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Eukaryotic cell development involves precise regulation of organelle activity and dynamics,
which adapt the cell architecture and metabolism to the changing developmental
requirements. Research in various fungal model organisms has disclosed that meiotic
development involves precise spatiotemporal regulation of the formation and dynamics of
distinct intracellular membrane compartments, including peroxisomes, mitochondria and
distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the
nuclear envelope. This developmental regulation implicates changes in the constitution
and dynamics of these organelles, which modulate their structure, abundance and
distribution. Furthermore, selective degradation systems allow timely organelle removal
at defined meiotic stages, and regulated interactions between membrane compartments
support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is
implicated in conducting organelle segregation during meiotic differentiation, and
defines quality control regulatory systems safeguarding the inheritance of functional
membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle
remodeling is important for proper activity of the cytoskeletal system conducting
meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated
regulation of organelle dynamics has a determinant contribution in the formation of the
renewed genetically-diverse offspring of meiosis.
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INTRODUCTION

Sexual reproduction enables eukaryotic organisms to produce genetically diverse offspring. In this
process, haploid reproductive cells produced by different individuals fuse to generate a diploid,
whose genomic content is later converted back to haploid, enabling subsequent reproductive cycles.
Central to this process is meiosis, a specialized division that reduces diploid genome by half, while
enabling genetic recombination. Meiosis requires precise regulation between defined cellular
architectural changes and nuclear progression, and is finely coordinated with the differentiation
of the cells carrying the meiotic nuclear products. Ultimately, meiotic differentiation promotes cell
functioning renewal and progeny rejuvenation (Unal and Amon, 2011; Unal et al., 2011).

Studies conducted in fungi have provided essential knowledge about the developmental processes
of sexual reproduction, including karyogamy (Rose, 1996; Gibeaux and Knop, 2013) and meiosis
(e.g., Marston and Amon, 2004; Zickler and Espagne, 2016; Grey and de Massy, 2021; Sato et al.,
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2021). Fungal meiotic differentiation often culminates with the
formation of haploid meiotic spores (Figure 1). This process is
equivalent to gametogenesis and has provided valuable
knowledge about it (van Werven and Amon, 2011;
Anandhakumar et al., 2013; Goodman et al., 2020). Research
with different fungi has recently disclosed that meiotic
development involves sophisticated spatiotemporal remodeling
of multiple organelles, which is critically for sexual development.

Peroxisome Dynamics and Assembly are
Regulated During Meiotic Development
Peroxisomes are versatile and highly dynamic organelles that
perform multiple metabolic functions–including prominent roles
in lipid and redox metabolism–and are involved in diverse
cellular processes, like cell signaling (Deb and Nagotu, 2017).
Research in fungi provided initial evidence that peroxisome
dynamics are regulated during meiotic development (Berteaux-
Lecellier et al., 1995). In the mycelial fungus Podospora anserina
(Figure 1), peroxisomes proliferate during meiocyte (ascus) and
meiotic-spore (ascospore) differentiation, whereas their number
decreases during ascospore maturation. Meiotic development

also involves changes in peroxisome distribution and
morphology, including peroxisome accumulation at the ascus
growing apical region during its differentiation, and elongation
frommeiosis II until ascospore differentiation (Berteaux-Lecellier
et al., 1995; Takano-Rojas et al., 2016, reviewed in; Navarro-
Espíndola et al., 2020a). Meiotic peroxisome remodeling
correlates with changes in the functional state of the protein
machinery that transports proteins into peroxisomes (Peraza-
Reyes et al., 2011), suggesting concerted developmental
regulation of peroxisome dynamics and biogenesis. This
regulation involves distinct configurations of the peroxisome
protein import pathways, which are respectively required for
karyogamy and meiotic initiation (Berteaux-Lecellier et al., 1995;
Peraza-Reyes et al., 2011; Suaste-Olmos et al., 2018), and for
proper meiotic progression (Bonnet et al., 2006). Peroxisome
remodeling also involves the activity of the dynamin-related
GTPase Dnm1, and its membrane anchor Fis1. These proteins
drive peroxisome fission throughout sexual development and
promote peroxisome segregation during ascus and ascospore
differentiation (Navarro-Espindola et al., 2020b). Fis1 and
Dnm1 are required for timely karyogamy and proper
ascospore differentiation; still, as they also mediate

FIGURE 1 | Meiotic development in two model fungi. (A) In the budding yeast Saccharomyces cerevisiae, diploid cells produced after mating undergo meiosis
when exposed to nutritional limitations. During this process, the NE remains continuous along both meiotic divisions. By meiosis II, new membranes are produced from
the NE-embedded SPBs (not depicted) of each lobe of the dividing nucleus–termed prospore membranes–, which expand encircling each nucleus and a fraction of
cytoplasmic contents. Meiotic spores (ascospores) are delineated upon closure of the prospore membrane, which separates the ascospore cytoplasm from the
cytoplasm of the original mother cell. Ultimately, proteases released after permeabilization of the mother cell vacuole degrade the cytoplasmic contents excluded from
ascospores (Neiman, 2011; Eastwood et al., 2012; Eastwood and Meneghini, 2015). (B). In the mycelial ascomycete Podospora anserina, sexual development takes
place within multicellular fructifications known as perithecia (not shown). Within these structures, nuclei from both parental origins (depicted as dots with different
shading) are isolated in pairs in specialized cells termed croziers. The crozier dikaryotic cell undergoes karyogamy while enters meiosis and differentiates into an ascus
(the meiocyte), which elongates along prophase I. After meiosis completion, the four resulting nuclei divide mitotically to yield eight nuclei, which are packaged by pairs
into four ascospores (Zickler et al., 1995).
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mitochondrial fission (Navarro-Espindola et al., 2020b) (see
below), their precise contribution to these processes awaits
elucidation. Nonetheless, these findings underscore the close
interrelationship of the mechanisms used by cells to regulate
organelle dynamics, and disclose their relevance for meiotic
development.

In P. anserina, peroxisome removal from late ascospores could
be mediated by selective autophagy (pexophagy) and represent a
quality control mechanism involved in ascospore rejuvenation
(Takano-Rojas et al., 2016). Consistently, elimination of Atg24 –a
sorting nexin involved in pexophagy, mitophagy and non-
selective autophagy–reduces the lifespan of this fungus
(Henkel et al., 2020). Furthermore, in the mycelial ascomycete
Sordaria macrospora, loss of the pexophagy receptor NBR1
(Werner et al., 2019), or of the peroxisomal protease LON2
(Werner et al., 2021), decreases ascospore formation,
suggesting parallel systems for peroxisome quality control
during ascospore formation. Still, in Saccharomyces cerevisiae,
peroxisomes are segregated meiotically, but changes in their
intracellular dynamics, at least concerning their abundance,
are less apparent (Gurvitz et al., 1998), suggesting different
requirements for peroxisome dynamics in distinct meiotic
developmental processes.

To understand the meiotic involvement of peroxisomes it will
be critical to elucidate the configuration of the peroxisome import
pathways along meiotic development–including the
identification of their imported proteins–, and to disclose how
their regulation is linked to the control of peroxisome dynamics.
In turn, understanding whether these processes are connected to
the regulation of the dynamics of other organelles will shed light
into how peroxisomes integrate into the developmental
intracellular dynamics leading meiosis.

Spatiotemporal Remodeling of
Mitochondria During Meiotic Development
Early observations in S. cerevisiae showed that mitochondria
change their distribution during meiosis by concentrating
around the nucleus by meiosis II (Zickler and Olson, 1975).
Further detailed analyses showed that changes in mitochondria
distribution are accompanied by remodeling by fusion and
fission, where fragmented mitochondria present in pre-meiotic
cells fuse upon meiotic initiation, and the resulting elongated
mitochondria move to the nuclear periphery by the second
meiotic division. Mitochondria remain associated with nuclei
until ascospore formation, which facilitates their incorporation
into nascent ascospores. Finally, mitochondria detach from the
nuclear envelope (NE) and fragment again in late ascospores
(Miyakawa et al., 1984; Gorsich and Shaw, 2004; Suda et al.,
2007).

Critical for the positional control of mitochondria during
meiotic differentiation is the precise developmental control of
mitochondria tethering. In S. cerevisiae, early meiotic cells retain
mitochondria at the cell cortex through interactions with the
mitochondria–endoplasmic reticulum (ER)–cortex anchor
(MECA) (Sawyer et al., 2019), a complex composed of
proteins Num1 and Mdm36 that attaches mitochondria and

the ER at the plasma membrane (Cerveny et al., 2007; Klecker
et al., 2013; Lackner et al., 2013). At the onset of anaphase II, the
meiotic transcriptional regulator Ndt80 activates the meiosis-
specific kinase Ime2, which phosphorylates MECA and promotes
its degradation. This facilitates the release of mitochondria from
the plasma membrane and allows their subsequent packaging
into ascospores (Sawyer et al., 2019). In the fission yeast
Schizosaccharomyces pombe, equivalent interactions by the
Num1 orthologue Mcp5 –a meiosis-specific protein in this
yeast–tether mitochondria to the plasma membrane of meiotic
cells (Saito et al., 2006; Yamashita and Yamamoto, 2006; Chacko
et al., 2019; Kraft and Lackner, 2019). However, in this yeast,
mitochondria of opposite parental origin are retained at opposed
ends of meiotic cells, which promotes their uniparental meiotic
inheritance (Chacko et al., 2019). In S. cerevisiae, a second tether
presumably attaches mitochondria to the NE by meiosis II, as
inferred by their close apposition to nuclei (Zickler and Olson,
1975; Suda et al., 2007; Sawyer et al., 2019). This tether could
conceivably ensure proper meiotic mitochondrion partitioning
and participate in a quality control system determining the
inheritance of healthy mitochondria (Sawyer et al., 2019). The
identification of such a tether could be critical to understand the
cellular basis of meiotic rejuvenation.

Proper mitochondrion inheritance during S. cerevisiaemeiotic
differentiation depends on the fission proteins Dnm1, Mdv1, and
Fis1 (Gorsich and Shaw, 2004). In contrast, elimination of Dnm1
or Fis1 does not prevent mitochondria segregation into
ascospores in P. anserina (Navarro-Espindola et al., 2020b).
Moreover, mitochondria fragmentation in S. cerevisiae late
ascospores occurs in absence of these fission proteins (Gorsich
and Shaw, 2004). These observations underscore the different
systems involved in the meiotic segregation of mitochondria in
distinct organisms and indicate that Dnm1-independent
mitochondrial fission processes operate during meiotic
differentiation. In S. cerevisiae, mitochondrion segregation into
ascospores also depends on Ady3, a protein involved in the
formation of the ascospore-delineating membrane (the
prospore membrane) (Suda et al., 2007), showing that this
process contributes to mitochondria partitioning. It is worth
highlighting that while the meiotic inheritance of peroxisomes
in P. anserina depends on Fis1 and Dnm1, that of mitochondria
does not (Navarro-Espindola et al., 2020b). This observation
discloses different constrains for the segregation of different
organelles despite sharing central regulatory factors, and
suggests that robust systems stringently control the inheritance
of mitochondria, which, unlike peroxisomes, cannot be produced
de novo. Further research should decipher the molecular
mechanisms underlying these systems.

Loss of the fission proteins in P. anserina produces severe
mitochondrion arrangement alterations in numerous ascospores,
suggesting asymmetrical inheritance of mitochondria with
different functional states (Navarro-Espindola et al., 2020b).
Notably, loss of the fission proteins results in extended
lifespan both in P. anserina and in mitotically-replicating S.
cerevisiae (Scheckhuber et al., 2007; Lefevre et al., 2015),
indicating a central role for these proteins in regulating
cellular lifespan. Nonetheless, further studies are required to
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understand their precise involvement in regulating ascospore
mitochondrial-fitness and rejuvenation, as well as on the
peroxisome-mitochondrion interplay during this process. In
addition, the mitochondrion-peroxisome fission proteins are
required for ascospore differentiation in P. anserina, at an
early developmental step (Navarro-Espindola et al., 2020b),
indicating additional roles for these proteins in meiotic
differentiation, beyond organelle segregation and quality control.

Spatiotemporal Meiotic Remodeling of the
ER, With Incursions Into the Nucleus
The ER consists of a continuous membrane system composed of
different structural and functional domains, including the NE and
distinct peripheral domains (Westrate et al., 2015). As such, the
developmental adjustments of these domains are intertwined. A
fine-tunned structure-distribution relationship is crucial for
proper ER function and quality control.

The NE is composed of the inner and outer nuclear
membranes (INM and ONM, respectively), which are
continuous at the site of insertion of the nuclear pore
complexes (NPCs) and, in fungi, of the spindle pole bodies
(SPBs, the NE-embedded fungal equivalents of centrosomes).
In turn, the ONM is continuous with the peripheral ER (Ungricht
and Kutay, 2017). Despite this continuity, these membrane
domains exhibit different composition and are subject to
differential remodeling. In many fungi, the NE persists
throughout both meiotic divisions, and tubulin and regulatory
proteins are imported into the nucleus to control spindle
assembly and dynamics. In S. pombe, while the NE is
maintained along meiosis, the nucleocytoplasmic barrier is
transiently lost at anaphase II (Arai et al., 2010; Asakawa
et al., 2010). This process occurs without NPC disassembly but
could rely on the modification of specific nucleoporins (Asakawa
et al., 2016). This process allows timely nuclear release of proteins
involved in ascospore formation (Yang et al., 2020), and facilitates
spindle disassembly after meiosis II, likely by allowing access to
the nucleus to spindle disassembly factors (Flor-Parra et al.,
2018). Therefore, this remodeling process allows bidirectional
nucleocytoplasmic transport of proteins whose localization is
critical to conclude meiosis and facilitate the subsequent
meiotic differentiation.

The NE also undergoes profound remodeling to promote
meiotic cellular rejuvenation (King and Unal, 2020; Koch-
Bojalad et al., 2021). In budding yeast, remodeling of the NE
at meiosis II leads to the formation of a distinct NE
compartment–the Gametogenesis Uninherited Nuclear
Compartment (GUNC)–, which segregates senescence factors
away from nuclei following meiosis (King et al., 2019). This
compartment results from the division of the NE into five sub-
compartments (GUNC and the four meiotic nuclei), and
sequesters selected nuclear contents–like long-lived
nucleoporins–and damaged material–including nucleolar and
aggregated proteins–preventing their incorporation into
ascospores (Fuchs and Loidl, 2004; King et al., 2019). GUNC
formation depends on the ESCRT-III complex and on the
formation of the prospore membrane (King et al., 2019;

Koch et al., 2020), and is ultimately degraded following
ascospore formation by Ndt80-dependent vacuole
permeabilization (King et al., 2019). Consistent with a
relevant role for this process in cell rejuvenation, the lifespan
of the offspring of meiotic cells defective for GUNC formation is
reduced (Koch et al., 2020). In S. cerevisiae, the ascospore INM
proteome is distinct from that of mitotic cells, and it is mostly
produced de novo following meiotic differentiation rather than
being inherited from parental cells (Shelton et al., 2021). This
regulated INM remodeling could be related to GUNC
compartmentalization. However, this hypothesis remains to
be tested.

In addition to the NE, the peripheral ER domains also
undergo dynamic meiotic remodeling. Akin to
mitochondria, regulated changes in ER arrangement and
distribution facilitate its selective meiotic inheritance (Suda
et al., 2007; Otto et al., 2021). During S. cerevisiae early
meiosis, most cortical ER coalesces and is subsequently
relocated to the cell central area by anaphase II–in a
process called ER collapse–, to be ultimately segregated into
ascospores. During this process, certain ER domains remain
attached to plasma membrane by the tricalbins and Ist2
tethering proteins. Consequently, these domains are
excluded from ascospores upon their formation, and are
later degraded by vacuolar lysis (Otto et al., 2021). Like
mitochondria, detachment of the ER from the plasma
membrane depends on the transcriptional regulator Ndt80.
In addition, ER detachment requires the reticulon and Yop1
proteins–which shape the ER by promoting membrane
curvature–, as well as the lunapark protein Lnp1, which
regulates ER network formation. ER collapse depends on
actin dynamics and is followed by the elimination of a
second subset of ER by selective ER autophagy (ER-phagy),
which defines the ER to be segregated into ascospores (Otto
et al., 2021). These findings revealed that meiotic inheritance
of the ER relies on a sophisticated system that involves two
parallel pathways for ER degradation, which selectively
eliminate distinct ER subdomains, most probably as a
quality control mechanism ensuring progeny rejuvenation.
Further research should disclose the nature of the domains
destined to degradation, as well as the mechanisms implicated
in their recognition.

In P. anserina, as in budding yeast, the ER is subject to
developmental remodeling during meiotic differentiation. In
this fungus, ER subdomains enriched for the reticulon Rtn1 are
differentially distributed during meiotic development. Rtn1
accumulates at the growing apical region of prophase I asci and
relocates to the middle region during the subsequent meiotic
progression. While cortical ER collapse has not been studied,
Rtn1 is required for meiotic spindle arrangement and
positioning, and its elimination leads to defective meiotic
nucleus segregation (López-Fuentes et al., 2021). This
suggests that in this fungus ER remodeling is linked to
meiotic spindle dynamics. The precise function of Rtn1 in
this process remains undisclosed. In budding yeast, loss of
Rtn1 and Yop1 leads to defective mitotic spindle structure and
positioning, resulting from alterations in SPB integrity (Casey
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et al., 2012). SPBs insert in the NE in regions of high membrane
curvature, where the INM and ONM fuse (Jaspersen, 2021).
Therefore, meiotic SPB assembly and integrity in P. anserina
could rely on Rtn1. Consistent with this hypothesis, Rtn1 is
also required for ascospore individualization in some asci,
where it could facilitate SPB-driven prospore membrane
formation (López-Fuentes et al., 2021). The processes of
SPB and NPC insertion into the NE are interrelated and
depend on common factors (Jaspersen and Ghosh, 2012),
including the ER-shaping proteins (Dawson et al., 2009).
Therefore, P. anserina Rtn1 could also be required for
proper NPC function or remodeling during meiosis. In
keeping with this hypothesis, a fraction of Rtn1 localizes to
discrete puncta in the nuclear periphery during meiosis
(López-Fuentes et al., 2021). Interestingly, the putative S.
macrospora nucleoporin Pom33 interacts with ER-shaping
proteins, including a reticulon protein (Groth et al., 2021).
Although the location of this interaction is unknown, this
could reflect a link between ER remodeling and the signaling
pathways governing sexual development (Groth et al., 2021;
Kuck and Stein, 2021).

Cortical ER remodeling could also be a determinant for meiotic
nucleus segregation. In addition to mitochondria tethering, Num1
provides a cortical anchor for themicrotubulemotor dynein, which

controls from the cell periphery the movement and positioning of
nuclei and spindles, by pulling the astral microtubules emanating
from the SPBs (Greenberg et al., 2018; Xiang, 2018). In S. cerevisiae
mitotic cells, disruption of the cortical ER by deletion of the
reticulon and Yop1 proteins alters Num1 cortical distribution
(Lackner et al., 2013), while loss of the plasma membrane-ER
tethering proteins Scs2/Scs22 perturbs Num1 localization and
disturbs the microtubule-sliding activity of dynein (Omer et al.,
2018). The meiosis cortically retained ER could be required to
sustain spindle dynamics throughout meiosis. Under this scenario,
P. anserina Rtn1 could be required for proper Num1-dependent
localization of dynein during meiosis. Actually, the Num1
orthologue of P. anserina Ami1 is required for correct meiotic
nuclear distribution and spindle positioning (Graia et al., 2000;
Bouhouche et al., 2004). Nonetheless, while the association of
mitochondria with Num1, and their role in dynein anchoring are
conserved in yeasts; Num1 does not associate with the ER in S.
pombe (Kraft and Lackner, 2019). Furthermore, Mdm36 is not
conserved beyond Saccharomycotina. Further comparative
analyses are required to better appreciate the participation of
the ER in Num1 activity, as well as the specific and conserved
roles performed by this protein, including its contribution to
meiotic development. These analyses should enlighten the role
of Num1 in integrating the dynamics of multiple membrane

FIGURE 2 | Model for organelle dynamics during fungal meiotic development. Diagram summarizing different processes involved in the regulation of organelle
dynamics in different fungi. (A) In early meiosis, in S. cerevisiae, mitochondria (MT) and cortical ER are tethered to the plasma membrane (PM) through interactions with
MECA (triangles) and different ER tethering proteins (hexagons with different shading), respectively. Increased mitochondrion fusion also takes place at this stage. In P.
anserina, peroxisomes (PX) and reticulon (Rtn1)-rich ER domains exhibit a polarized localization. (B) Upon meiosis II (only one dividing nucleus is shown), in S.
cerevisiae Ndt80-dependent transcriptional changes promote MECA degradation and ER-shaping protein-dependent detachment of the ER from the cell cortex (ER
collapse). Mitochondria and most ER are relocated to the cell central area, while specific tethers retain a subset of ER at the cell cortex. In P. anserina, Rtn1 relocates to
the cell central area following prophase I, where it could support SPB- and/or NPC-dependent spindle dynamics. During meiosis II, peroxisomes distribute more
homogeneously and adopt a more elongated morphology than those of early meiosis, and they also differ in their protein import competency (illustrated by different
shading). In S. pombe, the nucleocytoplasmic barrier is transiently lost at anaphase II (bidirectional arrow). (C) During ascospore formation, SPB-driven prospore
membrane (PSM) formation conducts the packaging of meiotic nuclei, portions of the ER, nuclear-associated mitochondria and peroxisomes into nascent ascospores.
In S. cerevisiae, the plasma membrane-retained ER is degraded upon vacuole permeabilization, and a second subset of the ER is eliminated by ER-phagy (AP,
autophagosome). Dnm1-dependent fission is required for mitochondrion segregation. In P. anserina, Dnm1 is required for peroxisome segregation. Pexophagy could
eliminate selected peroxisomes in P. anserina and in S. macrospora.
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compartments with the cytoskeletal system driving nuclear
segregation.

DISCUSSION

Recent research involving different model fungi has disclosed that
meiotic development involves sophisticated regulation of the
dynamics of numerous organelles, including peroxisomes,
mitochondria and the ER. Furthermore, in addition to
regulated nucleus dynamics–an intrinsic part of meiosis–the
NE undergoes extensive remodeling supporting roles beyond
chromosome compartmentalization.

Organelle dynamics during meiotic development are regulated
by membrane remodeling and fission and fusion processes, as
well as by positional control systems, which define organelle
arrangement, connectivity, and distribution. In addition,
organelle proliferation and degradation modulate organelle
abundance and selective removal during meiotic differentiation
(Figure 2). The spatiotemporal coordination of these processes is
important to promote balanced organelle segregation and defines
quality control systems ensuring the inheritance of functional
organelles, promoting progeny rejuvenation. Moreover, although
many of their underlying involvements remain ambiguous,
organelle dynamics are also critical for the regulation of
cytoskeletal dynamics, which conduct accurate nuclear
segregation, and for proper ascospore (gamete) differentiation.

The meiotic regulation of the dynamics of different organelles
involves shared factors and common regulatory systems.
Moreover, regulated interactions between distinct membrane
compartments play fundamental roles in their dynamic
regulation. These observations suggest commonality in many
processes regulating organelle dynamics during meiotic
development, and underscore close organelle interrelationships
involved in orchestrating intracellular dynamics during this
process. Still, not much is known beyond yeasts about the

meiotic regulatory systems controlling organelle dynamics.
Future comparative research should identify new such systems
and disclose their evolutionary conservation. Further research
should also increase our knowledge about the molecular
mechanisms, inter-organelle crosstalk and developmental
outcomes of organelle dynamics during meiotic development.
Fundamental questions in this regard concern the identity of the
organelles that are subject to differential remodeling in meiotic
cells, as well as the mechanisms that conduct their selective
transport, retention, and degradation, including the role of
cytoskeletal and tethering proteins in these processes. High
resolution and live-cell microscopy, along with interactome
studies should provide significant insights into these issues.
Further investigations should also disclose additional dynamic
organelle remodeling processes and reveal whether equivalent
processes are involved in meiotic regulation throughout diverse
eukaryotes.
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