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Abstract

Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing
serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee
loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic
signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan
hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N
force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail
suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––
frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee
loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The
protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore,
the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The
expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence
that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-
cathalyzed serotonergic signaling in the brain.
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Introduction

Mood disorder is a commonly encountered health problem that

could lead to anxiety, depression, and in some cases, suicide.

Physical activities are commonly recommended as a preventive

measure because of their stimulatory role in pain reduction,

formation of new neurons as well as synthesis of neurotransmitters

[1,2,3]. However, routine exercises are not always possible, in

particular, for the elderly and physically disabled individuals. Since

availability of serotonin in the brain is thought to be key to mood

disorder, we aimed to develop a therapeutic exercise regimen

focusing on mechanical loading to the skeleton. Knee loading is a

recently developed mechanical loading modality, which applies

lateral loads to the knee to induce anabolic responses of the

skeleton [4,5]. It stimulates bone formation, and accelerates bone

wound healing in the lower limb [6,7]. A unique feature of knee

loading is its extended effects not only to the loaded but also to

non-loaded contralateral bone [5]. Little is known, however, about

its effect on the brain.

In this study, we addressed a question: Does mechanical loading

to the knee elevate serotonin signaling in the brain? Serotonin in

the brain is known to elevate by physical activities [8]. Although

bone remodeling is influenced by serotonin [9,10,11], effect of

knee loading on serotonin in the brain has not ever been reported.

Since skeletal loading is a significant element of physical activities,

we hypothesized that gentle cyclic loading to the joint stimulates

expression of tryptophan hydroxylase 2 (tph2), which is the rate-

limiting enzyme for serotonin in the brain.

In order to test the hypothesis, we employed treadmill exercises

as a positive control, while unloading by tail suspension, which

mimics disuse-induced stress or syndrome, as a negative control.

Knee loading was applied by a custom-made piezoelectric loader

[5,6,12] and gene expression in brain tissues such as the frontal

cortex (FC), ventromedial hypothalamus (VMH), and raphe nuclei

of brain stem (BS) was examined. The FC is engaged in cognitive

and motor responses that are sensitive to serotonin signaling

[13,14], while the VMH is linked to feeding, thermoregulation,

and sexual activity [15]. The raphe nuclei of BS is a site of

serotonin synthesis, whose rate-limiting enzymatic reaction is

catalyzed by tph2 [16]. The mRNA levels of tph2 were

determined by quantitative real-time PCR, while its protein levels

were evaluated using Western blot analysis and immunohisto-

chemistry.
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Materials and Methods

Ethics Statement
The experimental procedure was approved by the Indiana

University Animal Care and Use Committee (#10525) and was in

compliance with the Guiding Principles in the Care and Use of

Animals endorsed by the American Physiological Society.

Animal
C57/BL/6 male and female mice, 6 to 8 weeks of age (Harlan

Laboratories), were used (n = 72 in total). Two mice were housed

per cage, and they were fed with mouse chow and water ad

libitum. The animals were allowed to acclimatize for 1 week

before the experiment. Animals received knee loading, treadmill

exercise, or tail suspension (Fig. 1).

Figure 1. Mechanical treatments and brain samples. (A) Knee loading applied laterally to the mouse knee. (B) Unloading of hindlimbs through
tail suspension. (C) Knee loading comprising cyclic compression of 1 N at 5 Hz for 1500 cycles. (D) Force-displacement relationship. (E) Division of a
mouse whole brain, containing frontal cortex, FC, ventromedial hypothalamus, VMH, and raphe nuclei of caudal brain stem, BS. The dashed lines
indicate approximate split for harvest. The olfactory bulb marked in arrow was excluded. The dissected tissue from three subdivisions is hatched as
FC, VMH, and BS.
doi:10.1371/journal.pone.0085095.g001

Load-Induced Tph2
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Knee loading
Cyclic compression was applied to the mouse left knee using an

electro-mechanical loading device (ElectroForceH 3100, Bose

Corporation, Eden Prairie, MN). The mouse was anesthetized in

an anesthetic induction chamber and mask-anesthetized using 2%

isoflurane. Lateral loads to the knee were then applied for 5 min at

5 Hz with a peak-to-peak force of 1 N (1,500 cycles). The articular

cartilage, femur, tibia, and brain were harvested after the loading

bout (n = 21). Internal controls were sham loaded under anesthesia

(n = 21).

In response to an applied load (n = 6), the resulting phase shift

angle, energy dissipated per cycle, and Young’s modulus were

calculated. The phase shift angle between the applied sinusoidal

force and displacement of the knee joint was determined using a

least square-mean fit method with MATLAB software (version

7.10, The MathWorks, Inc., Natick, MA). The energy loss per

cycle was determined as a hysteresis loop integral between the

force and displacement waveforms [5]. Young’s modulus was also

determined using the linear portion of the force-displacement

relationship and dimensions of the loaded section of the knee joint

[17].

Treadmill exercise and tail suspension
Treadmill exercise, mimicking running, was employed as a

control of physical activities, while tail suspension was used as a

stress inducer. In treadmill exercise, mice (n = 3) were given an

acute session of running on a treadmill (5 min at a speed of 12 m/

min with 5u inclination per day) for three consecutive days using a

commercially available treadmill (Columbus Instruments, Exer 3/

6, Columbus, OH) [18]. The treadmill control group (n = 3) was

exposed to the same environment as the exercise group, but the

treadmill belt was covered with plexiglass to prevent the mouse

from touching the surface. In tail suspension, mimicking disuse or

unloading of limbs (n = 6), the tail was inserted into a plastic tube

of the tail harness. The animal was placed head-down at

approximately a 30–40u angle that prohibited the hindlimbs from

reaching the ground for 90 min [19]. Animals placed in the same

cage in the absence of tail insertion to the tube were used as

internal controls (n = 6).

Quantitative real-time PCR
The previous method was used with modification [17,20]. Prior

to homogenization, femur and tibia were harvested and medullary

fluid was washed out. Articular cartilage from distal femur and

proximal tibia was pooled for total RNA extraction. For brain,

tissues were dissected into three regions including FC, VMH, and

BS. The tissues containing dorsal, medial and caudal raphe were

labeled as BS (Fig. 1E). The mRNA expressions of each gene were

determined using quantitative real-time PCR with the primers

listed in Table 1. Expression of collagen types I and II was

evaluated for synthesis of bone and cartilage matrix, while NGFß

as a neurotrophic factor. As a marker for serotonergic signaling,

expression of tph2 was assayed with Sim1 and REST as its

potential regulators and Pet 1, Lhx8, and RGS as its downstream

effectors [21,22]. Total RNA was extracted using an RNeasy Lipid

Tissue mini kit with QIAzol reagent (Qiagen) and chloroform

(Fisher Scientific). Reverse transcription was performed, and real-

time PCR was carried out using ABI 7500 with SYBR green PCR

kits (Applied Biosystems). The mRNA level of GAPDH was used

as an internal control.

Western blotting
The previous method was modified and used [17]. Samples

isolated from the above regions of brain tissues were dissociated

with a mortar and pestle in a RIPA lysis buffer containing

inhibitors for proteases and phosphatases (Calbiochem). Isolated

proteins were fractionated using 10% SDS gels and electro-

transferred to Immobilon-P membranes (Millipore). Immunoblots

were carried out using antibodies specific to tph2 (Thermo

Scientific) and ß-actin (Sigma). After incubation with secondary

antibodies conjugated with HRP, signals were detected with ECL

chemiluminescence. Images were captured using an image

analyzer (LAS-3000, Fuji Photo Film) and analyzed using Multi

Gauge V 3.0 software.

Immunohistochemistry
Based on the previous method [23], serial coronal sectioning

was made to discern dorsal, medial and caudal raphe in the

hindbrain or BS. Briefly, glass slides containing cryo-sectioned

9 mm-thick brain tissues were incubated with a primary antibody

diluted in blocking solution made of phosphate buffered saline

(PBS), Triton X100 and goat serum overnight at 4uC, rinsed, and

incubated with the secondary antibody. Primary antibody was

rabbit anti-tph2 (1:200, Thermo Scientific), and secondary

antibody was Alexa FluorH dye-conjugated goat anti-rabbit IgG

(diluted 1:200 in blocking solution, Jackson ImmunoResearch).

For nuclear staining, 500 ng/ml of 49,6-diamidino-2-phenylindole

(DAPI, Sigma) was used. Fluorescent images were taken using a

BX53 research microscope equipped with a dp72 camera

(Olympus). For acquisition of fluorescent micrographs, cell Sens

Entry software with built-in scale bar was used (Olympus).

Statistical analysis
Statistical significance was calculated using Mann–Whitney U

test for two group comparisons. For multiple groups, Kruskal–

Wallis test followed by Dunn’s post hoc test was adopted (PRISMH
ver. 3.0). Data are plotted using STATGRAPHICS CenturionH
(ver. 16.1.18), and the asterisk (*) denotes p , 0.05.

Results

Knee loading promoted collagen transcription in bone
and cartilage

In response to a 1 N force applied at 5 Hz to the mouse knee,

the phase shift angle between the force and resulting displacement

was found to be 18.1u. The energy loss per cycle was calculated to

be 0.201 mJ, and the Young’s modulus of the knee joint was

Table 1. Primer sequence.

Mouse
gene Forward Backward

Col I GAGCGGAGAGTACTGGATCG GCTTCTTTTCCTTGGGGTTC

Col II GCCAAGACCTGAAACTCTGC GCCATAGCTGAAGTGGAAGC

NGFß CCAGTGAAATTAGGCTCCCTG CCTTGGCAAAACCTTTATTGG

Tph2 CCATCGGAGAATTGAAGCAT TTCAATGCTCTGCGTGTAGG

REST GTGCGAACTCACACAGGAGA AAGAGGTTTAGGCCCGTTGT

Sim1 TGGAAAGCCTCCGAGTCTAA AGTGAAAGGCGAGGTCAGAA

Pet1 GCACCTCGTTATGACCCCTA TATACAGGCTGGGGTCCTTG

Lhx8 GGCCTTAGTGTGGCTGAGAG TGCTCGTCACATACCAGCTC

RGS4 GCTAAGGGGTGAGCACTCTG TCTGCCCTCACCTAAGCAGT

GAPDH TGCACCACCAACTGCTTAG GGATGCAGAGAAGATGTTC

doi:10.1371/journal.pone.0085095.t001

Load-Induced Tph2
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determined as 166 MPa (Fig. 1). Knee loading and treadmill

exercise induced significant upregulation of type I collagen mRNA

in the femur (p = 0.049) and tibia (p = 0.049), as well as type II

collagen mRNA in cartilage (p = 0.049). Furthermore, unloading

through tail suspension for 90 min led to significant reduction of

type II collagen in cartilage (p = 0.049). However, unloading did

not present significant change in type I collagen mRNA as

compared to the untreated controls (Fig. 2A-B). Although not

significant (p.0.05), knee loading at 1 N showed a decreasing

trend of NGFß in the femur and cartilage as compared to the

control, consistent with the previous report [12]. In the peripheral

joint, tail suspension led to a significant upregulation of NGFß

mRNA as compared to the treadmill exercise (Fig. 2 C). Unlike the

periphery, tail suspension led to an opposite response of NGFß

mRNA in the central nervous system. In the hypothalamic tissue

(VMH), tail suspension resulted in a significant downregulation of

NGFß mRNA as compared to the treadmill exercise (p,0.05).

The plexiglass (n = 3), the sham loaded (n = 3), and the cage

control for tail suspension (n = 3) did not show significant

difference in mRNA expression of NGFß and collagens as

compared to the untreated controls (not shown).

Knee loading increased tph2 mRNA as compared to
unloading

Knee loading led to significant upregulation of tph2 mRNA in

the brain or BS, 30 min (p,0.05) following the stimulation of the

Figure 2. Effects of loading and unloading on mRNA levels of Col I, Col II, and NGFß. (A) Knee loading-induced increases in Col I and
unloading-induced decreases in Col I in the femur and tibia. (B) Knee loading-induced increases in Col II and unloading-induced decreases in Col II in
cartilage. Dashed lines denote the mRNA levels for untreated controls; A to B. (C) Effects of knee loading on NGFß mRNA. Note that ‘‘cart., tread, knee,
and tail’’ denote cartilage, treadmill, knee loading and tail suspension, respectively.
doi:10.1371/journal.pone.0085095.g002

Load-Induced Tph2
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joint, as compared to the tail suspension. Such load-driven

upregulation of tph2 in the BS appeared to persist 1 h following

the commencement of mechanical stimulation. At 2 h following

the knee loading, mRNA expression of tph2 was significantly

higher than that of the tail suspension but to a lesser extent than

earlier time points (p,0.05). Over the course of experiments at 30

min, 1 h and 2 h, the combined treatment of knee loading and tail

suspension did not show significant change in mRNA expression

of tph2 as compared to the control (Fig. 3A). The cage control for

tail suspension (n = 3) and the cage control pretreated with sham

loading for knee loading plus tail suspension group (n = 3) did not

show significant difference in mRNA expression of tph2 as

compared to the untreated control (not shown).

Knee loading increased tph2 protein and upregulated
the transcription factor, Sim1

Results on load-induced tph2 mRNA expression in the BS

brought us to focus on knee loading. When harvested 2 h following

the commencement of mechanical stimulation, knee loading led to

a significant increase of tph2 protein in the BS of mice as

compared to that of the controls (p = 0.02; Fig. 3B). However, tph2

protein was not detectable in the rostral part of the mouse brain

such as FC, regardless of mechanical treatments (data not shown).

We further sought to address molecular alterations that may

regulate tph2 in the brain. Among two known upstream

transcription factors, mRNA expression of Sim1 in the BS

(p = 0.01) of mice treated with knee loading was significantly

increased as compared to that of the sham loaded controls.

Furthermore, mRNA expression of Pet1 [22], was significantly

increased in the BS (p = 0.01) with knee loading (Fig. 3C).

Figure 3. Effects of knee loading on the mRNA and protein levels of tph2 in mouse brain. (A) mRNA levels of tph2 in the BS with knee
loading, tail suspension, and knee loading followed by tail suspension. (B) Immunoblots displaying protein levels of tph2 and ß-actin in the BS of mice
with knee loading. Next to immunoblots showing tph2 protein fold change. (C) Relative mRNA abundance of REST and Sim1 along with that of Pet 1,
lhx8, and RGS4 in the brain in response to knee loading. Dash lines denote the mRNA levels of sham loaded controls. Note that ‘‘K+T’’ denotes knee
loading plus tail suspension.
doi:10.1371/journal.pone.0085095.g003

Load-Induced Tph2
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However, mRNA levels of RE-1 silencing transcription factor,

REST, which has been proposed as a transcriptional regulator of

tph2 through bipartite neuron-restrictive silencing element in

glioma cells was not altered. The mRNA levels of two target genes

for tph2, lhx8, and RGS4 were not significantly different in the BS

as compared to those of the sham loaded controls. The sham

loaded controls (n = 3) did not show significant difference in

mRNA expression of REST, Sim1, Pet1, lhx8, and RGS4 as

compared to the untreated control (not shown).

Loading and unloading altered tph2 immunoreactivity in
caudal raphe nuclei of the brain

While BS showed alteration of tph2 with mechanical stimuli, we

sought to identify specific regions that may be associated with

load-driven elevation of tph2 in the hindbrain (Fig. 4A). Serial

sections containing the dorsal and medial raphe nuclei did not

show a significant difference of tph2 immunoreactivity when

compared with age-matched controls (data not shown). Adjacent

to the midline of caudal raphe nuclei ventral to the fourth ventricle

(bregma 25.960.1 mm), however, a consistent level of tph2

immunoreactivity was detected in the control animals (Fig. 4A). At

the same location, unloading of hindlimbs through tail suspension

led to a decrease of tph2 positive staining in caudal raphe, while

knee loading induced an increase of tph2 immunoreactivity as

compared with the same region in control animals (Fig. 4B).

Discussion

We presented in this study that physical weight or mechanical

loading applied to the knee can elevate tph2 in the hindbrain.

Using cyclic loads of 1 N at 5 Hz (1,500 cycles), we demonstrated

that knee loading significantly upregulated tph2 mRNA in the BS

and the load-driven upregulation of tph2 mRNA persisted at least

2 h. Western blot analyses revealed that tph2 protein was

significantly elevated in the BS of mice treated with knee loading.

Immunohistochemistry exhibited that knee loading led to an

increase of tph2 in raphe nuclei of the BS. Our data provided

evidence on tph2 increment in the brain by gentle mechanical

loading of the peripheral bone. In response to mechanical loading,

we obtained elastic modulus of 166 MPa with energy loss of

0.201 mJ of the mouse knee. These parameters indicate that the

loaded tissue is significantly softer and more energy dissipative

than bone matrix in the femur and tibia.

Consistent with the load-driven elevation of tph2, treadmill

exercise increased its mRNA level and tail suspension decreased it.

Immunohistochemistry revealed that the level of tph2 protein in

the caudal raphe nuclei of the BS was reduced by tail suspension

and elevated by knee loading. We also found that basal level of

tph2 mRNA expression and protein secretion in the caudal brain

of control animals was consistent and not significantly different

among untreated group, sham loaded group, plexiglass group, and

cage control for tail suspension, respectively. However, care should

be taken in interpretation of our data. Knee loading may not

warrant increase of tph2 in the brain because higher magnitude

and longer term loading could lead to a stress reaction.

Collectively, the results herein support the notion that serotonergic

signaling through tph2 might be influenced by mild knee loading

for 5 min as a stimulator and by tail suspension for 90 min as an

inhibitor (Fig. 4C).

We observed a region-specific localization of tph2, in serial

sections of the hindbrain. In response to knee loading, a consistent

elevation of tph2 expressing cells was detected in the caudal raphe.

In the rostral raphe, tph2 positive cells were detected in all animals

but no significant loading effects were observed. It is the raphe

nuclei where the brain serotonin system is known to originate,

which is numbered B1 to B9. These nine clusters are subdivided

into rostral and caudal portion. The caudal portion projects to the

spinal cord and cerebellum, which is involved in motor activity,

pain, and the regulation of autonomic nervous system including

signaling of sympathetic nervous system [16]. Serotonergic

neurons in dorsal and medial raphe nucleus project to the

forebrain such as cerebral cortex, hippocampus and hypothalamus

mediating perception, cognition, and food intake and reproduc-

tion [24]. Previously, it is reported that the expression of tph2 is

elevated in the dorsal raphe nucleus in depressed suicide [25,26].

The 28 d voluntary exercise has been shown to induce tph2 in

hippocampus, suggesting anti-depressant effects of brain serotonin

[27]. Tph2 has been also suggested as a therapeutic target for

stress disorders [28]. Yet, in this study, we did not observe a

significant alteration of tph2 in the rostral subdivision along with

FC and VMH. As the most robust increase in tph2 was in the

caudal raphe nuclei that project to the spinal cord and not in the

rostral nuclei that project to the forebrain, how our data support

behaviorally relevant changes in serotonin after knee loading is in

question. It is thought that the threshold for activating tph2

Figure 4. Immunohistochemistry demonstrating the elevated
tph2 protein level in the BS with knee loading. (A) Rectangular
region of interest in caudal brain sections. Orientation of medial and
dorsal corresponds to micrographs in B. (B) Representative micrographs
from bregma 25.960.1 mm showing tph2 immunoreactivity in mice
treated with sham, knee loading, and tail suspension. Nuclear
counterstain by DAPI overlaid with tph2 in the lower panels. (C) The
proposed role of knee loading and unloading in serotonin synthesis
through tph2 in the brain.
doi:10.1371/journal.pone.0085095.g004

Load-Induced Tph2
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synthesis in the rostral raphe nuclei might be higher, and that

whether more sustained mechanical load would evoke a similar

upregulation in the forebrain to the hindbrain is the next step to

this study.

We also demonstrated molecular changes that may be

associated with tph2 in the brain. Knee loading led to increases

of transcription factor, Sim 1 and Pet 1 mRNA but not REST/

NRSF in the BS [21]. Sim1 has been identified as a regulator of

dorsal raphe serotonergic neurons acting upstream of Pet 1 and

tph2 [22]. Other target genes of Sim1, lhx8 and RGS4 did not

show significant alteration with knee loading applied in the present

study. However, we did find the upregulation of lhx8 and RGS4

mRNA in the BS (hindbrain) as compared to the VMH (midbrain;

data not shown), as described in the previous report [22]. Further

investigation is required to determine the mechanism that

underlies the loading-induced tph2 in the brain.

In this study, we showed the effect of peripheral mechanical

loading on the brain. The observed remote effect can potentially

be mediated through central projecting stimulation and neuronal

signaling with neurotrophins. For instance, NGFß is a member of

the neurotrophins that is involved in pain sensation and survival of

neuron in the brain [12,29]. Alternatively, loading can be sensed

through alterations in the level of hormones and growth factors in

the serum. Through signaling molecules in blood circulation, gene

expression in the BS might be regulated. Previous studies have

shown that knee loading induces direct loading effects, including

formation of new bone, stimulation of fracture healing, prevention

of cartilage degeneration, and suppression of pain in the knee

[5,6,7,12,17]. The current study indicates that knee loading can

modulate brain serotonin level through tph2 in the BS. Further

studies are necessary to identify the role of neuronal and endocrine

signaling in on-site and remote loading effects.

Although not shown in the present study, insufficient tph2 or

lack of serotonin has been shown to lead to mood disorders such as

depression [30], schizophrenia [31] and neurodegeneration such

as Alzheimer’s dementia [32,33]. Our mRNA expression study

clearly demonstrated that unloading-induced tph2 deficiency is

prevented by pre-application of knee loading. Whether mood

disorders linked to insufficient tph2 in the brain can be

ameliorated by load-induced enhancement of serotonergic signal-

ing will be the next step to investigate.

Conclusions

We showed that knee loading and treadmill exercises elevated

the serotonin producing enzyme, tph2, in the caudal raphe of the

hindbrain. Unloading of hindlimbs decreased the mRNA level of

tph2, while brief pre-application of knee loading suppressed

insufficient tph2 in the brain. An increase in tph2 was associated

with an elevation of its transcription factor, Sim 1 and Pet1. It is

necessary to evaluate whether the observed upregulation of tph2

increases serotonin transmission in the key action circuit of the

brain, which constitute a basis for attenuating mood disorders by

physical activities.
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