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Review

8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) 
and 8-hydroxy-2′-deoxyguanosine (8-OHdG) 
as a Cause of Autoimmune Thyroid Diseases 
(AITD) During Pregnancy?
Krzysztof M. Halczuk, Karolina Boguszewska, Sandra K. Urbaniak, Michał Szewczuk, and 
Bolesław T. Karwowski*

DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland

The thyroid is not necessary to sustain life. However, thyroid hormones (TH) strongly affect the human 
body. Functioning of the thyroid gland affects the reproductive capabilities of women and men, as well as 
fertilization and maintaining a pregnancy. For the synthesis of TH, hydrogen peroxide (H2O2) is necessary. 
From the chemical point of view, TH is a reactive oxygen species (ROS) and serves as an oxidative stress 
(OS) promoter. H2O2 concentration in the thyroid gland is much higher than in other tissues. Therefore, 
the thyroid is highly exposed to OS. 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-
2′-deoxyguanosine (8-OHdG) are DNA lesions resulting from ROS action onto guanine moiety. Due to 
their abundance, they are recognized as biomarkers of OS. As thyroid function is correlated with the level 
of OS, 8-oxodG and 8-OHdG has been taken under consideration. Studies correlate the oxidative DNA 
damage with various thyroid diseases (TD) such as Hashimoto’s thyroiditis (HT), Graves’ disease (GD), 
and thyroid cancer. Human sexual function and fertility are also affected by OS and TD. Hypothyroidism 
and hyperthyroidism diagnosed in pregnant women have a negative effect on pregnancy as it may increase 
the risk of miscarriage or fetus mortality. In the case of TD in the mother, fetal health is also at risk – 
neurodevelopment and cognitive function of the child may be impaired in its future life. This review 
presents thyroid function in the context of TD during pregnancy. The authors introduce OS and describe 
oxidative DNA lesions as a crucial marker of thyroid pathologies.
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INTRODUCTION

Over the past decade, increase in the incidence of 
TD, including thyroid cancer, has been noted [1]. TD 
along with gestational diabetes are the most frequently 
diagnosed endocrinopathies during pregnancy [2]. World 
Health Organization’s research (1994-2006) estimated 
that about 31% of the world population has insufficient 
iodine (I-) intake [3]. Iodine deficiency (ID) is a common 
problem in many regions of the world where it concerns a 
significant part of the population (30% in Southeast Asia, 
42% in Africa, 47.2% in the East Mediterranean region 
and 52% in Europe) [4]. The situation is different in the 
US. The estimated average I- intake (138-353 mcg/day) 
fulfills demand for I- in the US population [5]. Insufficient 
I- level causes e.g. hypothyroidism – a condition in which 
not enough TH is produced for maintaining optimal body 
function [6]. The incidence of diagnosed hypothyroidism 
reaches 5.3% in the European population, while in the US 
it is 0.3% for clinical hypothyroidism and about 4% for 
subclinical form [7,8]. Incidence of overt hyperthyroidism 
in the US and Europe is 0.5% and 0.7%, respectively. 
However, data show that 1 in 20 people in US, including 
1 in 8 women, will develop TD [9].

I- is used by the thyroid to synthesize TH. Its 
deficiency may result in the hypothyroidism and negative 
effects on reproductive functions, pregnancy, lactation, 
and may impact the fetus. The American Thyroid 
Association (ATA), American Endocrine Society (AES), 
and European Thyroid Association (ETA) recommended 
thyrotropin (TSH) ranges for pregnant women (Table 
1). The guidelines are similar for the US and Europe. 
However, clinical trials from China and India show that 
ethnicity has an impact on reference values, which are 
higher than Western guidelines [10-13].

In the case of maternal TD, developmental disorders 
of the nervous system in the child may occur and cognitive 
functions may be weakened (e.g. congenital ID syndrome) 
during the offspring’s life. In addition, there is a higher 
risk of miscarriage, stillbirth, mortality, and impaired 
somatic development [14,15]. The negative effects of TD 
on the fetus have been confirmed in China in over 1000 
pregnant women and their children [16]. The study shows 
that maternal hypo- or hyperthyroxinemia increases risk 
of fetal loss, congenital circulation system malformations, 
poor vision development, and neurodevelopmental delay. 
Therefore, it is important to control I- levels, especially 
in pregnant and lactating women [17]. Table 2 presents 
recommended I- intake for US and Europe [18,19].

TD are divided according to its underactive and 
overactive physiological status [20]. The two most 
common autoimmune thyroid diseases (AITD) are 
HT, a thyroid-degrading inflammation associated with 
hypothyroidism, and GD, associated with hyperthyroidism 

and gland enlargement [21]. AITD are associated with an 
increase of OS level. 8-oxodG and 8-OHdG are markers 
of OS due to its frequent formation. Therefore, they are 
worth considering as diagnostic markers in the field of 
TD [22-24].

Proper thyroid function is also important for female 
and male fertility. In women, hypothyroidism causes 
changes in menstrual cycle length and bleeding, reduces 
the likelihood of conception, and negatively affects 
the miscarriage rate [25]. The topic of female fertility 
is discussed further in the text. As for men, AITD can 
cause a decrease in semen quality, sexual behavior, 
and impotence disorders. Studies indicate that sperm 
density, morphology, and motility were unsatisfactory 
in patients with hyperthyroidism [26]. Hyperthyroidism 
is also associated with a decrease in testosterone/
estradiol ratio which contributes to libido disorders [27]. 
Moreover, hypothyroidism appears to be correlated with 
fewer spermatozoa and their reduced motility, which 
can significantly affect fertility as the female body 
may even reject impaired semen [25,28-30]. AITD are 
also associated with male sexual dysfunctions – sexual 
coldness, erectile dysfunction, or premature ejaculation. 
According to a study from 2008, 84% of patients 
diagnosed with hypothyroidism have problems with 
sexual function [25,26,31].

Clearly, poor quality of sperm may affect the success 
of conception and possibility of pregnancy. Furthermore, 
it is worth considering that DNA damage such as 8-oxodG 
(which form more often in AITD) may be present also in 
sperm’s genetic material. It impairs the quality of sperm 
and carries the potential of passing on mutated DNA onto 
a child.

In the first part of this review, we present the thyroid 
gland, its hormones and autoimmune diseases. Next, 
we describe alterations in thyroid functions during 
pregnancy and its influence on fertility. The second part 
focuses on introducing the concept of OS, oxidative DNA 
damage and its correlation with TH in order to discuss 
the influence of OS biomarkers (8-oxodG and 8-OHdG) 
on the TD in pregnant women and to discuss other 
environmental factors that may impact rate of repair of 
those lesions in DNA.

THYROID AND ITS HORMONES

Thyroid Gland Development
The thyroid is the earliest developing gland in the 

fetus. It appears as an epithelial proliferation in the floor of 
the pharynx at the base of the tongue in the embryo (weeks 
3-4 of gestation) [32]. Next, it migrates to the base of the 
neck. During migration, the thyroid remains connected to 
the tongue by a narrow canal (thyroglossal duct). At the 



Halczuk et al.: 8-oxodG and 8-OHdG as a cause of AITD during pregnancy? 503

end of week 5, the thyroglossal duct degenerates. Over 
the following 2 weeks the detached thyroid reaches its 
final location. Although not much is known about the 
pathways of the proper thyroid development, defects at 
this stage lead to complex health problems (e.g. thyroid 
dysgenesis or reduced TH sensitivity) [32]. The thyroid 
gland is not crucial for survival, but its absence or 
hypothyroidism during fetal and neonatal life can cause 
severe intellectual disabilities and dwarfism in the child 
[33].

Thyroid Hormones
TH affect functioning of the reproductive system 

and conception in humans – especially in women. TH 
modulate the action of other hormones such as estrogen, 
prolactin, and gonadotrophin-releasing hormone, 
which impact women’s fertility and the possibility of 
fertilization or termination of pregnancy [34]. TH are 
small molecules formed by the linkage of two threonine 
molecules on the surface of thyroglobulin (TG). After 
iodination they obtain tri- or tetra-iodo versions of the 
hormone [35]. Triiodothyronine (T3) and thyroxine (T4) 
regulate metabolism and act through receptors located in 

the placenta, uterus, and ovaries. Approximate secretion 
of TH is: T4 – 80 mcg/day, T3 – 4 mcg/day, rT3 – 2 mcg/
day [33].

TG, which is crucial for the synthesis of TH, accounts 
for approximately 50% of the protein content of the 
thyroid gland and contains up to 1% of I- [36]. Moreover, 
it is a storage of the inactive forms of TH and I- within 
the follicular lumen of a thyrocyte [37]. About 70% of 
I- binds to Tyr residues in TG which results in inactive 
precursors formation (monoiodothyronine (MIT) and 
diiodothyronine (DIT)) (Figure 1) [38]. MIT and DIT are 
subsequently coupled to form T3 [39]. Each TG molecule 
forms approximately 10 molecules of TH.

T4 is deiodinated by iodothyronine deiodinases type 
1-3 (DIO1-DIO3) [40-42]. DIO3, present in placenta and 
neurons, deactivates TH through conversion of T4 to 
reverse triiodothyronine (rT3) and T3 to diiodothyronine 
(T2) [43,44]. Secretion of TH is regulated by TSH, which 
is regulated by thyrotropin-releasing hormone (TRH) 
[45]. It binds to its receptor (TRHR) at the basolateral 
membrane of the follicular cells, which results in 
stimulation of cell growth and TH synthesis [38]. RT3 
is associated with elevated activity of DIO3 or impaired 
detoxication mechanisms. Increased level of rT3 occurs 

Table 1. Reference values for TSH level in pregnant women depending on the trimester.
Trimester ATAa [10] ETAb [11] China [12] India [13]
I < 2.50 mU/L < 2.50 mU/L < 4.51 mIU/L < 5.00 μiu/mL
II < 3.00 mU/L < 3.00 mU/L < 4.50 mIU/L < 5.78 μiu/mL
III < 3.00 mU/L < 3.50 mU/L < 4.54 mIU/L < 5.70 μiu/mL

aAmerican Thyroid Association, bEuropean Thyroid Association

Table 2. I- intake recommendation for US and Europe.

Age US (mcg/day) Europe (mcg/day)
0-6 months 110 (AIa) -
7-11 months - 70 (AI)
7-12 months 130 (AI) -
1-3 years 90 (RDAb) 90 (AI)
4-6 years - 90 (AI)
4-8 years 90 (RDA) -
7-10 years - 90 (AI)
9-13 years 120 (RDA) -
11-14 years - 120 (AI)
13-18 years 150 (RDA) -
15-17 years - 130 (AI)
Adult (18+ years) 150 (RDA) 150 (AI)
Pregnancy (all ages) 220 (RDA) 200 (AI)
Lactation (all ages) 290 (RDA) 200 (AI)

aadequate intake, brecommended dietary allowances
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ng/dL). The fetus needs proper level of TH in order to 
avoid neurodevelopmental disorders which arise due to 
maternal hypothyroidism. One of the factors limiting 
the synthesis of TH is I- level, which is also essential for 
healthy neurodevelopment [51]. For proper I- supply, the 
T4:T3 ratio in TG is 7:1 [36]. The optimal I- intake for 
adults is 150 mcg/day – it ensures proper TH synthesis 
(Table 2) [52].

Thyroid Diseases
There are three major groups of TD [7,53]. Two of 

them are associated with hyper-/hypothyroidism and the 
third group is parathyroid disorders. AITD are mostly 
defined by HT and GD, especially due to their connections 
to genetic alterations [54]. AITD are separated into 
two clinical categories: (1) if goiters are present, it 
is understood as HT, (2) if the thyroid is atrophic, and 
does not present goiters, it is atrophic thyroiditis and 
also refers to GD [55]. Moreover, postpartum thyroiditis 
may be diagnosed within the first year after giving birth 

in e.g. euthyroid sick syndrome, heart failures, and liver 
cirrhosis [44,46].

Most TH are bound to thyroxine-binding globulin 
(TBG, 70%), thyroxin-binding prealbumin, (TBPA, 
10%) and thyroxine-binding albumin (TBA, 15%), 
which prevent their urinary loss [47]. Hormones bind 
to intracellular thyroid hormone receptors (TR-α1, TR-
α2, TR-β1, and TR-β2), modulate DNA transcription, 
and interact with enzymes within the cell membrane 
or cytoplasm [48]. To some extent, the thyroid gland 
produces T3 directly. In the follicular lumen, Tyr residues 
become iodinated, which requires H2O2. At high TSH 
levels, the TRHR couples Gq/11 protein, activating the 
phospholipase C-dependent inositol phosphate Ca2+/
diacylglycerol pathway. It causes overgeneration of H2O2 
and subsequent TG iodination [38,49].

The fetal hypothalamus and pituitary start to secrete 
TRH and TSH at week 11. By weeks 18-20, T4 reaches 
a clinically significant level [50]. Fetal T3 remains low 
(<15 ng/dL) until week 30 and increases at full-term (50 

Figure 1. Synthesis of TH. TG is synthesized in the endoplasmic reticulum and secreted into the colloid in the process 
of exocytosis. The active transport of I- to follicular cells is carried out by sodium-iodide TSH-dependent symporter pro-
tein. The Na/I symporter draws 2 Na+ and 1 I- into the cell. I- are secreted into the colloid by the pendrin transporter. I-, 
which is necessary for TH biosynthesis, is oxidized by thyroid peroxidase (TPO) in the presence of high concentrations 
H2O2 and forms molecular iodine (I2). It reacts with Tyr residues in organification reaction leading to MIT and DIT cou-
pling. They subsequently conjugate to form T4 with 2xDIT combination and T3 with MIT+DIT combination. These reac-
tions also need TPO and H2O2. H2O2 is necessary for TPO action and is formed in the colloid through NADPH oxidases 
(DUOX subfamily). Next, TG is transported by endocytosis into the cell where it undergoes proteolysis and releases 
T3 and T4. TG is “recycled” and used for further TH synthesis. The TH are transported from the cell to the blood by the 
monocarboxylate transporter (MCT).
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reaches a plateau about halfway through gestation. 
Estrogen levels in the blood are positively correlated with 
TBG [58]. Increased TBG levels contribute to a drop of 
free TH and increase of the overall level of TH in the 
blood [58]. The increase in TBG is gradual and stops 
during the second trimester. At the same time TH show an 
increase of approximately 50%. Moreover, hCG causes 
an increase of free T3 and T4 levels, which induces TSH 
decrease. The action of placental DIOs contributes to 
the increased demand for TH. DIO3 is involved in the 
transformation of T4 to rT3 and T3 to T2. It protects the 
fetus from overexposure to maternal TH by inhibiting 
T4 activation and T3 deactivation. DIO2 catalyzes the 
transformation of T4 to T3 and provides the optimal level 
of T3 for fetal development. Both enzymes are produced 
from the beginning of pregnancy and their activity 
decreases with time.

At the beginning of the second trimester, the 
secretory activity of the placenta decreases and settles at 
a certain level. The level of free TH decreases, while TSH 
concentration increases [58]. The secretory functions 
of the thyroid gland change significantly as pregnancy 
progresses (Table 3). Due to these fluctuations the 
reference values of hormones differ from the values for 
healthy adults [28,59].

The fetal thyroid begins to work between weeks 
12-20 of pregnancy. Until then, TH must come from 
the mother and I- must be transported from the mother 
throughout pregnancy [60]. TH levels differ on the 
maternal and fetal side of the placenta. T3 is lower (4.34 
ng/g in fetus and 5.93 ng/g in mother) and T4 is higher 
(67.72 ng/g in fetus and 44.96 ng/g in mother) on the fetal 
side [61]. I- levels on the fetal side of the placenta are 
lower than on the mother’s side (0.45 μg/g and 1.38 μg/g, 
respectively). In pregnant women, the I- level in placenta 
and urine is associated, however this is not observed for 
fetal I- placental level [61].

[56]. Postpartum thyroiditis is an autoimmune disorder 
in euthyroid women with thyrotoxicosis caused by high 
amounts of TH. It usually goes through a hypothyroid 
phase and eventually disappears within one year. TD 
is considered a growing health problem in developing 
countries. There is evidence that TD may be also triggered 
by environmental factors and threaten women’s health 
and fetus development. In the time of aging society, it 
is even more important to protect future mothers and 
provide them with the best possible care and accurate and 
early diagnosis, as the health of mothers affects offspring 
and therefore, future generations.

ALTERATIONS IN THYROID FUNCTIONS 
DURING PREGNANCY

Thyroid gland function influences conception and 
pregnancy. Changes in the physiology of a woman’s 
body during gestation have an impact on the morphology 
and function of the thyroid gland. Therefore, daily 
I- requirements (Table 2) are higher during and after 
pregnancy due to increased renal I- excretion, increased 
TH production, significant I- requirement of a fetus, and 
I- secretion into breast milk [57]. Pregnancy impacts 
thyroid secretory functions so diagnostic standards for 
healthy adults do not apply to pregnant women.

The estrogen and chorionic gonadotropin (hCG) 
interact with iodothyronines and TSH secretion. HCG 
is secreted by the placenta from the first weeks of 
pregnancy. Due to the structural similarity to TSH, hCG 
influences thyroid activity – increases T4 and decreases 
TSH secretion. Hence, a spike of T3 and T4 levels occurs. 
The concentration of hCG in the blood peaks at about 
weeks 8-11 of pregnancy, then decreases and reaches a 
plateau around week 20.

During pregnancy production of TH increases. TBG, 
a TH binding protein, is the main repository for TH and 
regulates the total level of thyroid hormones and the level 
of free TH – not bound to proteins. TBG level increases 
from the first weeks of pregnancy about 2-3-fold and 

Table 3. Changes in TH depending on the trimester.
Hormone I trimester II trimester III trimester
TSHa - - - - - -
T3b ++ +++ +++
T4c ++ +++ +++
fT3d - - - - -
fT4e - - - - -
TBGf ++ +++ +++
hCGg +/++ ++ ++

athyrotropin, btriiodothyronine, cthyroxine, dfree triiodothyronine, efree thyroxine, fthyroxine-binding globulin, gchorionic gonadotropin, 
+ increased level, - decreased level
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In the case of GD, alleviation of the course of 
hyperthyroidism is observed after the first trimester. 
The attack of the immune system on thyroid antigens 
is weakened and the disease stabilizes. However, after 
delivery, the immune processes regain activity, which 
may cause the AITD relapse [64].

After birth, the immunosuppressive effect of 
pregnancy subsides and the incidence of hyperthyroidism 
increases due to the rebound of the immune system 
[63,65]. The occurrence of hyperthyroidism is the highest 
within 7-9 months after delivery (more than 5 times 
higher than before delivery and 10 times higher than 
during the third trimester). Similar study confirms the 
reduction in the incidence of illness during pregnancy 
with a minimum in the third trimester (3 times lower 
than in the period before pregnancy), and a maximum in 

Pregnancy Immunosuppression and its Effect on 
the Thyroid Gland

Antigenic compatibility between the mother and the 
fetus is is rarely 100%. To prevent rejection of pregnancy, 
the functions of the immune system change in women – 
immune responses are suppressed. It was shown already 
in 1997 in clinical studies where the number of immune 
cells in pregnant women have decreased, but postpartum 
it has risen even above pre-pregnancy level [62]. This 
phenomenon is called pregnancy immunosuppression 
and its effect on the course of AITD is confirmed [63]. 
Over 400,000 Danish women were tested during the year 
before and two years after pregnancy. Results show that 
the incidence of hyperthyroidism in the first trimester 
increased (compared to before pregnancy) and then 
decreased to its lowest in the third trimester [63].

Figure 2. Mechanism of ROS production and neutralization in eukaryotic cells. Redox homeostasis of eukaryotic 
cell is presented. ROS are generated in the cell by enzymatic systems which include endothelial NOS, cyclooxygenase 
(COX), xanthine oxidase (XOD), P450 enzymes and mitochondrial ETC. eNOS is involved in the generation of O2

•- and 
its transformation into ONOO- with the participation of NO•. COX, XOD and P450 enzymes also generate peroxide 
anion. In the VI complex of OXPHOS, a sequential univalent reduction of O2 occurs, which during the exchange of 4 
electrons is reduced to H2O. However, about 5% of O2 is transformed to H2O2 in a process of electron leakage when 
only 2 electron reduction occurs. Moreover, extracellular H2O2 may enter the cell through membrane transporters e.g. 
aquaporins (AQP). H2O2 in specific conditions is transformed to •OH through Fenton reactions. •OH is highly reactive 
and potentially mutagenic to the cell. Antioxidant defense systems include SOD, TRX, GPX, PRX and chemical antioxi-
dants (e.g. vitamins (C, A, E), β-carotene, GSH). Chemical antioxidants inhibit reaction cascades of ROS formation. En-
zymatic antioxidants transform ROS into inactive molecules, e.g. H2O. GSH is treated as a non-enzymatic antioxidant 
as it is a substrate for the GPX. It reduces H2O2 and oxidizes GSH to form glutathione disulfide (GSSG). GSSG is then 
reduced to GSH by GR. CAT reduces H2O2 directly to H2O. PRX is another enzyme reducing reactive H2O2 molecules. 
PRX becomes its oxidized form (ox-PRX), reducing H2O2 to H2O. PRX is regenerated by TRX which becomes oxidized 
in this process (ox-TRX).
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occurs in more than 52% of patients with the diagnosis of 
GD and 47% with HT [25,67]. Infertility is caused mainly 
by hormonal imbalance e.g. increased prolactin level. It 
impacts gonadotropin release and subsequently leads 
to decreased capacity of corpus luteum. Problems with 
fertilization may also result in ovulation disorders [69]. 
Furthermore, recent clinical studies show that untreated 
hypothyroidism (with TSH >4 mIU/L) increases the 
risk of miscarriage [70,71]. Interestingly, after bringing 
women to the state of euthyrosis, birth rates improve 
[72,73].

Obviously, decreased function of women’s 
reproductive systems, such as menstrual disorders, 
impedes conception rate. In the context of human 
reproduction, it is of high importance that women have 
healthy thyroids or properly managed AITD in order to 
successfully plan and start a family. Therefore, in the 
next section we focus on the interesting aspect connected 
to thyroid function – oxidative stress and its markers. 
It is believed that this perspective may improve early 
diagnosis options and maybe even contribute to new 
therapeutic approaches.

the period of 4-6 months after delivery (about 4 times 
higher than before pregnancy and over 12 times higher 
than during the minimum maturity) [66]. Therefore, 
endocrine control during and after pregnancy is crucial 
in patients with a risk of AITD or already diagnosed prior 
to conception.

Impact of Thyroid Dysfunction on Female Fertility
Hyperthyroidism affects the level of sex hormones 

in women. In patients with thyroxicosis, estrogen levels 
may increase up to 3-fold. Levels of testosterone, 
androstenedione, and luteinizing hormone also increase. 
Moreover, menstruation disorders are the most common 
symptom of hyperthyroidism. They are associated 
with elevated total T4 levels and diagnosed 2.5 times 
more often than in healthy women. In patients with 
hypothyroidism, the concentration of total testosterone 
and estradiol in the blood decreases, while their unbound 
fractions increase. Disorders of blood coagulation factors 
and platelet function may also occur, with changes in 
the length of the cycle and the intensity of bleeding. 
Menstrual cycle disorders are the most common symptom 
in hypothyroidism [25,67,68].

In addition, TH may directly impact conception and 
pregnancy. Quintino-Moro et al. show that infertility 

Figure 3. Formation of 8-oxodG and 8-OHdG. The lesions are generated through interaction between 1O2 or •OH 
and G or dG. As a result of •OH addition, different radical adducts are formed (1). Subsequently, electron abstraction 
generates 8-OHdG which undergoes keto-enol tautomerism forming an oxidized product: 8-oxodG. 8-oxodG and 
8-OHdG lesions can also be generated by cycloaddition of 1O2 into the imidazole ring of dG. This reaction generates 
(5) which is later rearranged into (6). (1) 2′-deoxyguanosine, (2) 8-Hydroxy-7,8-dihydro-2′-deoxyguanosyl radical, (3) 
8-oxodG, (4) 8-OHdG, (5) 4,8-endoperoxide-2′-deoxyguanosine, (6) 8-hydroperoxy-2′-deoxyguanosie.
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lesions are 8-oxodG and 8-OHdG [84,85]. They are 
generated through interaction between 1O2 or •OH and G 
or 2′-deoxyguanosine (dG) (Figure 3). 8-oxodG is one of 
the most abundant lesions, which occurs 105 times per 
day/per cell [83,86].

Those lesions are corrected by the base excision 
repair (BER) system. The standard process consists 
of: recognition and excision of damaged base by 
glycosylases, filling in the nucleotide gap by polymerases, 
and strand ligation [87]. From glycosylases described 
in mammals, oxoguanine glycosylase 1 (OGG1) and 
formamidopyrimidine DNA glycosylase (Fpg) excise 
oxidative G lesions [88]. OGG1 is a primary BER 
bifunctional glycosylase, which removes 8-oxodG. 
However, OGG1 is susceptible to polymorphisms and 
may not always detect a damaged base. Therefore, 
8-oxodG may form mis-pairs with adenine (A) leading 
to transversion (G:::C → T::A) or transition (G:::C → 
A::T) mutations. It makes G lesions highly mutagenic, 
especially when such mutations accumulate in the DNA 
strands in close proximity to one another [89]. MutY DNA 
glycosylase (MUTYH) is able to recognize and remove A 
opposite 8-oxodG and G [88,90]. OGG1 and MUTYH 
play crucial roles in normal cell functioning under OS 
and prevent development of pathological states [90].

Oxidative Stress and Oxidative DNA Damage in 
Thyroid Diseases

Redox homeostasis is important in the thyroid 

INFLUENCE OF OXIDATIVE STRESS ON 
THYROID

Oxidative Stress and Oxidative DNA Damage 
Formation

In a healthy cell, there is an oxidative balance 
between ROS production and their neutralization by 
the cell (redox homeostasis), which, when disrupted 
generates OS [74]. ROS include: superoxide anion 
radical (O2

•-), hydroperoxyl radical (HO2
•), hydroxyl 

radical (•OH), singlet oxygen (1O2), ozone (O3), H2O2, 
nitric oxide (NO•), and peroxinitrite (ONOO-), where 
•OH is the most reactive and interacts with proteins, 
lipids and nucleic acids [75,76]. About 90% of ROS is 
derived from mitochondrial oxidative phosphorylation 
(OXPHOS) activity through electron leakage in electron 
transport chain (ETC) [77-79]. In ETC, about 5% of O2 is 
transformed to H2O2 (Figure 2) [76].

The effects of ROS include modifications within 
the genome [80]. Oxidative DNA lesions induced by 
ROS manifest as nucleobases and/or sugar fragments 
modification, single and double strand breaks, apurinic/
apyrimidinic sites, modified purine/pyrimidine/sugars, 
structurally mutated bases, deleted and/or translocated 
chromosome fragments, and DNA-protein cross-links 
[81]. About 100 oxidative DNA lesions are now identified, 
which constitute the largest group of all lesion types [82].

Due to the lowest redox potential, the most 
susceptible to OS is guanine (G) [83]. The most frequent 

Figure 4. Overview of oxidative DNA damage generation in thyrocytes. In the thyroid cell, TPO needs H2O2 
in order to produce TH. H2O2 is generated by DUOX1 and DUOX2 which are NADPH oxidases. In the case of TD, 
extracellular H2O2 may cross the cellular membrane. It has a potential of damaging DNA directly or through NOX4 
(NADPH oxidase 4) located in the nucleus and endoplasmic reticulum. Moreover, H2O2 generated by mitochondria 
may affect mitochondrial and nuclear DNA. H2O2 in specific conditions is transformed to •OH, which is highly reactive 
and mutagenic ROS.
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or reduce the negative effects/products of ROS and 
maintain their concentration at the safe level.

ROS seem to play a pivotal role in right placenta 
development. Study on mice shows that 4-5 days after 
fertilization, the developing blastocyst produces O2

•- (>8 
nmol/embryo h-1) and H2O2 (ca. 4 nmol/embryo h-1). 
Moreover, cytochemical evidence of H2O2 entails the 
appearance of •OH [99,100]. In the first trimester, level of 
placental O2 is low – the embryo is protected from ROS 
which favors its development, placental angiogenesis, 
and cell proliferation. At the end of the first trimester, 
O2 levels increase due to stabilization of maternal 
intraplacental circulation. The possibility of normal 
fetal development is ensured by modulation of hypoxia-
inducible factor 1α (HIF-1α) and antioxidant defense 
systems [101]. A study by Hung et al. shows that among 
healthy pregnant women, the urinary level of 8-oxodG 
increases in the third trimester and returns to physiological 
level after delivery. Moreover, other biomarkers of OS 
also increase (GPX and SOD) [102]. A subsequent study 
by Hung et al. presents that increased level of OS among 
pregnant women may implicate pregnancy complications 
[103]. Excessive OS may induce polycystic ovary 
syndrome, endometriosis, preeclampsia, idiopathic 
infertility, premature birth, recurrent pregnancy loss, and 
intrauterine growth restriction [104]. OS plays role in the 
course of pregnancy and thyroid disorders, therefore it is 
interesting to explore the scenario where both conditions 
are present simultaneously. Hence, the next sections 
attempt to explore this connection of oxidative stress 
and thyroid disease in pregnant women and also discuss 
factors which influence their incidence such as diet (e.g. 
antioxidant intake).

Oxidative Stress in Thyroid Disease and its Effect 
on Pregnancy

AITD are common endocrine dysfunctions during 
gestation which affect about 1% of all pregnant women 
[105]. H2O2 is a ROS and OS inducer but is also essential 
for TH synthesis. Studies show that H2O2 production 
is dependent on I- and TSH levels [106]. AITD are 
associated with TSH secretion, caused by ID and affect 
the H2O2 production in the thyroid gland. H2O2 does not 
react directly with genetic material but is a precursor of 
highly reactive compounds: 1O2 and •OH [107]. AITD 
are correlated with OS and its markers – 8-oxodG and 
8-OHdG. These lesions are formed directly in the reaction 
of G moiety with •OH and 1O2 and, in the case of AITD, 
their accumulation is observed [24]. Hyperthyroidism 
is linked with overproduction of OS markers while 
hypothyroidism is linked with reduced availability of 
antioxidants [23].

Connections between AITD and the DNA damage 
is studied worldwide but still needs more extensive 

gland. H2O2, a redox signaling molecule, is produced in 
large amounts in thyrocytes due to its relevance in TH 
synthesis (Figure 4). Thyroid remains highly susceptible 
for oxidative damage in the case of any imbalance. Thus, 
it is crucial that thyroid cells maintain oxidative balance in 
order to prevent malignancies and disease development.

TH regulate mitochondrial function and thus, 
the rate of oxygen metabolism. TH affect the speed of 
mitochondrial activity and the systemic production of ROS 
[79]. T3 controls the proinflammatory reactions (through 
induction of GPX and SOD) and reduces ROS production 
in mitochondria by activating the mitochondrial ATP-
dependent potassium channel. Moreover, T3 stimulates 
autophagy, mitochondrial DNA repair, and creation of 
new mitochondria [91,92].

H2O2 is necessary for TH production, but at the same 
time it increases OS levels in the thyroid gland [93]. 
GPX, a major enzyme catalyzing the reduction of H2O2, 
protects thyrocytes from ROS action and modulates TH 
synthesis [94]. The present data are inconclusive – GPX 
level may be decreased or increased in patients with HT 
[95].

OS is considered one of the most important causes 
of DNA damage formation – in particular 8-oxodG and 
8-OHdG [78]. While ID impairs TH synthesis, excess of 
I- in the body may induce OS and HT. Higher I- levels 
were confirmed in patients with newly diagnosed HT, 
but the mechanism is not clear [95]. It is assumed that 
H2O2 overproduction may result from NADPH oxidase 
overexpression and I-/Tyr interaction in TG [95].

ROS accumulation and OS levels are directly related 
to AITD. In HT, a positive correlation between OS 
markers and disease progression was demonstrated [96]. 
ROS accumulation appears to favor TG fragmentation, 
which indirectly stimulates the immune system to thyroid 
auto-aggression [91]. In GD, OS also increases. The NF-
κB pathway, which is activated by OS, seems to play a 
significant role in GD’s autoimmunity [97]. The level 
of OS and accumulated lesions such as 8-oxodG and 
8-OHdG is related to the occurrence of thyroid cancers. 
Therefore, intensification of O2 metabolism and decrease 
in DNA damage systems efficiency may have an effect on 
carcinogenesis.

8-oxodG AND 8-OHdG AS A POTENTIAL 
STIMULANT OF AITD DEVELOPMENT 
DURING PREGNANCY

DNA Oxidative Damage in Pregnancy
Sedentary lifestyle and exposure to toxins predispose 

to increased OS and might affect ova, sperm, and embryo 
development [98]. During uncomplicated gestation, OS is 
mainly stimulated by the mitochondria-rich placenta and 
purines metabolism. However, cells correctly neutralize 
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between the formation and removal of ROS it may reduce 
DNA damage level in the genome [116]. The most widely 
considered antioxidant is vitamin C. Its influence on 
oxidative lesions was identified for the first time in 1998 
[117]. Subsequent years brought new results, where fruit 
and vegetable consumption and its influence on 8-oxodG, 
8-OHdG, and in some cases DNA repair gene expression 
levels were examined [118-123]. Typically used in such 
studies are broccoli, kiwifruit, or vitamin C supplements. 
However, results were contradictory for a long time and 
hard to compare probably due to testing variable subject 
groups such as smokers, healthy people, or patients with 
different pathologies. However, subsequent years brought 
new insights and confirmed that diet rich in fruit and 
antioxidants protects from DNA damage and stimulates 
DNA repair [120,124-128]. Moreover, recent in vitro 
studies seem to confirm the beneficial properties of 
antioxidants on expression of proteins involved in DNA 
repair mechanisms (e.g. GPX, OGG1) [119,129-131]. 
Green tea is also widely considered as beneficial in the 
field of genome protection. Camellia sinensis increases 
OGG1 activity after only 7 days of regular intake. 
Moreover, DNA damage level decreases by 30% just 
after 1h from drinking the tea [129,132].

According to Lalonde’s theory, who already in 
1976 determined that the overall health status of humans 
depend, in more than 50% on environmental factors, diet 
seems to be a major factor influencing our well-being 
[133]. These facts are especially important for women, 
as proper dietary choices and healthy lifestyle are crucial 
before, during, and after pregnancy.

CONCLUSIONS AND OUTLOOK

AITD, as a growing health problem of developing 
countries, became widely investigated in relation to 
pregnancy and early fetus development as a crucial part 
of human procreation. Increasing numbers of studies 
indicate a connection between ROS overgeneration and 
the regulation of the immune system during pregnancy. 
During uncomplicated gestation ROS levels are higher, 
mainly due to mitochondria-rich placenta [99]. OS is 
an important factor in predicting complications during 
pregnancy. It may cause dysfunction in cells and lead 
to a generation of DNA lesions such as 8-oxodG and 
8-OHdG [102]. Elevated level of these lesions during 
pregnancy may indicate pathological states e.g. AITD. 
These disorders may cause complications for mother and 
fetus. Current evidence shows that patients with GD and 
HT have elevated levels of 8-OHdG in urine samples 
[108]. Considering novel data level of urine 8-OHdG can 
be an important biomarker of pregnancy complications, 
including those concerning thyroid. Moreover, increased 
level of ROS during gestation stimulates dysfunction 

exploration. In 2013, studies assessed the level of 
8-OHdG in people with TD. The results show that patients 
suffering from toxic multifollicular goiter, GD, and HT 
have a higher concentration of 8-OHdG in urine. For 
each disease, 8-OHdG is on average 22.26 ng/ml (5.11 
ng/ml for the control) [108]. In addition, plasma 8-OHdG 
levels (1.23 ng/ml and 0.67 ng/ml in the study and control 
group, respectively) are useful markers of carcinogenic 
potential for multinodular goiter. Thyroid nodules occur 
in 68% of the general population (with 7-15% malignant) 
thus, testing 8-OHdG plasma levels may improve early 
diagnosis of thyroid cancer [24].

Impact of AITD in pregnant women on fetal OS is 
considered. A study from 2018 shows that subclinical 
form of hypothyroidism increases the level of OS 
in amniotic fluid – O2

•- level increased from 0.1 to 
0.2 nmol/106 cells. The authors suggest that diet and 
supplementation of antioxidants may counteract effects 
of OS [109]. A different study on pregnant women with 
clinical hypothyroidism shows that the level of O2

•- in 
the amniotic fluid doubles (from 3.5 to 8.0 nmol/mL). 
Additionally, it describes a positive correlation between 
O2

•- and a reduced body weight in women and reduced 
Apgar scores in newborns [110]. As suggested by those 
authors, environmental factors, such as diet and weight, 
impact the level of OS. In the case of pregnant women, 
diet and overall health is crucial for the mother and the 
fetus. However, not only as a mean to the well-nourished 
child and healthy women, but as it turns out also in terms 
of maintaining genetic integrity, preventing DNA damage 
formation, and DNA repair systems operation.

Impact of Diet on DNA Repair Mechanisms
DNA damage and its aftermath may cause cancer, 

neurodegenerative diseases, and others [111]. The 
accumulation of DNA lesions induce deregulation of 
cell functions e.g. DNA replication and transcription, 
proliferation, or immune response [112]. Fortunately, 
cells are equipped with several DNA repair mechanisms 
including direct repair, excision repairs, and recombination 
systems [113]. The fundamental mechanism for oxidative 
DNA damage repair is the BER system. Fragment of 1-20 
nucleobases can be excised from DNA strand depending 
on the damage type [114].

The impact of a plant-rich diet on DNA repair 
mechanisms has been studied for over 20 years. While 
at first results were contradictory, currently it is known 
that a diet rich in vegetables and fruit has genoprotective 
properties and positive influence on DNA repair 
mechanisms, including BER. Clinical studies also 
stress the fact that poor dietary choices and subsequent 
problems, such as obesity, which induces ROS generation, 
are correlated with the thyroid and its disorders [115].

As diet provides antioxidants that restore the balance 
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the survival of the entire species. In this context, DNA 
is the most important particle of life and any damage or 
impairment to its integrity may have severe consequences 
for the survival of the species. Therefore, it is of high 
importance that the genome remains intact or properly 
repaired by specialized systems, so the whole organism 
(human being) may serve its purpose in evolution.

Referring to Lalonde’s theory once more, if 50% 
of our health depends on environmental factors, and 
the major factor in everyday life is the diet, we have a 
vast possibility to influence our own well-being. Due 
to the fact that both pregnancy and AITD are related to 
increased DNA damage formation, a healthy plant-rich 
diet should be integral part of the strategy to protect our 
organism from destructive influence of OS and oxidative 
DNA damage. It especially concerns pregnant women 
with higher risk or already diagnosed AITD [134].
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