
Cataract is the main cause of blindness and visual 
impairment in developing countries [1]. The global burden 
of cataract has been estimated at 196 disability-adjusted 
life years per 10,000 persons [2]. As the global population 
ages, cataract-induced visual dysfunction and blindness 
will increase [3]. Although cataract surgery is the most 
common and successfully performed operation, apart from 

the possibility of developing post-operative complications, 
cataract surgery itself poses a major economic burden. 
Measures for preventing and delaying cataract formation 
remain an active field of research. As cataract tends to occur 
in relatively young people, the relationship between axial 
myopia and nuclear cataract has received widespread atten-
tion. Axial myopia is also a potentially blinding disease. The 
public health burden of pathological myopia may be uniquely 
high in Asian countries [4]. A longer axial length is one of the 
important risk factors predisposing to lenticular progressive 
myopia. Pathological axial elongation leads to a change in the 
eyeball structure and has greatly increased the incidence of 
many complications, such as glaucoma, nuclear cataract, and 
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Purpose: The goal of this study was to identify and quantify the differentially expressed proteins in human nuclear 
cataract with different axial lengths.
Methods: Thirty-six samples of human lens nuclei with hardness grade III or IV were obtained during cataract surgery 
with extracapsular cataract extraction (ECCE). Six healthy transparent human lens nuclei were obtained from fresh 
healthy cadaver eyes during corneal transplantation surgery. The lens nuclei were divided into seven groups (six lenses 
in each group) according to the optic axis: Group A (mean axial length 28.7±1.5 mm; average age 59.8±1.9 years), Group 
B (mean axial length 23.0±0.4 mm; average age 60.3±2.5 years), Group C (mean axial length 19.9±0.5 mm; average 
age 55.1±2.5 years), Group D (mean axial length 28.7±1.4 mm; average age 58.0±4.0 years), Group E (mean axial length 
23.0±0.3 mm; average age 56.9±4.2 years), and Group F (mean axial length 20.7±0.6 mm; average age 57.6±5.3 years). 
The six healthy transparent human lenses were included in a younger group with standard optic axes, Group G (mean 
axial length 23.0±0.5 mm; average age 34.7±4.2 years).Water-soluble, water-insoluble, and water-insoluble–urea-soluble 
protein fractions were extracted from the samples. The three-part protein fractions from the individual lenses were 
combined to form the total proteins of each sample. The proteomic profiles of each group were analyzed using 8-plex 
isobaric tagging for relative and absolute protein quantification (iTRAQ) labeling combined with two-dimensional 
liquid chromatography tandem mass spectrometry (2D-LC-MS/MS). The data were analyzed with ProteinPilot software 
for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated with 
western blotting.
Results: We employed biological and technical replicates and selected the intersection of the two sets of results, which 
included 40 proteins. From the 40 proteins identified, six were selected as differentially expressed proteins closely related 
to axial length. The six proteins were gap junction alpha-3 protein, beta-crystallin B2, T-complex protein 1 subunit beta, 
gamma-enolase, pyruvate kinase isozymes M1/M2, and sorbitol dehydrogenase. Levels of beta-crystallin B2 expres-
sion were decreased in nuclear cataracts with longer axial length. The results of the mass spectrometric analysis were 
consistent with the western blot validation.
Conclusion: The discovery of these differentially expressed proteins provides valuable clues for understanding the 
pathogenesis of axial-related nuclear cataract. The results indicate that beta-crystallin B2 (CRBB2) may be involved in 
axial-related nuclear cataract pathogenesis. Further studies are needed to investigate the correlation between CRBB2 
and axial-related nuclear cataract.
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retinal detachment [5]. Nuclear sclerotic cataract is a cause 
of visual loss in young patients with axial myopia. Many 
population-based and clinic-based studies have shown a close 
association between axial myopia and the onset of nuclear 
cataract [6,7]. Patients with axial myopia are more likely to 
develop cataracts at an earlier age than those with shorter 
axial lengths [8,9]. Increase in axial length myopia of the eye 
has been associated with a lower mean age at the time of 
surgery and a higher grade of nuclear cataract [10]. In myopic 
eyes, it has been hypothesized that the longer vitreous cavity 
may inhibit the oxidative defense system [9-11]. Hyperbaric 
oxygen treatment increases the risk of nuclear cataract forma-
tion [12-14], which strongly supports the oxidative theory of 
nuclear cataract formation. Previous reports have shown that 
levels of O2 in the vitreous cavity increase following pars 
plana vitrectomy [15]. The frequent occurrence of nuclear 
cataract after pars plana vitrectomy may also be caused by 
an increase in intraocular oxygen tension. In severe myopia, 
posterior vitreous detachment (PVD) develops increasingly 
with age and the degree of myopia. Vitreous liquefaction is 
seen as one of the major causes of PVD. There is increasing 
evidence that PVD may increase vitreous oxygen levels 
[16-18]. Therefore, myopia increases the extent of vitreous 
liquefaction, which is important in the pathogenesis of 
nuclear cataract.

Axial myopia is complicated by the frequent and early 
development of nuclear cataracts, but the mechanism is 
unknown. Previous studies have identified some changes in 
proteins, in view of the causal relationship of myopia and 
nuclear cataracts. Boscia et al. [19] found lower plasma thiol 
(PSH) content in cataractous and even in clear lenses removed 
from patients with myopia and diabetes. The decrease in 
PSH concentration occurred earlier in diabetic patients and 
in patients with myopic cataract than in patients with senile 
cataract. Higher oxidative consumption of glutathione (GSH) 
has also been found in myopic cataracts compared with senile 
cataracts [20]. The basic research on axial-related nuclear 
cataract, however, does not include any related reports.

The crystalline lens contains high levels of proteins, and 
any change in the structure or amount of specific crystallins 
can lead to a cataract [21-24]. Therefore, proteomic tech-
nology is a useful research tool for illuminating the normal 
physiological and pathological changes in lens proteins, and 
it has been frequently used in research on cataracts [25]. 
The traditional approach in proteomic analysis includes 
isoelectric focusing/sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (IEF/SDS–PAGE) with mass spectros-
copy. Although two-dimensional electrophoresis is the most 
frequently used technology for protein separation, there are 

still several problems to be overcome. The shortcomings of 
IEF restrict its widespread application [26]. Isobaric tagging 
for relative and absolute protein quantification (iTRAQ) is 
a newly developed proteomics technique for studying quan-
titative changes in proteins in different biological samples. 
iTRAQ labeling combined with two-dimensional liquid chro-
matography tandem mass spectrometry (2D-LC-MS/MS) is a 
standard technique for high-throughput protein identification 
and relative quantification. We have analyzed differentially 
expressed proteins in nuclear cataractous lenses and trans-
parent lenses from people of different ages using LC-MS/MS 
and iTRAQ labeling, and the results suggest the importance 
of some proteins in contributing to the formation of cataract 
with aging [27].

Based on our previous study on the formation of nuclear 
cataract with aging, using iTRAQ, the purpose of this 
investigation was to identify and quantify the differentially 
expressed proteins in nuclear cataract with different axial 
lengths. This study may lead to further understanding of 
the role of the target proteins involved in the pathogenesis of 
axial-related nuclear cataract. These data may therefore be 
helpful in studying the pathological mechanisms of human 
axial-related nuclear cataract.

METHODS

The study protocol conformed to the tenets of the Declaration 
of Helsinki (2008 version) and was approved by the Ethics 
Committee of Tangdu Hospital, the Fourth Military Medical 
University. It conformed to the standards in the ARVO 
(Association for Research in Vision and Ophthalmology) 
Statement on human subjects. Written informed consent 
was obtained from all study participants. Lens opacity was 
diagnosed before surgery by a surgeon (the corresponding 
author) and a trained ophthalmologist (the first author) using 
the lens opacity classification system (LOCS) II [28]. Thirty-
six samples of human lens nuclei from patients with hard 
nuclear cataracts were obtained during cataract surgery at the 
Disabled Rehabilitation Center in Qinghai Province, China. 
Extracapsular cataract extraction was employed to remove 
the cortical region, followed by irrigation and aspiration to 
extract the nuclear region. Lens nuclei were rapidly frozen in 
liquid nitrogen (−196 °C) until use. Six healthy transparent 
human lens nuclei were obtained from fresh healthy cadaver 
eyes during corneal transplantation surgery. The core of each 
lens was separated as stated in our previous work [22].The 
samples were stored as described above. All experimental 
samples were obtained from patients with lenses of different 
axial lengths and divided into groups with longer axis length 
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(A, D), standard axis length (B, E), and shorter axial length 
(C, F; Table 1):

Group A: mean axial length 28.7±1.5 mm; average age 
59.8±1.9 years, grade IV on the LOCS II scale, n = 6;

Group B: mean axial length 23.0±0.4 mm; average age 
60.3±2.5 years, grade III on the LOCS II scale, n = 6;

Group C: mean axial length 19.9±0.5 mm; average age 
55.1±2.5 years, grade III on the LOCS II scale, n = 6;

Group D: mean axial length 28.7±1.4 mm; average age 
58.0±4.0 years, grade IV on the LOCS II scale, n = 6;

Group E: mean axial length 23.0±0.3 mm; average age 
56.9±4.2 years, grade III on the LOCS II scale, n = 6;

Group F: mean axial length 20.7±0.6 mm; average age 
57.6±5.3 years, grade III on the LOCS II scale, n = 6.

Six healthy transparent human lenses were included in a 
group of younger age with healthy optic axes, Group G: mean 
axial length 23.0±0.5 mm; average age 34.7±4.2 years.

Eyes with ocular risk factors for the development of cata-
racts (e.g., diabetes, history of ocular surgery, retinal detach-
ment, uveitis, retinitis pigmentosa, vitreous hemorrhage, and 
some diseases that require steroid therapy) were excluded.

Extraction of WS, WI, and WI-US protein fractions: The 
experimental design is illustrated in Figure 1. Each lens 
sample was placed in a grinding mortar precooled with liquid 
nitrogen and manually ground under liquid nitrogen until the 
nitrogen evaporated and the mix was a fine, dry powder. 
Before the powder began to thaw, more liquid nitrogen was 
added, and the samples were ground two more times. From 
each lens, freeze-dried powder was isolated using the proce-
dure described by Harrington et al. [29-32].

All procedures were performed at 4 °C unless indicated 
otherwise. The freeze-dried powder from each lens was 

thawed on ice, suspended (2 ml/lens) in Buffer A (50 mM 
Tris–HCl, pH 7.3, containing 1 mM dithiothreitol [DTT], 
1 mM iodoacetamide, and 1 mM phenyl methane sulfonyl 
fluoride [PMSF]), and homogenized. The lens homogenate 
was centrifuged at 10,000 ×g for 15 min. The supernatant 
was recovered, and the pellet was homogenized and centri-
fuged three times. The supernatants recovered after each 
centrifugation were pooled and designated as the water-
soluble (WS) protein fraction. The pellet designated as the 
water-insoluble (WI) protein fraction was suspended (2 ml/
lens) in Buffer B (50 mM Tris–HCl, pH 7.9, 6 M urea, and 5 
mM DTT) and homogenized. Subsequently, the suspension 
was centrifuged at 10,000 ×g for 15 min. The supernatant was 
recovered, and the pellet was homogenized and centrifuged 
three times. The supernatants were pooled and designated 
as the water-insoluble–urea-soluble (WI-US) protein frac-
tion. After urea solubilization of the proteins, the residual 
pellet was suspended in buffer C (50 mM Tris–HCl, pH 7.9) 
and designated the water-insoluble–urea- insoluble (WI-UI) 
protein fraction. The three protein fractions from the indi-
vidual lenses were combined to form the total proteins of 
each sample. The total protein concentration of each sample 
was determined using the Bradford protein assay. To diminish 
the effect of sample biological variation on the results of the 
proteomics analysis, the total proteins from six lenses in each 
group were pooled; consequently, there were two biological 
replicates in the longer axis length group, the standard axis 
length group, and the shorter axis length group, respectively.

iTRAQ labeling: The proteins were precipitated using a Ready 
Prep 2-D Clean up Kit (Bio-Rad Laboratories, Inc., Hercules, 
CA) according to the instructions. After precipitation, the 
protein pellets were resuspended in dissolution buffer from 
the iTRAQ kit. Protein quantification of each sample was 
performed using the Bradford protein assay [33]. Trypsin 
digestion and iTRAQ labeling were performed according to 

Table 1. Information on the 7 groups enrolled in the iTRAQ label. 

Group Specimen
Average 
age (year)

Mean axial 
lengths (mm)

Lens nucleus 
condition 
(LOCS II)

Gender 
F: female; M: 
male iTRAQ label

A 6 59.8 ±1.9 28.7±1.5 IVdegree 2M4F 114
B 6 60.3±2.5 23.0±0.4 IIIdegree 2M4F 115
C 6 55.1±2.5 19.9±0.5 IIIdegree 3M3F 116
D 6 58.0±4.0 28.7±1.4 IVdegree 4M2F 117
E 6 56.9±4.2 23.0±0.3 IIIdegree 3M3F 118
F 6 57.6±5.3 20.7±0.6 IIIdegree 2M4F 119

G 6 34.7±4.2 23.0±0.5
transparent 
lenses 6M 121
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the kit protocol (Applied Biosystems, Foster, CA). Briefly, 
100 μg protein from each group was digested overnight at 37 
°C with trypsin (MS grade; Promega). Following this, iTRAQ 
labeling was performed using an iTRAQ Reagent 8-Plex kit 
(P/N 4381663, LOT N: A3056, Applied Biosystems) based 
on the manufacturer’s protocol (Table 1). For the longer axis 
length, standard axis length, and shorter axis length groups, 
two biological replicates were included. The two longer axis 
length groups (A, D) were labeled with iTRAQ reagents 114 
and 117, the two standard axis length groups (B, E) were 
labeled with iTRAQ reagents 115 and 118, and the two shorter 
axial length groups (C, F) were labeled with iTRAQ reagents 
116 and 119, respectively. The transparent lens group (G) was 
labeled with iTRAQ reagent 121.

2D-LC conditions: Chromatographic separation of the pooled 
samples was performed on a 20AD high-performance liquid 

chromatography (HPLC) system (Shimadzu; Kyoto, Japan). 
Tryptically digested and labeled peptides were first fraction-
ated using a strong cation exchange liquid chromatograph 
on a 2.1 mm × 150 mm, 3.5 µm, 300 Å column (Waters 
Corporation, Milford, MA). The sample was loaded onto 
the column and eluted stepwise by injecting salt plugs of ten 
molar concentrations (25, 50, 75, 100, 150, 200, 300, 400, 500, 
and 1,000 mM NH4Ac). Ten fractions were collected from 
the strong cation exchange column. Each fraction was then 
loaded across a ZORBAX 300SB-C18 RP column (5 µm, 
300 Å, 0.1 × 150 mm; Michrom BioResources, Auburn, CA) 
and analyzed on a QSTAR XL System (Applied Biosystems) 
coupled with a 20AD HPLC system (Shimadzu). The flow 
rate used for separation on the reversed-phase (RP) column 
was 0.4 ml/min. Buffer A consisted of 5% acetonitrile, 95% 
water, and 0.1% formic acid; Buffer B consisted of 95% 

Figure 1. The experimental design workflow.
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acetonitrile, 5% water, and 0.1% formic acid. Elution was 
performed using a gradient ranging from 5% to 45% of Buffer 
B over 90 min [34].

MS/MS conditions: The LC eluent was subjected to positive 
ion nanoflow electrospray analysis using a Qstar XL MS/MS 
system (Applied Biosystems) in the information-dependent 
acquisition mode (IDA). Time-of-flight (TOF)-MS survey 
scans were obtained with m/z ranges of 400–1,800 for MS 
with up to four precursors selected from m/z 100–2,000 
for MS/MS. Product ion spectra were accumulated for 2 s 
in the mass range m/z 100–2,000 with a modified Enhance 
All mode. The Q2 transition settings favored low mass ions; 
thus, the reported iTRAQ ion intensities were enhanced for 
quantification. The iTRAQ-labeled peptides fragmented 
under collision-induced dissociation conditions to yield 
reporter ions at 113, 114, 115, 116, 117, 118, 119, and 121. The 
peak area ratios of the iTRAQ reporter ions reflected the 
relative abundances of the peptides. Protein expression ratios 
were computed based on the peak area ratios of the peptides 
accounting for the same protein. The LC-MS/MS step was 
repeated twice on the same set of samples.

Data analysis: Protein identification and iTRAQ quantifica-
tion were performed with the ProteinPilot software version 
4.5, revision number 1656 (Applied Biosystems). The data 
analysis parameters were set as follows: Sample type: iTRAQ 
(peptide labeled); Species: Homo sapiens; Digestion: Trypsin; 
Cys alkylation: methyl methanethiosulfonate; Instrument: 
QSTAR ESI; ID Focus: Biological modifications; Database: 
International Protein Index human database, version: 3.45; 
143,958 entries); Search Effort: Thorough; Max missed 
cleavages: 2; FDR Analysis: Yes; User Modified Parameter 
Files: No; Bias Correction: Auto; and Background Correction: 
Yes. The identified proteins were grouped by the software to 
minimize redundancy. The identified proteins were grouped 
by the software to minimize redundancy. All peptides used to 
calculate the protein ratios were unique to the given protein or 
proteins within the group, and peptides that were common to 
other isoforms or proteins of the same family were ignored. 
The protein confidence threshold cutoff was 1.3 (unused 
ProtScore), with at least two peptides with 95% confidence. 
The false discovery rate for protein identification was calcu-
lated by searching against a reverse-concatenated database.

Western blot validation: The proteomic results obtained by 
iTRAQ coupled with 2D LC–MS/MS were validated using 
western blotting. Valuable Proteins was selected for this 
purpose. Western blotting was performed on new, different 
patient groups. Ten human lens nucleus samples with a 
hardness grade were obtained during cataract surgery. The 
samples were divided into two groups (five lenses in each 

group) according to axis length. The protein contents were 
determined with the bicinchoninic acid (BCA) assay (Bio-
Rad, Hemel Hempstead, UK). A total of 20 µg of the protein 
samples were loaded onto 10% SDS-polyacrylamide gels and 
transferred to polyvinylidene difluoride membranes. The 
membrane was blocked with Tris-buffered saline (TBS; 10 
mM Tris and 150 mM NaCl [pH 7.4] ) containing 5% wt/
vol skim milk 0.1% and Tween-20 (TBST) and then hybrid-
ized with a primary anti-CRBB2 antibody (Sigma, St. Louis, 
MO), followed by incubation with a horseradish peroxidase–
conjugated secondary antibody (Jackson ImmunoResearch 
Laboratories, Inc ,West Grove, PA). β-Actin was used as a 
control for protein loading. Proteins were detected using a 
gel imaging and analysis system (ChemiDoc XRS, Bio-Rad).

RESULTS

Protein identification: Two technical replicates of iTRAQ 
analyses were carried out: 103 proteins were found in the first 
iTRAQ analysis, and 65 proteins were found in the second 
iTRAQ analysis. We chose the intersection of the two results, 
and thus, 40 proteins were detected.

Proteins that were observably and synchronously upregu-
lated or downregulated (fold-change ≥1.2 or ≤0.8) in pairwise 
comparisons, 115:114 (B:A), 116:114 (C:A), 118:114 (E:A), 
119:114 (F:A), 115:117 (B:D), 116:117 (C:D), 118:117 (E:D), 
and 119:117 (F:D), were regarded as potential differentially 
expressed proteins in the nuclear cataracts with longer axial 
length. A total of six proteins were selected as differentially 
expressed proteins closely related to axial length. Three 
proteins were found to be upregulated, and three were found 
to be downregulated in the shorter axis length group and 
the standard axis length group with nuclear cataracts, when 
compared with the groups with longer axis length and nuclear 
cataracts. The distribution of the differentially expressed 
proteins is shown in Table 2 and Table 3.

The ion assignments were as follows: iTRAQ 114 (A), 
117 (D), nuclear cataract from the longer axis length groups; 
iTRAQ 115 (B), 118 (E), nuclear cataract from the standard 
axis length groups; iTRAQ 116 (C), 119 (F), nuclear cataract 
from the shorter axis length groups; and iTRAQ 121 (G), 
transparent lens from the group with younger age and stan-
dard axis length.

The MS/MS spectra of the representative peptides of 
beta-crystallin B2 (CRBB2), along with their reporter ions, 
obtained from the lens samples are shown in Figure 2. These 
ratios suggested that the relative protein abundance of CRBB2 
was decreased in nuclear cataracts with longer axis length.
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Validation of differently expressed proteins identified: 
CRBB2 was selected for this purpose. Ten human lens nucleus 
samples with a hardness grade were divided into two groups 
(five lenses in each group) according to axis length: Group 
X (mean axial length 23.1±0.8 mm; average age 57.3±3.2 
years, grade II on the LOCS II scale) and Group Y (mean 
axial length 27.1±0.6 mm; average age 60.4±2.5 years, grade 
IV on the LOCS II scale; Table 4). The method described for 
extracting the protein fraction was used. The western blotting 
results were consistent with the MS analysis findings, vali-
dating the altered expression of CRBB2 in nuclear cataracts. 
The representative images and the relative band density of 
western blotting for CRBB2 are shown in Figure 3, and a 
densitometric analysis of the protein bands was performed 
using Quantity One software (Bio-Rad).

DISCUSSION

This study focused on the proteins present in nuclear cata-
racts with different axial lengths. We identified six differ-
entially expressed proteins via iTRAQ labeling coupled 
with 2D-LC-MS/MS, and CRBB2 was selected to validate 
the proteomic results using western blotting. To our knowl-
edge, such research has not been performed previously. We 
collected 36 samples of human cataract obtained during 
extracapsular cataract extraction (ECCE) procedures. After 
controlling for age, this experiment ruled out the possibility 
that the same proteins change in the formation of axial-related 
cataract.

Gap junction alpha-3 protein (connexin 46, GJA3) 
belongs to the connexin family and the alpha-type (group II) 

Figure 2. The MS/MS spectra of the representative peptides of CRBB2. A: A representative tandem mass spectrometry (MS/MS) spectrum 
for a peptide, GEQFVFEK, from CRBB2. B: The relative quantitative reporter ions, with the observed mass tags (114–121) indicating the 
relative abundance of this peptide in each group.

Table 4. Information on the two groups enrolled in the western blot validation. 

Group Specimen
Average age 
(year)

mean axial 
lengths (mm)

lens nucleus condi-
tion (LOCS II)

Gender F: female; M: 
male

A 5 61.8 ±3.9 23.1±0.8 III degree 2M3F
B 5 60.4±2.5 27.1±0.6 IV degree 3M2F

http://www.molvis.org/molvis/v22/933


Molecular Vision 2016; 22:933-943 <http://www.molvis.org/molvis/v22/933> © 2016 Molecular Vision 

941

subfamily. GJA3, the primary functional gap junction in the 
mature region of the lens, has been extensively studied in the 
mammalian lens [35-38]. Mutations in GJA3 have been linked 
with congenital cataract in humans [38] and mice [39-41]. We 
found that GJA3 was repeatedly upregulated in comparison 
with 115:114 (B:A), 116:114 (C:A), 118:114 (E:A), 119:114 
(F:A), 115:117 (B:D), 116:117 (C:D), 118:117 (E:D), and 119:117 
(F:D), indicating that the GJA3 content is lower in lenses with 
longer axial length than in other eyes. Further studies are 
needed to investigate the correlation between GJA3 and axial-
related nuclear cataract by collecting new samples.

CRBB2, of the beta/gamma-crystallin family, is of 
particular interest because it is the major beta-crystallin in the 
mammalian lens. The CRBB2 gene (HGNC ID: HGNC:2398; 
OMIM: 123620) is a late-expressed gene, which is expressed 
in rodents and humans only in the postnatal lens [42-44]. Our 
study showed that the levels of CRBB2 in the lenses with 
standard and shorter axial lengths were higher than those of 
the lenses with longer axial lengths. The high solubility of 
CRBB2 compared with the other β-crystallins suggests that it 
may play a unique role in maintaining lens transparency [45]. 
Human CRBB2 undergoes far less modification than other 
crystallins [46]. In aging lenses, the alpha-crystallins have 
become water-insoluble, and CRBB2 may play a dominant 
role in crystallin solubility in the lens. This resistance to 
modification leads to CRBB2 being the most soluble of the 
lens crystallins as the lens ages. Further studies are needed to 

investigate the correlation between CRBB2 and axial-related 
nuclear cataract.

The mechanism underlying the relationship between 
axial length and nuclear cataract is unclear and deserves 
further investigation. Intact vitreous gel is of critical impor-
tance to maintaining the low level of oxygen around the lens 
by preventing bulk flow of the vitreous fluid [47]. Myopia and 
a longer axis contribute to vitreous liquefaction. It has been 
hypothesized that increased circulation of the vitreous fluid 
readily distributes oxygen from the retinal surface throughout 
the eye, changing the intraocular oxygen gradients and thus 
promoting nuclear cataract [48,49].

We expect that the current data will provide fresh ideas 
for investigating the pathogenesis of axial-related nuclear 
cataract. However, the biomarkers require multiple valida-
tion studies and clinical testing. Interactions among all the 
differentially expressed proteins should be studied. As an 
initial step, our findings provide a preliminary list of candi-
date biomarkers for further validation.
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