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Pathological diagnosis of prostate adenocarcinoma often requires complementary methods. On prostate biopsy tissue from 39
patients including benign nodular hyperplasia (BNH), atypical adenomatous hyperplasia (AAH), and adenocarcinomas, we have
performed combined histochemical-immunohistochemical stainings for argyrophilic nucleolar organizer regions (AgNORs) and
glandular basal cells. After ascertaining the pathology, we have analyzed the number, roundness, area, and fractal dimension
of individual AgNORs or of their skeleton-filtered maps. We have optimized here for the first time a combination of AgNOR
morphological denominators that would reflect best the differences between these pathologies.The analysis of AgNORs’ roundness,
averaged from large composite images, revealed clear-cut lower values in adenocarcinomas compared to benign and atypical lesions
butwith nodifferences betweendifferentGleason scores. Fractal dimension (FD) ofAgNORsilhouettes not only revealed significant
lower values for global cancer images compared toAAHandBNH images, but was also able to differentiate betweenGleason pattern
2 and Gleason patterns 3–5 adenocarcinomas. Plotting the frequency distribution of the FDs for different pathologies showed
clear differences between all Gleason patterns and BNH. Together with existing morphological classifiers, AgNOR analysis might
contribute to a faster andmore reliablemachine-assisted screening of prostatic adenocarcinoma, as an essential aid for pathologists.

1. Introduction

Prostate cancer is considered the second cause of death
by malignant neoplasia in the male population around the
world, over 95% of all diagnosed cases being represented
by acinar adenocarcinoma [1–3]. The incidence of prostate
cancer in Romania in 2012 was officially estimated at 20 cases
per 100,000males, these low incidence rates being largely due
to underregistration of prostate cancer, as well as the lack of
sensitive diagnostic tests for an early detection [4, 5].

Pathological diagnosis of prostate neoplasia is sometimes
cumbersome and the differential diagnosis needs to be made
with atypical benign lesions. In these cases, techniques such
as immunohistochemistry for acinar basal cells [6, 7], the
histochemical silver staining for the nucleolar organiser
regions (AgNORs) [8], and genetic testings have brought
an invaluable support in establishing the correct diagnosis

[9, 10]. AgNOR silver impregnation protocols have been
utilized and standardized [8, 11, 12] for counting and mor-
phometry and may contribute to the differential diagnosis
between benign and malignant prostate lesions, either alone
[13–16] or in combination with immunohistochemistry and
serologic markers [17–19], and have even been assessed as
a prognostic factor for this pathology [20, 21]. Nucleolar
organizing regions (NORs) represent fragments of ribosomal
DNA involved in transcription of ribosomal RNA, which due
to their association with nonhistonic argyrophilic proteins
may be observed and quantified after precipitation of silver
nitrate [8, 22].

AgNOR analysis is justified by the well-known mor-
phological changes of nucleoli in prostate adenocarcinoma
[6]. Beyond subjective observations, automated image anal-
ysis for diagnostic applications is currently a dynamically
evolving domain, supporting an increasing standardization
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and an accuracy of the diagnostic process [23, 24]. While
classical objective morphological denominators like areas
and diameters have proved insufficient to describe highly
variable and complex pathological processes, scale-invariant
parameters like fractal dimension (FD) have been very
useful in characterizing complex and nonregular objects
[25]. Classical morphological features are based on Euclidean
geometric system that has three dimensions as integers, while
the FD of an object is a real (adimensional) number that
expresses the morphological complexity and the inner self-
similarity of the object or, in simple terms, it characterizes
the space-filling properties of that object [25]. The closer this
dimension is to the topological dimension of the space in
which it resides, the greater its space-filling capacity is, and
thus its FD value, with a bidimensional structure (like planar
images) having FD values between 1 and 2.

This complexity-related concept is now widely used
in pathology to describe tumor angiogenesis, chromatin
distribution in malignant cells, or even prostate glands’
morphology [26–28].

In this context, the advent of more powerful image analy-
sis segmentation algorithms based on color, intensity, texture,
and background contrast, coupled with fractal analysis of
AgNOR regions might offer supplemental valuable classifiers
for future machine-based diagnostic algorithms that will
help the pathologist with classifying benign, atypical, and
malignant prostate lesions.

2. Methods

2.1. Patients. Formalin-fixed paraffin-embedded archived
prostate transurethral resection of the prostate (TURP) biop-
sies were selected from previously confirmed patients with
benign nodular hyperplasia (number (𝑁) = 8), atypical
adenomatous hyperplasia (AAH) (𝑁 = 5), and Gleason
grading of 2 (𝑁 = 5), 3 (𝑁 = 5), 4 (𝑁 = 7), and 5
(𝑁 = 9) conventional acinar adenocarcinoma. All selected
cases belong to the archive of the Pathology Department
from the Emergency County Hospital 1, Craiova, Romania,
and were diagnosed without equivoque as belonging to the
respective groups (Alex Stepan, Claudiu Margaritescu, and
Daniel Pirici), following the latest WHO grading system [2].
All patients that have been included were at their first pre-
sentation, thus without any treatments. A written informed
consent was obtained for each patient from their relatives,
accepting tissue sampling for research purposes, and the
study was approved by the responsible ethical committee.

2.2. Immunohistochemistry and AgNOR Staining. In order
to stain for the nucleolar organizers and still identify the
histopathology of the tissue with the best contrast, we have
optimized a mixed protocol combining the silver staining
protocol as proposed by the International Committee on
AgNOR Quantitation with immunohistochemistry for basal
cells and a Nuclear Red counter staining [12].

The slides were first dewaxed in xylene and rehydrated
through graded alcohols to distilled water, and then antigen
retrieval was performed by microwaving the sections in
sodium-citrate buffer (0.01M sodium-citrate monohydrate,

pH 6.0) for 20 minutes at 650W. After cooling, the sec-
tions were incubated for 30 minutes in a 1% hydrogen
peroxide solution and then blocked for 1 hour in 3% skim
milk (Bio-Rad, Medicalkit, Craiova, Romania). A mix of
34𝛽E12 (1 : 100) and p63 (1 : 200) mouse anti-human primary
antibodies (Dako, Redox, Bucharest, Romania) was added
onto the slides for 18 hours at 4∘C; the next day the signal
was amplified utilizing a peroxidase polymer-based system
(Nichirei-Histofine,Medicalkit, Craiova, Romania), and then
the signal was detected with Permanent HRPGreen substrate
(Zytomed, Medicalkit, Craiova, Romania). After washing the
slides in distillated water, a modified silver staining protocol
was performed [12]. The slides were counterstained in 0.1%
Nuclear Red prepared in a 5% aqueous aluminum sulphate
solution. The slides were dehydrated fast, cleared in xylene,
andmounted in DPX (Fluka, Medicalkit, Craiova, Romania).

2.3. Image Grabbing and Analysis. Light microscopy images
were grabbed utilizing a Nikon Eclipse 55i microscope
equipped with a 5-megapixel Nikon DS-Fi1 CCD cooled
color camera, together with the Nikon NIS-Elements Basic
Research image analysis software (Nikon, Apidrag, Bucha-
rest, Romania). Three investigators (AS, CM, and DP) fol-
lowed the sections individually and, based on the nuclear
glandular-like histological staining and the immunohisto-
chemistry for basal cells, respectively, collected suggestive
images for Gleason gradings 2, 3, 4, and 5 as well as AAH
and benign nodular hyperplasia (BNH), according to the
latest WHO grading system. Images have been collected
with a 40x objective, either as single frames (57.6583,69 𝜇m2)
or as composites of 24 400x objective areas automatically
merged as unique captures in the Nikon NIS-Elements
software (Figures 1 and 2). More than 500 images have been
captured, saved, and archived as uncompressed tiff files. After
confirming once again the grading of the captured images
and removing all images on which the investigators did not
agree (AS, DP, and CM), AgNOR dots were first manually
counted and averaged for epithelial nuclei, using the manual
tag option in our image analysis software.

Next, nucleolar organizers have been selected as regions
of interests (ROIs) and subtracted as binary images from
the original RGB images, based on their color profile, inten-
sity, texture, background, and morphological filters found
under the “smart segmentation” command in the Image-Pro-
Premier image analysis software package (trial version,Media
Cybernetics, Bethesda, MD, USA) (Figures 1 and 2).

Moreover, in order to better address also the morphology
and the relationships between nucleolar organizers rather
than the individual ROIs, the binary images have also been
processed through a pruning morphological filter reducing
the images to their skeletons (Figure 3). All final images were
analyzed regarding their fractal dimension, utilizing the same
approach in Image-Pro-Premier.

2.4. Statistical Analysis. All the data were represented graph-
ically and further analyzed utilizing Microsoft Excel 2010
and SPSS 10.0 (SPSS Inc., Chicago, IL, USA). All areas and
roundness values equal to 0 and FDs equal to 1 have not
been considered in this analysis in order to filter out smaller,
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Figure 1: Segmentation and binarisation of argyrophilic nucleolar organizer regions (AgNORs). Histochemical-immunohistochemical
stainings have been performed for AgNORs (dark dots) and glandular basal cells (a cocktail of p63 and 34𝛽E12, visualized in green), with
a Nuclear Red counterstaining in order to ensure a good pathological classification of nodular benign nodular hyperplasia (a), atypical
adenomatous hyperplasia (b), and acinar adenocarcinoma Gleason grades 2 (c), 3 (g), 4 (h), and 5 (i). Following segmentation, binary images
of AgNORs substractions have been generated ((d)–(f) and (j)–(l)). Scale bar represents 100 𝜇m.
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Figure 2: Larger scan areas (24x 400x) utilized for segmentation and binarisation of argyrophilic nucleolar organizer regions (AgNORs). An
area of benign nodular hyperplasia is shown ((a)-(b)). Scale bar represents 200 𝜇m.
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Figure 3: Example of binarisation and pruning filtering. After segmentation of original images ((a), (d)), argyrophilic nucleolar organizer
regions (AgNORs) are binarised ((b), (e)) and then skeletons of the AgNOR dots are extracted ((c), (f)) in order to offer a quantifiable view
of the glandular distribution of the dots. Scale bar represents 100𝜇m.

unequivocally stained particles. All measured values were
averaged for each image, patient, and gradings and have
been compared utilizing a one-way ANOVA with the Tukey
correction as post hoc analysis. Pearson testing was utilized
to explore correlations, and, in all cases, 𝑃 < 0.05 was used to
indicate statistical significance.

3. Results

After segmenting the nucleolar organizer regions, we have
looked at multiple individual and integrative morphological
parameters in order to evaluate the possibilities of stratifica-
tion of the different pathological entities.

First of all, we have counted the individual nucleolar
organizer regions as stained and segmented by our image

analysis algorithm.The number of silver stained dots was first
evaluated as an average per glandular epithelial cell nucleus,
and although these averages tended to show higher values for
Gleason patterns 4 and 5, they did not exhibit any statistical
separation power (𝑃 > 0.05) (Figure 4(a)). Next, we looked at
the total densities of AgNOR entities on both 40x individual
images (Figure 4(b)) and composed collages, thus without
separating epithelial cells from the stromal component (data
not shown). AAH tended to show a somehow lower density
of stained ROIs, but this difference was again not signif-
icant for both individual Gleason scores overall cancers
pooled together versus benign conditions (𝑃 > 0.05) (Fig-
ure 3(b)).

Roundness analysis on high resolution images seemed
to offer lower global values (1.554 ± 0.158) for carcinoma
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Figure 4: Morphometric assessment of argyrophilic nucleolar organizer regions (AgNORs). AgNORs, counted as average per epithelial
cells’ nuclei (a) or without discrimination for all the cells in the 40x area (b), show no difference between different pathologies. Roundness
factor of the AgNOR dots on individual 40x images cannot account also for difference between pathologies ((c), (d)). Roundness factor
of the AgNOR dots on collages, however, could differentiate each Gleason pattern from benign nodular hyperplasia (BNH) and atypical
adenomatous hyperplasia (AAH) ((e), (f)). Averaged areas of AgNORs have a very limited value, being able to differentiate only AAH from
Gleason patterns 4 and 5 ((g), (h)). Bars represent standard deviation. ∗ represents significance on corrected ANOVA testing.
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Figure 5: Testing different measurements for argyrophilic nucleolar organizer regions (AgNORs) for select epithelial, stromal, and complete
400x areas showed strong direct correlations between data coming from epithelia and complete tissue areas (𝑟 > 0.89 on Pearson testing).

compared to AAH (1.589±0.110) and nodular benign hyper-
plasia (1.583 ± 0.077), although the high intracase variability
leads to no statistical differences (Figures 4(c) and 4(d)). On
composed images, however, acinar adenocarcinoma showed
clearly lower values compared to AAH and BNH (𝐹(5, 54) =
5.887, 𝑃 < 0.001; with post hoc comparisons using the
Tukey HSD test (𝑃 < 0.01)) (Figure 4(e)). Also, carcinoma
cases pooled together (1.365 ± 0.107) showed clear-cut
lower roundness values compared to atypical adenomatous
hyperplasia (1.549 ± 0.248) and nodular benign hyperplasia
(1.596 ± 0.109) (𝐹(2, 54) = 13.173, 𝑃 < 0.001; with
post hoc comparisons using the Tukey HSD test (𝑃 <
0.01)) (Figure 4(f)). No significant differences could be found
between any individual Gleason grading, AAH, and BNH on
either single 40x images or composites.

A one-way ANOVA found a global difference between
the total normalized areas of AgNOR positive pixels for
different gradings (𝐹(5, 40) = 5.396, 𝑃 < 0.001), and
post hoc comparisons indicated a difference only between
AAH (545.91 ± 210.94) compared to Gleason grading 4
(1041.43 ± 221.94, 𝑃 < 0.01) and, respectively, AAH
compared to Gleason grading 5 (1030.89 ± 196.93, 𝑃 <
0.01) (Figure 4(g)). Altogether, carcinoma cases (8592.98 ±
1723.62) showed higher total pixel areas compared to atypical
adenomatous hyperplasia (4653.73 ± 1798.22) and nodular
benign hyperplasia (6715.97 ± 1983.22) (𝐹(2, 40) = 11.820,

𝑃 < 0.001; with post hoc comparisons (𝑃 < 0.05)) (Figure
4(h)). The same trend was also identified for collage images
(data not shown).

Besides the fact that analysis of complete images will add
more objectivity rather than separating the glands only, we
also assessed whether there was a correlation between the
values for direct AgNOR counting, areas, roundness, and
FD on a select set of images analyzed for epithelia, stroma,
and complete areas (Figure 5). The result was that, for all
approaches, epithelia variations could predict very closely
overall tissue variations (𝑟 > 0.89) compared to stroma-
complete tissue variations (𝑟 < 0.64).

We next looked at the averages of fractal dimensions of
the silhouettes of nucleolar organizer regions (Figure 6(a)).
On individual Gleason scoring, this approach revealed clear-
cut differences between Gleason 2 (1.119 ± 0.0007) and
Gleason 3–5 group (1.096±0.010; 1.097±0.014; 1.099±0.007),
as well as between Gleason 3–5 group and AAH (1.132 ±
0.031) and, respectively, BNH (1.123 ± 0.011) (𝐹(5, 54) =
8.492, 𝑃 < 0.001; with post hoc comparisons (𝑃 < 0.05)).
Upon grouping together the cases of acinar adenocarcinoma
(1.101 ± 0.013), these were deemed lower than both AAH
and BNH (𝐹(2, 54) = 14.999, 𝑃 < 0.001; with post hoc com-
parisons (𝑃 < 0.01)) (data not shown).

In order to evaluate as much as possible the morphologi-
cal architecture of the glandular distribution of the silver dots,



Analytical Cellular Pathology 7

1.06

1.08

1.1

1.12

1.14

1.16

1.18 FD on collages

BNH AAH Gleason 2 Gleason 3 Gleason 4 Gleason 5

∗

(a)

1.65

1.7

1.75

1.8

1.85

1.9

1.95
Skeleton FD on collages

BNH AAH Gleason 2 Gleason 3 Gleason 4 Gleason 5

∗

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.
00

01
1.

00
4

1.
00

8
1.

01
2

1.
01

6
1.

02
1.

02
4

1.
02

8
1.

03
2

1.
03

6
1.

04
1.

04
4

1.
04

8
1.

05
2

1.
05

6
1.

06
1.

06
4

1.
06

8
1.

07
2

1.
07

6
1.

08
1.

08
4

1.
08

8
1.

09
2

1.
09

6
1.

1
1.

10
4

1.
10

8
1.

11
2

1.
11

6
1.

12
1.

12
4

1.
12

8
1.

13
2

1.
13

6
1.

14
1.

14
4

1.
14

8
1.

15
2

1.
15

6
1.

16
1.

16
4

1.
16

8
1.

17
2

1.
17

6
1.

18
1.

18
4

1.
18

8
1.

19
2

1.
19

6
1.

2

Frequency distribution of FDs on single images

Gleason 2

BNH
AAH

Gleason 3
Gleason 4
Gleason 5

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.
05

5
1.

05
65

1.
05

8
1.

05
95

1.
06

1
1.

06
25

1.
06

4
1.

06
55

1.
06

7
1.

06
85

1.
07

1.
07

15
1.

07
3

1.
07

45
1.

07
6

1.
07

75
1.

07
9

1.
08

05
1.

08
2

1.
08

35
1.

08
5

1.
08

65
1.

08
8

1.
08

95
1.

09
1

1.
09

25
1.

09
4

1.
09

55

Gleason 2

BNH
AAH

Gleason 3
Gleason 4
Gleason 5

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6
FDs frequencies on single images

BNH AAH Gleason 2 Gleason 3 Gleason 4 Gleason 5

∗

∗ ∗

(-Gleason 4)∗

(e)

Figure 6: Fractal analysis assessment of argyrophilic nucleolar organizer regions (AgNORs). Benign nodular hyperplasia (BNH), atypical
adenomatous hyperplasia (AAH), and Gleason pattern 2 have significantly higher fractal dimensions (FDs) compared to Gleason patterns
3–5 (a). Skeleton reductions of the AgNORs could show significant differences only between Gleason patterns 2-3 group andGleason patterns
4-5 group (b). Frequency distribution of FDs reveals global maxim values for the interval of 1.05–1.09 (c), and after plotting the average values
for this narrowed interval, the filtered data revealed significant differences between BNH, AAH, Gleason patterns 2–4 group, and Gleason
pattern 5 group ((d)-(e)). Bars represent standard deviation ((a), (b)) or standard errors of themeans (e).∗ represents significance on corrected
ANOVA testing.
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we have next performed a fractal analysis of the skeleton-
filter images extracted from the repartition of the nucleolar
organizers. Gleason 2 and 3 patterns (1.765 ± 0.018; 1.1761 ±
0.012) were lower than Gleason 4-5 patterns (1.792 ± 0.020;
1.1799 ± 0.032) (𝐹(5, 54) = 4.552, 𝑃 < 0.01; with post
hoc comparisons (𝑃 < 0.05)) (Figure 6(b)). Overall, car-
cinoma cases could not be differentiated fromAAHandBNH
utilizing this classifier only.

In a last attempt to evaluate the ruggedness of the
silhouettes of nucleolar organizers, we have plotted the
frequency distribution of the averaged fractal dimensions
of the AgNORs from the individual high magnification
images and collages (Figure 6(c)). The total data revealed no
global significant differences between the seven pathological
entities considered on ANOVA testing for individual images
(𝐹(5, 1456) = 2.214, 𝑃 = 0.051) and, respectively, for com-
posites (𝐹(5, 1435) = 1.388, 𝑃 = 0.227). Observing that
the relative peaks of the distributions were concentrated in
the 1.05–1.09 FD interval values, we have next analyzed only
the data coming from this narrowed interval (Figures 6(d)
and 6(e)). Narrowed data from composed images did not
exhibit a great deal of differences (𝐹(5, 3395) = 4.443, 𝑃 =
0.001), with post hoc comparisons revealing a significant
difference only between Gleason 4 and AAH (𝑃 < 0.001)
(data not shown). Narrowed data from individual images,
however, revealed not only a global difference between the
trends (𝐹(5, 3184) = 19.832, 𝑃 < 0.001), but also significant
differences between all Gleason stages and BNH, although
AAH could be clearly differentiated only from Gleason 5
cases (post hoc comparisons, 𝑃 ≤ 0.05) (Figures 6(d) and
6(e)).

4. Discussion

Morphological features of AgNOR, as depicted by silver
impregnation techniques, have been utilized to compare can-
cers with normal structures and nonmalignant neoplasia [29,
30]. For prostate cancer, besides algorithms that attempted
to recognize glandular morphology in order to identify
malignant prostate tissue areas, AgNOR silver impregnation
has been utilized in various studies based on manual, semi-
automatic, or fully automatic scoring methods, taking into
account the number, aggregation, and size of argyrophilic
dots in relation to clinicopathological prognostic parameters
for prostatic carcinoma [13–16].

Our study was performed on a group of 39 cases that
included BNH, AAH, and adenocarcinomas of the prostate,
for which we have analyzed the number, roundness factor,
area, and fractal dimension of individual AgNOR signals or
of their skeleton reductions. In different other studies, the
number of AgNOR signals provided significant [14, 15, 21, 29]
or insignificant [30, 31] differences for malignant lesions of
the prostate, with significantly higher values for high Gleason
scores [14, 15, 21]. Compared to the direct counting ofAgNOR
signals, morphometric analysis allows a more objective and
reproducible quantification on histological sections [17, 32].

In our study, AgNOR direct counting and averaging per
nucleus of epithelial cells revealed no significant difference
between the pathologies.This difference from studies finding

to some extent differences between pathologies could be due
to different issues, namely, the different histological tech-
niques and assessment protocols. First, we have implemented
here a standardizedAgNOR staining, as recommended by the
“International Committee on AgNORQuantitation” [12]. On
the other hand, in the present study, we have also performed
a selective count only in the nuclei of luminal glandular
cells, based on combined silver staining and basal cells
immunohistochemistry. Moreover, morphometric analysis is
recommended and is based on a common fixed threshold
applied to all images to be segmented, resulting in more
objective and constant results [33, 34].

Further Euclidian classifiers have been utilized for the
differentiation and characterization of malignant lesions of
the prostate based on AgNORs analyses, such as their average
diameter, total area, or percentage area from the total area of
the nucleus [17, 29]. In our study, the analysis of roundness
(diameters ratio) and the areas of the AgNORs averaged for
large composite images revealed significantly lower values in
carcinomas compared to benign and atypical lesions. Both
roundness and areas showed no differences for different
Gleason scores, issues that are also supported by other pub-
lished data [29]. In other studies, the analysis of the AgNOR
diameters and areas, respectively, indicated significant differ-
ences both between benign, atypical, andmalignant prostatic
lesions and for different Gleason scores, clinical stage, and
ploidy of the tumors [17]. All the morphological analysis
was done here on all the cells present in the captured
images, thus without the need of discriminating glands from
parenchyma, greatly increasing the simplicity of the approach
and eliminating any user interference thatmight be necessary
to reliably select epithelial tissue from stroma. Also, by
utilizing high resolution large composite images, this gave a
much more homogenous and reliable approximation of the
pathology compared to single high resolution images that
might focus on areas with a lower morphological variation.

A relative recent published paper based on utilizing
complex in-house software for automatic grading of prostate
carcinomas reported correct classification rates of over 90%
after employing fractal analysis of the intensity variations and
texture complexity of theROIs [35]. In our studywe have both
characterized the averaged individual FDs of AgNOR silhou-
ettes and extracted the FDs of skeletonized AgNOR regions
which reflected the general glandular disposition of the dots.
To our knowledge, this is the first study to perform fractal
analysis of silver impregnated nucleoli in prostate pathology
[28, 36–38]. Fractal analysis of AgNOR silhouettes regularity
not only revealed significant lower values for global cancer
images compared to AAH and BNH images, but was also able
to differentiate between Gleason 2 group and Gleason 3–5
group of carcinomas. Coupled with the fact that roundness
alone could separate cancer samples from AAH and BNH,
this leads to an increased selectivity for the combined use of
the two denominators. Although this precise methodology
has never been employed in the study of nucleolar organizers
for prostate cancer, the increasing size and regularity of
the nucleoli are a long-standing subjective observation in
these tumors [4, 5, 39]. Moreover, a great variability exists
regarding the association of large, multiple, and relatively
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round nucleoli in advanced Gleason stages of prostatic acinar
adenocarcinoma [5, 36]. Our data sheds more light on the
global morphological changes of nucleoli during prostate
cancer progression, revealing that in fact the global tendency
of nucleoli is to increase in size and to become less round
and with a decreasing complexity of their boundaries, thus
coining that the better description of their appearance would
be of smoother ellipsoids or ovals rather than circles. Regard-
ing the glandular repartition of the AgNORs, FD of skeleton
images revealed significant lower values for carcinomas with
Gleason score of 2-3 compared with those with a score of 4-5,
but without being able to differentiate global malignant and
hyperplastic lesions. However, if we looked again at averaged
ROIs areas, FDs and skeleton FDs taken together, the added
value is that we can separate almost all pathological states
except BNH from AAH and Gleason 4 from 5.

Lastly, after plotting the frequency distribution of the
FDs for different pathologies and observing that most of
the values are in fact gathered in the interval of 1.05–1.09,
we have compared the frequency distribution of FDs only
for this narrow interval for all pathologies. Surprisingly,
this could differentiate between Gleason 2, 3, and 4 group
and Gleason 5, AAH, and BNH group. Most probably this
limitation of separating Gleason 5 from AAH and BNH lies
somehow in the influence of stromal cells which we have not
separated in our algorithm; altogether averaged ROIs areas,
FDs, and frequencies of FDs should allow an almost complete
separation of each Gleason score from AAH and BNH.

There have been attempts to develop both texture-based
[40–42] and fractal-based [35, 43] image analysis algorithms
to automate the diagnosis of prostatic carcinoma. Most of
these studies were based on color and texture morphological
features of glandular and nuclear structures to characterize
tissues. The introduction of neural networks and digital
mapping led to increased rates of consensus for grading
of prostatic carcinoma and achieving good quantification
results [44–47]. In the direction of automated image analysis,
AgNOR staining may be of interest and may contribute as an
implementable parameter among other classifiers in existing
image diagnostic software packages.

5. Conclusions

Based on a relatively simple staining technique, the present
study presents the combined analysis of AgNORs roundness,
averaged FDs, and FDs’ frequency analysis as a suite of
denominators able to differentiate between malignant and
nonmalignant lesions of the prostate, as well as between
different Gleason scores. Together with existing classifiers
already in use such as nuclear, glandular, stromal, and other
architectural features, these present data might contribute to
faster and more reliable objective additive diagnosis tools
of prostatic carcinoma and decreased reports of uncertain
histological lesions, as an essential aid for pathologists.
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