the
expert-annotated, ground truth.

3D U-Net Architecture
3D U-Net, patch-based architecture was also performed
(Figure 1, top). The network consisted of both an expanding and
contracting path. Here, the contracting path was supplemented
with successive layers where the standard pooling operators
were replaced with upsampling operators to enhance image
resolution. The high-resolution feature from the contracting
path was then concatenated with the upsampled features
from the expanding path for localization of the fetal brain.
The expanding and contracting paths had four convolutional
blocks, each with two Conv3D layers, BatchNormalization, and
the PReLU activation function. In each convolutional block,
the number of feature maps was doubled per layer (96 initial
feature maps and 364 feature maps generated after the last
block); a kernel size of 3 and 2 was used for the expanding
and contracting paths, respectively. At the junction of the
contracting/expanding path, the layers were regularized using
dropout with a rate of 15%. In the expanding path, a MaxPooling
(downsampling) layer with stride 2 followed each convolution
block to encode the input 3D patches into feature representations
at different levels. Deconvolution layers (upsampling) were
used intermittently throughout the contracting path to increase
the density of the sparse feature maps of the expanding path
using a transpose convolution with multiple trainable filters.
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FIGURE 1 | Architecture of proposed FetalGAN network.

TABLE 1 | Comparison of FetalGAN, 3D U-Net, and BET2.

FetalGAN 3D U-Net BET2

Mean ± SD Mean ± SD p* Mean ± SD p*

Dice 0.973 ± 0.013 0.954 ± 0.054 9.260 × 10−4 0.856 ± 0.084 1.124 × 10−18

Jaccard 0.948 ± 0.024 0.916 ± 0.082 1.993 × 10−4 0.756 ± 0.113 4.910 × 10−23

Precision 0.977 ± 0.015 0.967 ± 0.037 0.043 0.758 ± 0.113 6.685 × 10−26

Sensitivity 0.971 ± 0.021 0.945 ± 0.077 0.002 0.996 ± 0.011 1.493 × × 10−17

Specificity 0.994 ± 0.005 0.992 ± 0.010 0.239 0.915 ± 0.051 3.703 × 10−21

Time/patch (s) 0.05 0.08 -

Time/vol (s) 7.35 10.25 4.40

*FetalGAN compared to 3D U-Net and BET2, asterisk (*) indicates significant difference between method and FetalGAN using paired t-test.

The successive downsampling and upsampling feature maps
were concatenated to localize and learn representations after
each convolution.

Training Specifications
The SegAN was trained using a multi-scale loss function, the
U-Net model using binary cross-entropy loss. For both, weights
were determined using an Adam optimizer (Kingma and Ba,
2014). The models were trained on 71 reference brain volumes
and their corresponding manually drawn masks. We used
k-fold cross validation, where k = 5, for evaluating the model’s
performance. Each 3D MR scan and its respective normalized
mask was split into patches of size 32 × 32 × 32 with stride
2 × 2 × 2 and fed into the model for training. Given a
test EPI image, we extracted the overlapped patches with size
32 × 32 × 32, and fed them to the trained network to obtain the
final probability label map.

The final segmentation results were derived by averaging
together the probability maps of each overlapped patch. The
model training and validation are performed on NVIDIA
V100 multi-GPU. After prediction, isolated and/or misidentified
voxels were corrected, and internal holes were filled using
morphological operations available in the openCV library
(Bradski, 2000).

RESULTS

We evaluated 71 datasets from 64 healthy fetuses between 25
and 39.43 gestational weeks (mean GA ± SD: 33.28 ± 3.79; see
Supplementary Material for age distribution). The average scan
interval for the seven fetuses with two scans is 7.63± 2.48 weeks.

The proposed SegAN method was more time efficient than 3D
U-Net, requiring, on average, 7.35 s to segment a single volume
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FIGURE 2 | Representative whole brain masks from manual segmentation, BET2, 3D U-Net, and FetalGAN. Manual corrections were done using ITK-SNAP.
FetalGAN produced the most accurate segmentation relative to the ground truth with an average Dice score of 0.942 ± 0.095. (A) 25 4/7 weeks, (B) 29 2/7 weeks,
(C) 34 4/7 weeks, and (D) 38 6/7 weeks.

compared to 10.25 s for the latter (Table 1). BET2 was the fastest
algorithm, needing only 4.40 s to extract the brain.

Whole brain segmentation outputs of FetalGAN, FSL’s
BET2, and 3D U-Net were compared to the manually
segmented brains. The proposed method’s Dice score,
Jaccard index, precision, and specificity were significantly
higher than 3d U-Net and BET2 (paired t-test p < 0.05;
see Table 1). FetalGAN’s specificity was comparable to

3D U-Net and higher than BET2. Visual inspection of
representative scans (Figure 2) showed FetalGAN outputs
more closely resembled the ground truth. The 3D reconstructed
surface of the segmentations by SegAN and U-Net is
smoother when compared to the outputs of the manual
and BET segmentation.

FetalGAN and 3D U-Net performance showed stability
across GAs (Figure 3). The Dice and Jaccard scores for these
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FIGURE 3 | Performance scores fo FetalGAN, 3D U-Net and BET2 methods across gestation ages: (A) Dice coefficient, (B) Jaccard Score, (C) Precision,
(D) Sensitivity, and (E) Specificity.

two models were uncorrelated with age (Pearson r = –0.114,
p = 0.230 and r = –0.1410, p = 0.241, FetalGAN and 3D U-Net,
respectively; see Supplementary Table 1). FetalGAN specificity
decreased with increasing GA. Despite this decrease, specificity
remained high (range: 0.9723–0.9993) and was comparable to
3D U-Net and significantly better than BET2. Unlike the deep
learning models, BET2 Dice coefficients and Jaccard indices were
positively correlated with age (r = 0.558, p = 4.228 × 10−7

and r = 0.564, p = 2.985 × 10−7, respectively). Precision
also positively scaled with increasing GA for both BET2
(r = 0.568, p = 2.396 × 10−7) and 3D U-Net (r = 0.317,
p = 0.007).

DISCUSSION

We successfully implemented FetalGAN, a SegAN-based model,
to accurately extract the fetal EPI brain from the maternal
compartment in a sample of 71 normative fetal rs-fMRI
datasets. The whole brain mask generated by FetalGAN closely
approximated manually segmented images. The proposed model
produced outputs superior to labels derived from 3D U-Net
and FSL’s BET2. FetalGAN masks were also generated at a
faster rate than U-Net and with only a minimal increase
in preprocessing time compared to BET2. In addition, the
proposed method produced consistently accurate segmentation
across gestational ages. These findings suggest that FetalGAN
is a robust, fast, and reliable approach to segmenting fetal rs-
fMRI images.

To the best of our knowledge, the proposed method is
the first successful application of the SegAN framework for
segmentation of the fetal EPI brain and only the second
automated tool for accurately separating the fetal brain from
surrounding maternal tissue (Rutherford et al., 2021). We
speculate that the modifications applied to the conventional
GAN framework accounted for the superior performance of
FetalGAN over the 3D U-Net model. Previous, conventional
GAN approaches have been reported to be unstable at times
due to failures during training, such as vanishing gradients
and non-convergence (Isola et al., 2017; Xue et al., 2018). In
other words, the adversarial loss, which classifies the image
based on a scalar output by the discriminator, was unable to
propagate sufficient gradients to improve the performance of
the generator network (i.e., insufficient information passed on to
the generator). FetalGAN utilized a multi-scale, weighted feature
loss function, which effectively quantified minute differences
between the generated and ground truth segmentation across
multiple layers of the network. This enabled both the generator
and discriminator networks to learn hierarchical features
that captured relationships between voxels, especially in low
contrast regions around the boundary between the fetal
brain and maternal tissue. Altogether, these permitted the
training process of FetalGAN to be end-to-end and stable.
Moreover, FetalGAN performed faster than the comparable
3D U-Net implementation because the number of trainable
parameters in the generator network was less than a 3D
U-Net model. FetalGAN also outperformed BET2, likely because
the boundary between fetal brain and non-brain voxels was
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low-contrast and BET2 relied on intensity differences between
tissues to accurately estimate the boundary of the brain
(Smith, 2002).

One recent study successfully implemented 2D U-Net to
automatically segment the fetal EPI brain (Rutherford et al.,
2021). Trained on 855 images from 129 subjects, their
model yielded slightly lower performance metrics compared
to FetalGAN (2D U-Net: Dice score = 0.94 ± 0.069, Jaccard
index = 0.89 ± 0.069 vs. FetalGAN: Dice score = 0.973 ± 0.013,
Jaccard index = 0.948 ± 0.024). In the 2D U-Net model,
images were segmented in their original space; in contrast,
FetalGAN was applied to oriented images. During development
of our pipeline, we observed that orienting images prior
to brain extraction allowed more options in subsequent
preprocessing steps, thus we repositioned the brains prior
to segmentation. Another critical difference between the two
models is that FetalGAN was trained using 3D patches, thus
it can leverage spatial information across three dimensions
(i.e., interslice relationships) whereas 2D convolutional kernels
obtain context only across the width and height of a slice.
Moreover, with 3D U-Net, warping or normalization was
not required. While we did not directly compare 2D and
3D U-Net models, previous studies have demonstrated the
advantage of 3D over 2D CNNs (Nemoto et al., 2020;
Woo and Lee, 2021).

FetalGAN aims to provide an automated alternative to
manual segmentation of fetal rs-fMRI data. FetalGAN addresses
drawbacks inherent to manual processes. First, since the
process is automated, outputs are replicable. Second, the need
for highly skilled operators is eliminated. Lastly, relative to
manual segmentation, the time required to segment a brain
volume is markedly reduced. Taken together, these three main
areas of improvement are a critical step toward increasing
rigor and reproducibility in fetal neuroimaging. While this
is but one of the first steps in fetal rs-fMRI preprocessing,
we believe that our proposed method will contribute to
the field’s broader and overarching goal of creating fully
automated pipelines such as what’s currently available for older
children and adults with SPM,2 AFNI (Cox, 1996), or FSL
(Jenkinson et al., 2012) (or pipelines that combine these such
as fMRIPrep3 and CPAC,4 among others). The widespread
availability of these tools to the larger scientific community has
been instrumental in advancing our understanding of human
health and disease.

Our work has several limitations. First, we used fewer
training data sets for fetal EPI brain segmentation compared
to a previous study (Rutherford et al., 2021). With the
smaller sample size, however, we achieved comparable
performance. Moreover, it should be noted that our inputs
are 3D rather than 2D, thus the information that is fed
into the learning model is likely comparable. Second,
we used data from a single site. Additional studies that
test the model on data collected from other institutions

2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3https://fmriprep.org/en/stable/index.html
4https://fcp-indi.github.io/docs/latest/user/quick

would support the generalizability of FetalGAN. Lastly,
the paper demonstrated FetalGAN’s superior performance,
but further studies that integrate brain extraction with
other preprocessing steps to yield a fully automated
pipeline are needed.

With mounting evidence supporting the fetal origins of
many prevalent adult disorders including mental illness (Barker
et al., 2009; Al-Haddad et al., 2019), there has been increased
interest in investigating fetal functional brain development
in vivo using MRI. FetalGAN, an implementation of SegAN
for fetal rs-fMRI brain, offers a fast, automated, unbiased,
and accurate alternative to currently available fetal EPI
brain extraction techniques. Further improvements that focus
on increasing computational efficiency, extracting the brain
in the original space, and integrating FetalGAN into a
fully automated fetal rs-fMRI pipeline, among others, are
currently underway. It is our hope that this technique
would help facilitate in utero investigations of emerging
functional connectivity.
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