
Published online 12 May 2015 Nucleic Acids Research, 2015, Vol. 43, Web Server issue W401–W407
doi: 10.1093/nar/gkv485

The TOPCONS web server for consensus prediction of
membrane protein topology and signal peptides
Konstantinos D. Tsirigos1,2,†, Christoph Peters1,2,†, Nanjiang Shu1,2,3,†, Lukas Käll1,2 and
Arne Elofsson1,2,*

1Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden, 2Science for Life
Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden and 3Bioinformatics Infrastructure for Life
Sciences (BILS), Stockholm University, Sweden

Received February 07, 2015; Revised April 27, 2015; Accepted May 02, 2015

ABSTRACT

TOPCONS (http://topcons.net/) is a widely used web
server for consensus prediction of membrane pro-
tein topology. We hereby present a major update
to the server, with some substantial improvements,
including the following: (i) TOPCONS can now ef-
ficiently separate signal peptides from transmem-
brane regions. (ii) The server can now differentiate
more successfully between globular and membrane
proteins. (iii) The server now is even slightly faster,
although a much larger database is used to generate
the multiple sequence alignments. For most proteins,
the final prediction is produced in a matter of sec-
onds. (iv) The user-friendly interface is retained, with
the additional feature of submitting batch files and
accessing the server programmatically using stan-
dard interfaces, making it thus ideal for proteome-
wide analyses. Indicatively, the user can now scan
the entire human proteome in a few days. (v) For pro-
teins with homology to a known 3D structure, the
homology-inferred topology is also displayed. (vi) Fi-
nally, the combination of methods currently imple-
mented achieves an overall increase in performance
by 4% as compared to the currently available best-
scoring methods and TOPCONS is the only method
that can identify signal peptides and still maintain a
state-of-the-art performance in topology predictions.

INTRODUCTION

�-helical transmembrane (TM) proteins constitute the most
important and well-studied class of membrane proteins.
In numbers, they add up to 20–30% of all proteins en-
coded in a typical genome (1,2). They are involved in cel-
lular recognition, signal transduction and transport of sub-
stances through membranes. In addition, membrane pro-

teins facilitate the regulation of the membrane’s lipid com-
position and the formation and maintenance of the shape
of membranes and cells (3). They pose a great pharmaceu-
tical interest, since they are targets for a large fraction of all
commercial drugs (4–6). The structural and physiochemi-
cal properties of these proteins create inherent difficulties in
crystallizing and obtaining good quality 3D structures. This
leads to their underrepresentation (∼1–2% of all available
structures) in the PDB database (7) and dictates the need for
developing computational algorithms and tools that will al-
low for a reliable and fast prediction of their structural and
functional features.

A fundamental aspect of the structure of integral pro-
teins is their membrane topology, i.e. the number of TM
segments, their position in the protein sequence and their
orientation in the membrane. Along these lines, several al-
gorithms for the prediction of �-helical TM protein topol-
ogy exist, either as single-sequence-based methods (8–16) or
with the inclusion of homologous sequences in the predic-
tion process (17–22). In recent years, consensus algorithms
that combine the outputs from different predictors have also
been developed (23–26). The best methods currently reach
an upper limit in their performance of around 70–80% in
large data sets (27), but clearly one major problem remains:
the separation of signal peptides (SPs) and N-terminal TM
regions. This makes proteome-wide predictions of TM pro-
teins less accurate than desirable.

The similarity between signal peptides and N-terminal
TM regions is a major challenge for improved topology pre-
dictions; because of their similar hydrophobic composition,
the cross-prediction of SPs as TM helices and vice versa is
quite common (28). Given that, for example, in the human
genome, ∼5% of the proteins are predicted to have a signal
peptide, it becomes clear that in proteomic analyses it is cru-
cial not to confuse cleaved signal peptides and TM regions
(29). Predictors that contain specialized sub-models for sig-
nal peptides and TM segments (14,15,18,21,22,30) are thus
more useful for proteome-wide analyses. Moreover, the lat-
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Figure 1. The TOPCONS workflow: four of the topology predictors (OCTOPUS, PolyPhobius, SPOCTOPUS and SCAMPI) use an MSA-derived se-
quence profile as input, whereas the fifth method (Philius) only requires the protein sequence. The topology predictions are used to construct a topology
profile, which is fed into the TOPCONS Hidden Markov Model and the final consensus topology is created.

est version of the most widely used prediction method for
detecting signal peptides, SignalP (31), shows an improved
performance in discrimination between signal peptides and
TM regions; however it cannot predict the topology of TM
proteins.

Here, we present an update to the TOPCONS consensus
prediction method and its server implementation, including
topology prediction methods that can predict signal pep-
tides as well (Philius (15), PolyPhobius (21) and SPOCTO-
PUS (22), along with OCTOPUS (20) and SCAMPI (9)).
This combination of methods results in improved consen-
sus predictions. Moreover, we provide an efficient way for
discriminating TM from non-TM proteins, as well as signal

peptides from TM regions. Finally, with the increase in the
overall speed, it is now possible to scan an entire proteome
in few hours/days (depending on its size and the server
load), even with the inclusion of homologous sequences in
the prediction process.

MATERIALS AND METHODS

Data sets used in this study

To benchmark the new version of TOPCONS, we used
four different data sets, namely TM-proteins only (‘TM-
set’), TM-proteins that also have a cleavable signal pep-
tide in their N-terminal (‘SP+TM-set’), globular proteins
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(‘Globular-set’) and secreted proteins that only have a sig-
nal peptide and no membrane regions (‘Globular+SP-set’).
The TM proteins were initially retrieved from the PDBTM
database (32) and mapped to their respective UniProt (33)
sequences using the SIFTS (34) database. For topology as-
signment, we combined different sources (PDBTM, OPM
(35), TOPDB (36) and UniProt), along with manual inspec-
tion in some spurious cases. The other three data sets origi-
nated from the TOPDB database and the SignalP4 method.
In order to have a fair evaluation, we performed a 30% ho-
mology reduction using BLASTclust (37) on all proteins to-
gether and were left with 313 proteins in the ‘TM-set’, 752 in
the ‘SP+TM’, 3597 in the ‘Globular’ and 2194 in the ‘Glob-
ular+SP’ set. In this way, a more representative view of a
proteome can be studied. All annotated data sets are avail-
able for download from the website.

The TOPCONS algorithm

The core algorithm of TOPCONS remains the same as the
earlier implementation, with the addition of a signal peptide
module (see Figure 1). The topology predictions from the
five sub-methods used (OCTOPUS, Philius, PolyPhobius,
SCAMPI and SPOCTOPUS) are combined into a topol-
ogy profile, where each residue is represented by four val-
ues, corresponding to the fraction of methods that predict
that particular residue to belong to a signal peptide (S), a
membrane region (M) or the membrane-inside and outside
(i and o, respectively). A dynamic programming algorithm,
represented as a Hidden Markov Model, that has an al-
phabet consisting of the characters ‘S’, ‘M’, ‘i’ and ‘o’ pro-
cesses the resulting profile. The final topology corresponds
to the highest scoring state path through this model using a
Viterbi-like algorithm. In each state, the emission score for
the structural category modeled by that state (S, i, o or M) is
equal to 1.0 and for all other structural categories it equals
to 0.0. All transition probabilities are equal to 1.0. Thus, the
final prediction equals to the state path with the highest ge-
ometric mean score with respect to the topology profile and
the grammar of the model, and no training of the model is
necessary. In addition, the biological hydrophobicity scale
(38) is used to predict the free energy of membrane insertion
for a window of 21 amino acids centered on each position
in the sequence.

Shortening the process time

Traditionally, the best performance in membrane protein
topology predictions is achieved by using a profile. The
best profiles are obtained by searching a large database,
such as UniRef (39). However, given the rapid increase in
database sizes, such a search often takes several minutes us-
ing a single computer. This is not optimal for the experi-
ence of a web server, where the user aims for a prompt re-
sponse. In the previous TOPCONS configuration, using a
smaller database consisting only of membrane proteins cir-
cumvented this problem. This did not significantly affect the
predictions of topologies in membrane proteins. However,
many non-membrane proteins had very few related pro-
tein hits in a PSI-BLAST (40) query, and thus some mem-
brane regions were erroneously predicted in them. In the

Figure 2. Distribution of time (in seconds) required for processing the pro-
teins in all data sets we used in the benchmark. The increase in speed is
substantial, since almost 80% of all proteins in total took less than 30 sec-
onds.

new version of TOPCONS, we have switched to a two-step
pipeline: first we scan the query sequence(s) against Pfam
(41) and then all full-length sequences are used to create
a query-specific database which is further scanned for ho-
mologous proteins. Because the domain database and the
number of hits found are both much less than all proteins
in UniProt or even UniRef, this search is much faster. More-
over, since almost all proteins have domain hits, the result-
ing profiles are virtually identical to the ones found when
searching the entire database. In this way, we combine both
the speed in the earlier version of TOPCONS using a small
membrane protein-containing database with the ability to
separate membrane and non-membrane proteins obtained
when using a much larger database. If no hits can be re-
trieved with the afore-mentioned procedure, we scan the
CDD database (42) using the ‘hmmscan’ program from the
HMMER3 suite (43). This step is more time consuming, but
we anticipate it will not occur very frequently. In the bench-
mark data sets we used, there were only 350 proteins (∼5%
of the total proteins) that had no hits and we had to use
the fallback to the CDD alternative. For an overview of the
speed of processing queries see Figure 2. The vast amount
of proteins that we tested were processed in less than half
a minute, whereas only around 6% of them required more
than a minute to output the final prediction. The median
time to process the queries in our data sets on a 4-core ma-
chine was ∼11 seconds. However, the computational times
might occasionally be longer due to heavy demand on the
server.

RESULTS

Benchmark results

Membrane protein topology predictions. In Figure 3, the
fractions of correctly predicted membrane protein topolo-
gies for several methods are shown. In agreement with ear-
lier studies, the best methods predict about 80% of the
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Figure 3. Comparison of the topology prediction accuracy of the current TOPCONS implementation versus other topology prediction methods. Note
that the performance drops for all predictors that predict both signal peptides and TM regions as opposed to methods specifically designed to predict the
topology of membrane proteins.

topologies correctly. Further, it is clear that modern meth-
ods which use multiple sequence alignments are superior
to older methods and methods that do not use multiple se-
quence alignments. However, such methods (colored in dark
blue in Figure 3), including the older version of TOPCONS,
are not designed for proteome-wide analyses because they
are mainly focused on correctly predicting the topology of
TM proteins. Further, they cannot differentiate between a
signal peptide and an N-terminal TM region, thus the num-
ber of observed cross-predictions is extremely high. We can
conclude that the current implementation of TOPCONS
shows the best performance for topology predictions and is
the only among the best performing methods that also pre-
dicts signal peptides. For other predictors, when we look at
their performance, we note that methods that are designed
to predict both the presence of a signal peptide and the
topology of membrane proteins do not perform as well as
methods that do not. For instance, MEMSAT-SVM only
predicts 67% of the topologies correctly (TM-set), whereas
the related method MEMSAT3 achieves a performance of
74%.

In Table 1, we show the performance on the four different
sets, including only methods that can be actually evaluated
on all of them (i.e. the methods that can predict signal pep-
tides). From the table it is clear that the new implementation
of TOPCONS shows an important improvement in topol-
ogy predictions for membrane proteins: if we only focus on
membrane proteins with no signal peptide, TOPCONS’ per-
formance is 9% greater than SPOCTOPUS which ranks sec-
ond. If we further combine the results for both the ‘TM’ and
the ‘SP+TM’ sets, we see that the average performance for
TOPCONS is 80%, while, the second best, SPOCTOPUS,
reaches 75% (5% increase in correct topology prediction).

Whole-proteome scanning. In Table 1, the performance of
topology prediction methods that also predict the presence
of signal peptides and therefore are more useful for scanning
an entire proteome is listed. Using all four sets, we can es-
timate the performance of a proteome-wide scan, since all
types of proteins are covered. It should be noted that, in
a genome, most encoded proteins are globular and there-
fore it might be more important to have a high specificity
for these proteins. All in all, TOPCONS reaches an ac-
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Table 1. Performance of several topology prediction methods, appropriate for whole-proteome scanning, along with the current TOPCONS
implementation

Method MSA TM SP+TM Globular Globular+SP Overall

TOPCONS + 80% 80% 97% 91% 87%
MEMSAT-SVM + 67% 52% 88% 0.0% 52%
Philius − 70% 75% 94% 94% 83%
Phobius − 55% 83% 95% 94% 82%
PolyPhobius + 68% 64% 95% 85% 78%
SPOCTOPUS + 71% 78% 78% 79% 76%

For the TM-set, the correct topology should have the correct number of TM regions at approximately correct locations (overlap of at least five residues)
and the correct location of the N and C-termini; for the SP+TM-set we also require the prediction of a signal peptide in the N-terminal of the protein
sequence; for the Globular-set we require that no membrane regions and no signal peptides are predicted in order for a prediction to be considered as
correct; finally, for the Globular+SP set, the predictor should only predict the presence of a signal peptide in the sequence.

Table 2. Confusion matrix for all type of errors that TOPCONS makes

Data set Correct prediction Wrong topology
TM → SP or SP →

TM
TM → non-TM or

non-TM → TM
non-TM → SP or SP →

non-TM

TM 80% 16% 2.6% 0.9% –
SP+TM 80% 7.0% 13% – 0.0%
Globular+SP 91% – 7.2% – 1.8%
Globular 97% – – 1.5% 1.5%

Correct prediction: requires that both the classification and the topology of the given protein are correct; Wrong topology: the classification is correct
but the overall topology is not (e.g. extra predicted TM helices in non-membrane regions); TM → SP or SP → TM: the N-terminal TM helix is wrongly
assigned as a signal peptide or vice versa; TM → non-TM: a TM protein is classified as non-TM protein or vice versa; SP → non-TM: a protein with a
signal peptide or a protein with a signal peptide and transmembrane region(s) is classified as non-TM protein or vice versa.

Table 3. Confusion matrix for classification of proteins in each of the data sets using the TOPCONS algorithm

Data set TM SP+TM Globular+SP Globular

TM 95% 3.0% 1.0% 1.0%
SP+TM 12% 86% 2.0% 0.0%
Globular+SP 1.0% 6.0% 91% 2.0%
Globular 1.0% 0.0% 2.0% 97%

Each row shows the number of proteins in one class that is categorized to each of the four classes (transmembrane, signal peptide and transmembrane,
only signal peptide and globular). It can be seen that the vast majority of wrong classifications are between transmembrane regions and signal peptides.

curacy of 87%, followed by Philius and Phobius with 83
and 82%, respectively. TOPCONS is superior to all other
methods in the ‘TM’ and ‘Globular’ sets and has close to
the best performance in the ‘SP+TM’ set. Philius and Pho-
bius perform better in the data set that only contains sig-
nal peptides (94% on the ‘Globular+SP-set’), while TOP-
CONS correctly identifies 91% of the proteins in this case.
In comparison to the other methods, more signal peptides
are missed and more proteins contain erroneously predicted
TM regions (see Table 2 and Supplementary Table S1 for
the other methods used in the benchmark). Interestingly, a
similar lower performance on the ‘Globular+SP-set’ can be
seen for SPOCTOPUS, MEMSAT-SVM and PolyPhobius,
indicating that possibly the identification of signal peptide
cleavage sites is superior in methods not using multiple se-
quence alignments. Surprisingly enough, MEMSAT-SVM
in this set cannot predict the presence of a signal peptide
without, at the same time, predicting one or more TM he-
lices in the protein sequence. In Table 3 (and Supplementary
Table S2), the performance of TOPCONS (and the other
methods) regarding protein classification in the four differ-
ent categories is shown. We observe that TOPCONS is very
accurate in correctly identifying a non-membrane protein
(97%), however, it is clear that the difficulty in differenti-

ating a signal peptide from an N-terminal TM region still
holds; in 12% of the proteins in the ‘SP+TM’ set, the signal
peptide is misclassified as TM helix. Further, in 4% of the
proteins in the ‘TM-set’, we obtain a falsely predicted signal
peptide, whereas in 7% of the proteins that have only a sig-
nal peptide (‘Globular+SP-set’), extra TM regions are pre-
dicted in the non-membrane regions. Philius, which is the
only of the other methods that is relatively better in classi-
fication than TOPCONS (with the exception of ‘Globular-
set’), has the drawback that it makes a lot of wrong topology
predictions (it mostly predicts inverted topologies), which is
a crucial fact in membrane protein topology prediction.

The TOPCONS web server

In the updated version of the TOPCONS web server (http://
topcons.net/), we have maintained the already existing user-
friendly environment. Now, the input to the server can ei-
ther be one FASTA-formatted amino acid sequence or a
file with multiple sequences that will be processed in due
time. For cases of proteins with a determined 3D-structure,
we also provide the topology based on the respective PDB
entry (topology information as included in PDBTM (32)
database). Further, if the query protein is found to bear a
significant similarity to a protein with a 3D-structure, then,

http://topcons.net/
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Figure 4. Example output from the TOPCONS web server, based on the Bacteriorhodopsin sequence from Halobacterium sp. (UniProt-ID:
BACR HALS4). Topology predicted by TOPCONS, the individual methods and predicted �G values across the sequence.

based on their pairwise alignment, we assign the N-terminal
and TM segment boundaries on it. This should be useful for
analysis of potential variation of topologies within a protein
family.

An example output of the web server is shown in Fig-
ure 4. The results are presented to the user graphically on
the screen but can also be downloaded in plain-text format
and/or sent by email if provided. Given the increase in speed
process of the new TOPCONS version and the addition of
an efficient queuing system, it is now possible to submit even
entire proteomes to the server. For instance, scanning the
entire human proteome now takes a few days on a dedicated
single 4-core machine. Should demands rise in the future,
we hope to be able to attract funding to increase the hard-
ware capacity. To facilitate for proteome-wide assignments,
we have also developed a standard WSDL interface for pro-
grammatic use of the web-server.

AVAILABILITY

http://topcons.net/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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