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Modelling Self-Organization in 
Complex Networks Via a Brain-
Inspired Network Automata Theory 
Improves Link Reliability in Protein 
Interactomes
Carlo Vittorio Cannistraci   1,2

Protein interactomes are epitomes of incomplete and noisy networks. Methods for assessing link-
reliability using exclusively topology are valuable in network biology, and their investigation facilitates 
the general understanding of topological mechanisms and models to draw and correct complex network 
connectivity. Here, I revise and extend the local-community-paradigm (LCP). Initially detected in brain-
network topological self-organization and afterward generalized to any complex network, the LCP is a 
theory to model local-topology-dependent link-growth in complex networks using network automata. 
Four novel LCP-models are compared versus baseline local-topology-models. It emerges that the 
reliability of an interaction between two proteins is higher: (i) if their common neighbours are isolated in 
a complex (local-community) that has low tendency to interact with other external proteins; (ii) if they 
have a low propensity to link with other proteins external to the local-community. These two rules are 
mathematically combined in C1*: a proposed mechanistic model that, in fact, outperforms the others. 
This theoretical study elucidates basic topological rules behind self-organization principia of protein 
interactomes and offers the conceptual basis to extend this theory to any class of complex networks. 
The link-reliability improvement, based on the mere topology, can impact many applied domains such 
as systems biology and network medicine.

The problem of presence of noise in the topology of complex networks is of primary relevance in network and 
systems biology. A protein-protein interaction network (PPIN), a.k.a. protein interactome, can be modelled as 
an undirected graph: vertices represent proteins and edges represent interactions between proteins. PPINs are 
a paradigmatic example of noisy and incomplete networks and their analysis can be useful to enlighten and 
understand this problem also from a more general perspective in network science. In case of PPINs the existence 
of noise in the topology of the network is due to the presence of false-positive (FP) interactions detected during 
the experiments. In fact, despite the recent advancements, the FP rate of currently widely used experimental 
technologies is still high1,2. The development of methods that are able to assess the reliability of interactions is 
fundamental for denoising PPINs3,4, which is a pre-processing step that can be very beneficial in many network 
biology applications and tools, such as to name a few: (i) computational prediction of protein complexes from 
PPINs5,6; (ii) topological prediction of PPIs7–9; (iii) network-based inference of disease-related functional mod-
ules and pathways10–12; (iv) computational methods for constructing network-based ontologies of gene function, 
an example of which is the recently developed network-extracted ontology (NeXO)13.

Many computational approaches have been proposed to denoise and to assess the reliability of PPIs3,4, and 
among them topological approaches represent a new exciting field3,4. Topological denoising (or topological link 
reliability) methods are useful techniques that rely exclusively on the structural information (the binary graph 
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adjacency matrix) provided by the PPIN topology, in order to assess a reliability score for each of the links (pro-
tein interactions) present in the network. The higher the score, the more likely the two proteins interact with each 
other. In practice, these approaches are equivalent to anomaly detection methods in machine learning: they take 
as input the network topology (for example, an adjacency matrix or a list of interactions) and they give as output 
a ranking of the network links in decreasing order of reliability. Topological reliability approaches are very ver-
satile. They can be easily and rapidly applied as pre-processing steps3,4 to each of the aforementioned biological 
applications and tools because they do not require information other than the network structure. In addition, 
they are particularly convenient when the available biological information on the proteins being tested for inter-
action (seed proteins, see Fig. 1) is incomplete and unreliable, or when in general the prior biological knowledge 
is absent.

Neighbourhood methods are between the most used algorithms for topological link reliability of PPINs8. They 
are named so because they assign a score to any network interaction by relying on the topological properties of 
its seed proteins’ neighbourhood. They are local-structure similarity-based algorithms, hence they are simple, 
efficient and can deal with large-scale networks in a reasonable time8. More precisely, three algorithms are the 
points of reference among the neighbourhood algorithms used in network biology: Czekanowski-Dice (CD)14, 
Functional Similarity Weight (FSW)15, Adjusted-CD (ACD)5,6. Originally proposed to predict protein functions, 
they perform equally well for assessing the reliability of protein interactions, as was later demonstrated5.

On the contrary, global algorithms are named so because they assign a score by relying on the properties of 
the overall network topology at once, and the machine learning methods - such as the ones based on dimen-
sionality reduction of the network topology in a geometrical space1,7 or the ones based on the clustering of the 
network in submodules3 – are between the most important. In particular, CAPPIC (Cluster-based Assessment of 
Protein-Protein Interaction Confidence), which is a machine learning method based on Markov clustering, was 
proved to be between the most effective3.

This article is dedicated and only focused to local-structure similarity-based algorithms and stems from two 
main observations. First: classical neighbourhood methods, such as common neighbours16, preferential attach-
ment16, Adamic-Adar17, resource allocation18, etc., which are well-recognized in the field of network science, 
have never been tested in network biology for assessing link reliability. And second: previous studies on network 
reliability concentrated principally on yeast networks, testing the performance of the algorithms generally only 
on a reduced number of networks.

Here, together with CD, FSW, ACD and Interaction Generality (IG1)19 that are well-known in network biol-
ogy, I test the network reliability performance of other 12 neighbourhood algorithms derived mainly from other 
fields of network science, such as link prediction and social networks. In addition, I propose 4 new algorithms 
and test and compare their performance in 10 different high-quality networks from 5 different organisms: 3 for 
yeast (S. cerevisiae), 1 for plant (A. thaliana), 1 for worm (C. elegans), 1 for fly (D. melanogaster), 4 for human 
(H. sapiens). In particular, I included one human network that is high-quality and structurally resolved20 (only 
those interactions in which the interacting domains of both partners, or their homologs, can be found in a 3D 
structure of an interaction were kept) in order to gauge the validity of a new proposed Gene-Ontology-based 
evaluation framework (for the evaluation of the network reliability algorithms) that is more conservative and 
restrictive than the one adopted in the past studies. Nevertheless, I would like to clarify that the aim of this study 
is not to scrutinize how reliable are the recent PPIN data released by large scale databases. Indeed, I have another 
objective, which is to investigate and discuss the different mechanistic rules of self-organization that characterize 

Figure 1.  Extended paradigm on local community links. On the left, the mathematical formulae of the 
four novel local-community-based neighbourhood indices. On the right, an example considering one local 
community and the proposed subdivision of the seed node’s neighbourhood into: internal local-community-
links (iLCL, white lines), external local-community-links (eLCL, red lines) and non local-community-links 
(nLCL, green lines).
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the reliability of the topology of PPIN regardless of the organism considered or of the period/year (I considered 
networks released in a period that covers 11 years: 2005 to 2015) in which they were combined and published.

Finally, the conceptual and mathematical formalizations of the LCP-theory and epitopological learning that 
I gave in my previous publication8 were quite immature. In this article, I dedicate an entire section to explain the 
fundaments and definitions of the LCP-theory. The section starts with a deep dive in the brain architecture, where 
the LCP-theory was initially developed, and progresses towards the generalization of the LCP-theory for any com-
plex network and its interpretation in case of molecular networks. In addition, I revise and extend the LCP-theory 
considering that the local isolation of the operational units in the different local communities is important to 
carve the LCP architecture in the network, and this is guaranteed by the fact that the common neighbours mini-
mize their interactions external to the local community. This is a topological property that I will demonstrate of 
particular importance for the architecture of protein interactomes.

Methods
Network datasets.  In this study, nine different high-quality network datasets were considered. Each net-
work was curated removing small isolated components of few nodes (because they present a poor topological 
connectivity and cannot be used in topological link reliability) following the same procedure suggested in pre-
vious publications1,7,8,15,19,21–26. The networks, along with their original number of nodes and edges are reported 
below.

Network 1: yeast (S. cerevisiae)27, comprises 4036 proteins and 10411 interactions.
Network 2: yeast (S. cerevisiae)23, comprises 4385 proteins and 12234 interactions.
Network 3: yeast (S. cerevisiae)28, comprises 3518 proteins and 9760 interactions.
Network 4: plant (A. thaliana)29, comprises 4519 proteins and 10721 interactions.
Network 5: worm (C. elegans) (BioGRID 3.1.92)30, comprises 2654 proteins and 4485 interactions.
Network 6: fly (D. melanogaster) (BioGRID 3.1.92)30, comprises 7887 proteins and 34711 interactions.
Network 7: human (H. sapiens)20, comprises 1579 proteins and 3460 interactions. This is a high quality and 

structurally resolved network, i.e. the interfaces of its interactions were structurally resolved using a homology 
modelling approach20. The reliability of the interactions in this PPIN should be significantly higher than in the 
other networks.

Network 8: human (H. sapiens)28, comprises 7831 proteins and 24241 interactions. This network was both 
systematically and manually curated.

Network 9: human (H. sapiens)31, comprises 4100 proteins and 13358 interactions.
Network 10: human (H. sapiens)2, comprises 13460 proteins and 141296 physical interactions experi-

mentally documented in human cells, including protein-protein and regulatory interactions, metabolic path-
way and kinase-substrate interactions, representing one of the largest and completed blueprints of the human 
interactome2.

The web-links for downloading these networks are provided in the respective articles related with the dataset 
publication. The adjacency matrices extracted for each of these networks and that were used for the analysis con-
ducted in this article are available at the web-link provided in the Declaration section at the bottom of the article.

Node neighbourhood based models.  These algorithms assign a score to any network interaction by 
relying on the topological properties of the nodes that are neighbours of the seed proteins (Fig. 1). The com-
mon neighbours (CN) index16 is the predecessor of these algorithms and follows the natural intuition that the 
likelihood that two nodes x and y interact increases if their sets of first-node-neighbours N(x) and N(y) overlap 
substantially (the notation | | indicates the number of elements in the set):

∩=CN x y N x N y( , ) ( ) ( )

The other node neighbourhood indices are often a variation or generalisation of CN. Adamic & Adar (AA)17 
and Resource Allocation (RA)18 give more importance to common neighbours with low degree:
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where |N(i)| is the degree of the node common neighbour i. Preferential Attachment (PA)16 is the degree product 
of nodes x and y:

= ⋅PA x y N x N y( , ) ( ) ( )

However, Cannistraci et al.8 recently gave an interpretation of PA in function of CN based on the fact that 
|N(x)| = |nLCL(x)| + CN(x):

= | | ⋅ | | + | | ⋅ + | | ⋅ +PA x y nLCL x nLCL y nLCL x CN x y nLCL y CN x y CN x y( , ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( , )2

where nLCL(x) are the non local-community-links of node x: links of the seed node x that are not related with the 
local community (for details, see Fig. 1 and next section 2.3).
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An important subclass of the node neighbourhood based indices is obtained by normalizing CN. Jaccard 
(JC)32, Sørensen-Czekanowski-Dice (SCD)14,33,34 and Leicht-Holme-Newman (LHN)35 are the landmarks nor-
malised indices in complex networks:

∪
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For correctness, the Sørensen index (S) and Czekanowski-Dice dissimilarity (CD) are related according to 
the formula: S = 1 − CD. Here for simplicity I will use the formula of S, and I will name this index SCD in the 
reminder of the article.

To conclude, I consider also the Functional Similarity Weight (FSW)15 and the Adjusted-CD (ACD)5,6 that 
are more elaborated types of normalised indices, which adjust the normalisation in case the seed proteins have 
a lower number of interactions than the average node degree in the network. These are landmark algorithms in 
network biology and I invite the reader to refer to the original publications for more details. Here, they are used as 
reference, but it is not in the scope of this article to discuss them, since the literature on this subject is exhaustive. 
As shown by Chen et al.22, FSW and SCD outperform methods such as IG119, IG225 and the Interaction Reliability 
by Alternate Pathways (IRAP), which are outdated types of algorithms employed at the beginning in this research 
area (i.e. interaction reliability) of network biology. Given the fact that IG2 and IRAP are very computationally 
expensive21, I decided to adopt only IG1 (exclusively as a baseline that offers a lower-bound in the evaluations).

Local-community-paradigm (LCP) based models.  The node neighbourhood indices are focused on 
the common neighbours, therefore on a group of nodes and their proprieties. Cannistraci et al.8 proposed a 
strategic shift from nodes to links (in particular from nodes to community links, Fig. 1) that represents a new 
way to treat local-structure similarity-based measures in complex networks8. More specifically, a theory to model 
local-topology-dependent link-growth in complex networks called local-community-paradigm (LCP) was sug-
gested8. The LCP-theory8,36–39 is a brain-network bioinspired theory, the origin of which will be carefully discussed 
in the next section. It holds that for modelling link prediction in complex networks, the information content 
related with the common neighbour nodes should be complemented with the topological information emerg-
ing from the interactions between them. The cohort of common neighbours and their cross-interactions form 
what is called a local community; the cross-interactions between CNs are called local community links (LCLs). 
In order to demonstrate the validity of the theory on several classes of networks, different classical node-based 
link prediction techniques like CN, JC, AA, RA and PA were reinterpreted according to the LCP-theory8, by 
introducing mathematical terms related with the LCLs in their formulae. Notably, the LCP-theory generated the 
pioneering design of a novel family of mechanistic parameter-free neighbourhood-based models not only specific 
to monopartite networks. In fact, recently the LCP-theory and the relative derived models have been proven valid 
also for bipartite complex networks36. The LCL is the first of these new topological-similarity measures that plays 
the part of a prediction model, and it is defined as the sum of the internal links between the common neighbours 
(Fig. 1). These links were simply defined as LCLs in previous publications8,36 and hereby are more specifically 
redefined as internal local community links (iLCL):
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Cannistraci-Alanis-Ravasi (CAR) is the local-community-link based correction of CN and is defined as:

= ⋅CAR x y CN x y LCL x y( , ) ( , ) ( , )

Cannistraci-Adamic-Adar (CAA) and Cannistraci-resource-allocation (CRA) are the local-community-link 
based corrections of AA and RA respectively, and are defined as:
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Cannistraci-preferential-attachment (CPA) is the local-community-link based correction of PA and is defined as:

= | | ⋅ | | + | | ⋅ + | |
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Cannistraci-Jaccard (CJC) is the local-community-link based correction of JC and is defined as:
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A deep dive in the brain architecture: towards the origin of the LCP-theory and the definition 
of local-ring network automata.  In 1949, Donald Olding Hebb advanced a local learning rule in neuronal 
networks that can be summarized in the following: neurons that fire together wire together40. In practice, the 
Hebbian learning theory assumes that different engrams (memory traces) are memorised by the differing neu-
rons’ cohorts that are co-activated within a given network. Yet, the concept of wiring together was not further 
specified, and could be interpreted in two different ways. The first interpretation is that the connectivity already 
present, between neurons that fire together, is reinforced; whereas, the second interpretation is the emergence 
and formation of new connectivity between non-interacting neurons already embedded in a interacting cohort.

The first interpretation has been demonstrated in several neuroscientific studies, where it was proven that 
certain forms of learning consist of synaptic modifications while the number of neurons remains basically unal-
tered41–43. A first mathematical model of this learning process was implemented in the Hopfield’s model of asso-
ciative memory, where neuron-assemblies are shaped during engram formation by a re-tuning of the strengths of 
all the adjacent connections in the network44. It is important to specify that neuronal networks are over-simplified 
models and between two nodes (that represent two neurons) only one unique connection, which is deceptively 
called ‘synapsis’, is allowed. This unique artificial synapsis is a network link with a weight (or strength) and 
abstractly represents in a unique connectivity all the multitude of synapses that can occur between two real 
neurons in a brain tissue. For non-computational readers, I stress that the word ‘synapsis’ used in computational 
modelling of artificial neural networks might be misleading for neurobiologists, and should be intended as a 
mere link between two nodes of a network that comprehensively symbolizes the strength of all the real biological 
synapses connecting two neurons. Here, and in the reminder of this paragraph, I will refer only to this artificial 
neural network model where a link between two nodes (neurons) indicates an abstract interaction between them. 
In fact, although this artificial network model is based on evident simplifications, it demonstrated to be a power-
ful tool to simulate learning processes of intelligent systems44,45.

Surprisingly, the second possible interpretation of the Hebbian learning – a cohort of interacting neurons 
that fire together, give rise to new connections between non-interacting neurons in the cohort - to the best of my 
knowledge was never formalized as a general paradigm of learning, and therefore it was never employed with 
success to modify the architecture of abstract neural networks to simulate pure topological learning. I acknowledge 
the existence of studies that investigate how neuronal morphology predicts connectivity46. For instance, Peters’ 
rule predicts connectivity among neuron types based on the anatomical colocation of their axonal and dendritic 
arbors, providing a statistical summary of neural circuitry at mesoscopic resolution46. However, no paradigms 
were proposed to explain the extent to which new connections between non-interacting neurons could be pre-
dicted in function of their likelihood to be collectively co-activated (by firing together) on the already existing 
network architecture. This likelihood of localized functional interactions on the existing neural network can be 
influenced by external factors such as the temporal co-occurrence of the firing activity on a certain cohort of 
neurons, and by other factors that are intrinsic to the network architecture such as, among the most important, 
the network topology.

In 2013 Cannistraci et al. noticed that considering only the network topology, the second interpretation of the 
Hebbian learning could be formalized as a mere problem of topological link prediction in complex networks. The 
rationale is the following. The network topology plays a crucial role in isolating cohorts of neurons in functional 
communities that naturally and preferentially - by virtue of this predetermined local-community topological 
organization - can perform local processing. In practice, the local-community organization of the network topol-
ogy creates a physical and structural ‘energy barrier’ that allows the neurons to preferentially fire together within 
a certain community and therefore to add links inside that community, implementing a type of local topological 
learning. In few words: the local-community organization influences (by increasing) the likelihood that a cohort 
of neurons fires together because they are confined in the same local community, consequently also the likelihood 
that they will create new connections inside the community is increased by the mere structure of the network 
topology. Inspired by this intuition, Cannistraci et al. called this local topological learning theory epitopological 
learning, which stems from the second interpretation of the Hebbian leaning. The definition was not clearly given 
in the first article8 that was quite immature, and therefore I now provide an elucidation of the concepts behind 
this theory by offering new definitions. Epitopological learning occurs when cohorts of neurons tend to be pref-
erentially co-activated, because they are topologically restricted in a local community, and therefore they tend to 
facilitate learning by forming new connections instead of merely retuning the weights of existing connections. 
As a key intuition, Cannistraci et al. postulated also that the identification of this form of learning in neuronal 
networks was only a special case, hence the epitopological learning and the associated local-community-paradigm 
(LCP) were proposed as local rules of learning, organization and link-growth valid in general for topological link 
prediction in any complex network with LCP architecture8. On the basis of these ideas, they proposed a new class 
of link predictors that demonstrated - also in following studies of other authors - to outperform many state of the 
art local-based link predictors8,47–53 both in brain connectomes and in other types of complex networks (such as 
social, biological, economical, etc.). In addition, they proposed that the local-community-paradigm is a necessary 
paradigm of network organization to trigger epitopological learning in any type of complex network, and that 
LCP-correlation8 is a measure to quantitatively evaluate the extent to which a given complex network is organized 
according to the LCP. The LCP-correlation is generally computed as the Pearson correlation (but also other types 
of measures of association among variables can be used) between two variables whose size is equal to the number 
of links in the network. The first variable is the number of common neighbours (which create a local community) 
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associated to each link of the network. The second variable is the number of local community links (connections 
among common neighbours) associated to each link of the network8. The LCP-correlation measures whether the 
number of interactions between the common neighbours is a function that increases with the number of com-
mon neighbours in the local community. Complex adaptive networks with weak-links that make local processing 
and global delivery generally follow the LCP organization (the LCP-correlation is generally ≥0.7), whereas the 
networks that do not follow the LCP organization (LCP-correlation ≤ 0.3) present strong-links, they are not clus-
tered and they are suitable for storage or mere delivery of energy or information. It is very rare to find networks 
that have a LCP-correlation between 0.3 and 0.78.

In conclusion, the LCP originated from the initial idea to explain how the network topology indirectly influ-
ences the process of learning a memory by adding new connections in a network of neurons, and consequently 
generalized to advocate mechanistic modelling of topological growth and self-organization in real monopartite8 
and bipartite36 complex networks, with a significant impact also on prediction of drug-target interactions exploit-
ing exclusively bipartite network topology37. This explains the title of the present article and clarifies the theoret-
ical fundaments behind our results, which derive from molecular networks.

Protein interaction networks display a clear LCP architecture8, where protein complexes are confined in local 
and topologically isolated network structures, which are often coincident with functional network modules that 
play a crucial role in molecular circuits. The key generalized idea behind the LCP network architecture is that, 
for instance, a local community of neurons or proteins should take functional advantage of being confined in a 
local assembly of operational units. Each local assembly - if it is properly activated by an external signal coming 
from another region of the network - performs a functional operation by means of a structural remodelling of 
the internal connectivity between the operational units that are embedded in the network local community. The 
systems supported by LCP network architecture are very dynamic and react to a stimulus with a local plastic 
remodelling. In case of operational units such as neurons, the local community remodelling can implement for 
instance a learning process. In case of operational units such as proteins, the local community remodelling is 
instead necessary to implement for instance a biological process, which emerges by the molecular-complex rear-
rangement in the 3D space.

The previous conceptual and mathematical formalizations of the LCP-theory were immature and put more 
emphasis on the fact that the information content related with the common neighbour nodes should be comple-
mented with the topological information emerging from the interactions between them. However, in this new 
study I would like to remark that the local isolation of the operational units in the different local communities 
is equally important to carve the LCP architecture in the network, and this is guaranteed by the fact that the 
common neighbours minimize their interactions external to the local community. This minimization forms in 
practice a sort of topological energy barrier, which in turn confines the signal processing to remain internally 
to the local community. In the next paragraph I will revise the LCP idea and its mathematical formalization in 
order to concretely take into account also the minimization of the external links. However, in this article I will 
discuss the implications of this theoretical revision only on modelling of protein interactomes, leaving to other 
studies the investigations of its impact on other types of networks. A recent study of Narula et al.39 shows that 
local-community-paradigm and epitopological learning can enhance our understanding of how local brain con-
nectivity is able to process, learn and memorize chronic pain39. Besides, another recent study of Muscoloni et al.38  
discusses how local parameter-free mechanistic models to predict link-growth in complex networks (such as the 
common neighbours and LCP-based indices discussed in the previous section) can be interpreted as network 
automata that compute the likelihood to close ‘local rings’ in the network whenever a link is missing in the topol-
ogy. The local ring is the closure of a ‘local tunnel’ obtained by adding to the topology the missing link for which 
is computed the likelihood to appear. The local tunnel is the ensemble of all the local paths (which can be the 
smallest shortest-paths definable on a given network topology or the paths of a fixed arbitrary length that connect 
two nonadjacent nodes) which connect two nonadjacent nodes (extremities of the tunnel), and the common 
neighbours are all the nodes embedded in the tunnel structure, therefore they are an estimation of the size of 
the tunnel. For more details, please refer to the study of Muscoloni et al.38 that discusses also how some of these 
network automata models, such as the Cannistraci-resource-allocation (CRA), seem strongly related and able to 
predict the growth of network topology which is associated to hyperbolic geometry.

New LCP-revised models.  In this article, I revise and extend the paradigm on local community links (LCL). 
I propose to subdivide the neighbourhood of the seed nodes (Fig. 1) into: internal local-community-links (iLCL), 
external local-community-links (eLCL), and nonlocal-community-links (nLCL). iLCL are common neighbours’ 
links that interact only with other common neighbours in the local community. eLCL are common neighbours’ 
links that do not interact with the common neighbours and the seed proteins. nLCL are seed nodes’ links that 
do not interact with the local community of common neighbours. See Fig. 1 for a paradigmatic example which 
reports the case of one local community.

For correctness I clarify that in the previous publications8,36 I just generically defined and applied the name 
LCL to the same type of links that now, in the present article and according to the proposed extended definition, 
are relabelled with the new name of iLCL. I also make clear that in the past publications eLCL and nLCL were 
not identified and distinguished with respect to the other links present in the network. Furthermore, although in 
Fig. 1, for simplicity and clarity of the representation, only one local community is connected with the seed pro-
teins, in a real scenario multiple disjointed local communities might be connected with the same seed nodes, but 
this multiple local-community-configuration would not affect the definition of iLCL, eLCL and nLCL I provided. 
Finally, a single common neighbour is considered a degenerate case of isolated local community with one node. 
According to these new definitions, I here propose four novel local-community-based parameter-free neigh-
bourhood mechanistic models, which, as recently discussed in another article of mine38 (and briefly summarized 
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in the previous section on the origin of the LCP theory), can be intended as local-ring network automata. Their 
mathematical formulae are given below together with an explanatory plot in Fig. 1. The first of these models is:

∑=
+

C x y
eLCL i

1( , ) 1
1 ( )i

CN

C1 is a mechanistic model based on a rule that can help to understand the importance to minimize links exter-
nal to the local community – in the formula indicated by the term eLCL(i) – in order to predict the likelihood of a 
new link to occur or the reliability of an existing link between the seed nodes x and y. In the context of our study 
this model can help to disclose whether the reliability of an existing protein interaction is higher when the local 
community, although it is composed by many common neighbour proteins, remains isolated in a well-defined 
protein complex that minimizes its external interactions. The second model is:

=
+

⁎C x y C x y
nLCL x nLCL y

1 ( , ) 1( , )
( ( ) ( ) )2

C1* is a normalization of C1 that corrects the formula penalizing interactions between seed nodes that, 
although can have many common neighbours which are isolated in a local community, have also many 
nonlocal-community-links which in the formula are indicated by the terms nLCL(x) and nLCL(y) at the denom-
inator. The rationale is that while a consistent number of common neighbours that are isolated (because they 
do not have external local-community-links, eLCL) indicates topological proximity of two seed nodes, on the 
other side if two seed nodes have a significant amount of nonlocal-community-links, nLCL, which overcome 
the number of common neighbours, this might indicate that the two seed nodes dominate far apart regions of 
the topology. In fact, the idea is that adjacent nodes with a high external degree (where the external degree is 
computed considering the number of neighbours not in common) should be geometrically far because they 
represent hubs without neighbours in common, which - according to the theory of navigability of complex net-
works presented by Boguñá et al.54 - tend to dominate geometrically distant regions. This same notion was also 
adopted with success in previous articles of mine: to formulate a dissimilarity kernel for network community 
detection by affinity propagation55; to propose the repulsive part of a pre-weighting rule, which was designed to 
approximate the geometrical distance between nodes in the topology, as first step to implement what we named 
the ‘coalescent embedding’ algorithm for mapping complex networks in the hyperbolic space56. A final intuitive 
remark (a speculation that I do not prove in this article, but it is emerging considering also the results gained in 
previous articles8,36 where the Jaccard index has bad link prediction performance) is that this normalization for 
the nLCL might play an important role in link-reliability because it relates to the evaluation of the adjacent links 
that are already in the network topology, while it can be less important and even harmful in designing a model for 
link-prediction. The reason is that the number of nonadjacent links considered for link prediction is in general 
(especially in large networks) much higher than the adjacent links which form the network topology. This implies 
that the combination of nonadjacent links that are close in the topology (because they are in the same local 
topological region) but that, just by chance, can have high number of external links is much higher than in the 
case of link reliability, causing as a matter of fact a wide and improper over-penalization of candidate links which 
otherwise would be highly ranked. This hypothesis needs to be further explored in future studies and might be 
considered a starting point to understand why the Jaccard index performs fairly in link-reliability but has low 
performance in link-prediction. The third model is:

∑= −
+

C x y
iLCL i

2( , ) 1 1
1 ( )i

CN

C2 is a mechanistic model based on a rule that can help to understand the importance to maximize links internal 
to the local community – in the formula indicated by the term iLCL(i) – in order to predict the likelihood of a new 
link to occur or the reliability of an existing link between the seed nodes x and y. In the context of our study this 
model can help to disclose whether the reliability of an existing protein interaction is higher when the local com-
munity (which is composed by many common neighbour proteins) tends to establish many internal interactions 
regardless of the fact that, by minimizing the external interactions, it can form a well-defined protein complex. 
The fourth model is:

=
+

⁎C x y C x y
nLCL x nLCL y

2 ( , ) 2( , )
( ( ) ( ) )2

C2* is the normalized version of C2 according to the same rationale discussed above for C1*. To minimize 
redundancy in the article, further motivations for the rationale and the meaning underlying the mathematical 
formulae of these four new models are directly provided in the Results and Discussion section, where, with the 
help of the results gathered from the simulations in different networks, I intend to simplify the understanding of 
the topological ‘principia’ behind these mathematical formulae.

New Gene-Ontology-based evaluation framework.  Gene ontology (GO) is the gold standard (in the 
sense that it is the best available benchmark under reasonable conditions) employed in the past publications for 
the evaluation of the performance of algorithms for link reliability. The rationale adopted in the past studies is that 
PPIs that are involved in the same biological process (BP), have similar molecular function (MF) or are located 
in the same cellular component (CC), are very likely to occur1,7,8,15,19,21–26. All the past studies on methods for 
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assessing link reliability adopted GO semantic similarity for determining the precision in reliability in each of the 
GO categories: MF, BP and CC. Below, I describe the procedure adopted in the previous studies.

The similarity between GO terms is measured for all the pairs of proteins in the PPINs using the R package 
GOSemSim57 that implements the Wang GO semantic similarity method58. The GOSemSim function takes as 
input the list of proteins that form the PPIN, annotates them, computes the Wang GO semantic similarity between 
proteins and outputs an adjacency matrix whose entries are the GO similarities for every PPI. There are several 
GO semantic similarities59 that were originally developed for natural language taxonomies and it is not known if 
they are fully suitable for GO. Wang’s measure was designed specifically for the GO and its values range between 
0 (if the two proteins do not have a similar MF, BP or CC) and 1 (if the proteins share one or more identical GO 
terms). Whenever the Wang similarity is in the high end of the range, the proteins being analysed can be con-
sidered analogous in their MF, BP, or CC58. Thus, as suggested in previous studies1,7,8,15,19,21–26 only those protein 
interactions with Wang similarity above 0.5 are considered reliable (‘true’) according to one of the GO categories. 
Finally, a precision curve is drawn for each of the three GO categories. For example: considering a sensitivity step 
of 10 interactions, the precision of the first 10 ranked interactions is evaluated creating a first point of the preci-
sion curve; then the precision of the first 20 ranked interactions is evaluated creating a second point of the preci-
sion curve; and so on until the end of the list of ranked interactions. Figure 2A reports an example of the precision 
curve (using sensitivity step 1) indicating the performance in network 1 of the first-ranked methods for each 
of the three topological-reliability classes: new proposed in this article (red colour), general-complex-network 
(black colour) and network biology (green colour). Generally, the reliability algorithms are evaluated comparing 
their performance separately in each of the three categories. The higher the profile of the precision curve in each 
of the GO categories, the better the algorithm performance. To quantitatively summarise the performance of the 
technique in one numeric value, the area under the precision curve (AUP) is adopted. In Fig. 2A, I adopt a new 
strategy that will be discussed below and that considers interactions as ‘true’ when they simultaneously share a 
similar BP and CC. In addition, I also estimate the area under the recall curve (AUR), which is an important eval-
uation generally neglected in previous studies. Since the AUR for the best predictor is equal to 0.5 (see triangle 
area under the dashed line in Fig. 2B), in order to scale the AUR values between 0 and 1 I decided to report in the 
Figs 3–6 the value sAUR = 2*AUR. Although AUP and AUR offer a more detailed view of the performance of 
each model, I also report the area under the precision-recall curve (AUPR) to compare their performance consid-
ering a trade-off between precision and recall capability. Therefore, the AUPR values for each GO annotation (BP, 
CC and MF) and for the new proposed evaluation strategy are reported. In contrast, the area under the receiver 
operating characteristic curve (AUC) has recently been proved to be deceptive in comparison to precision and 
recall60. AUC should be avoided in evaluation of link-prediction and link-reliability in complex networks because 
it puts emphasis also on the negative set of interactions that particularly in biology is not well-defined, indeed a 
missing PPI interaction is not a negative interaction.

Finally, it is important to mention that I am aware that the use of GO is disputed. While a part of the bioinfor-
matics community considers the GO evaluation irreplaceable, another part points out its weakness, since some 
GO annotations may be subject to experimental bias or come from not very reliable sources61. Unfortunately, at 
the moment our research community does not have any better computational alternative and I can only notice 
that further efforts are needed in future studies to develop more accurate methods for evaluation.

However, to compensate for this drawback, I modified the classical GO-based evaluation framework used in 
the past studies following a more conservative and stringent strategy. It was clearly demonstrated62 that compar-
ing the three GO categories, similarities in BP and CC annotations are stronger indicators for protein interaction 

Figure 2.  (A) Precision curves of the first-ranked methods (the first for each of the three considered classes) 
in network 1 considering the first 2000 ranked PPI. Inset on the upper-right of the figure reports the enlarged 
curves for the first 200 ranked interactions. (B) Recall curves of the same aforementioned methods. The dashed 
line indicates the best possible performance.
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than similarity in MF annotation. In fact, from a proteomic standpoint, it might be considered arguable to include 
the MF category when evaluating protein interactions. While it makes sense that two proteins working in the 
same biological process (or being in the same cellular component) interact, expecting that two proteins with the 
same molecular function (for example two enzymes) interact, is weak-posed. For this reason, here I propose a 
more sophisticated and stricter GO-based evaluation framework where the precision is measured: i) excluding 
MF from the evaluation; ii) considering one unique precision curve estimation, where a protein interaction is 
considered ‘true’ if it has a Wang similarity value above 0.5 in both BP and CC category at the same time. In prac-
tice, I consider as reference a new GO similarity adjacency matrix where each value is computed as the minimum 
between the respective values in the BP and CC adjacency matrix. It means that in this new evaluation framework 
an interaction is considered reliable only if its proteins share relevant similarities in terms of biological process 
and cellular component simultaneously.

In addition, I created a test where three different human networks were considered, one of which was a 
high-quality and structurally resolved network (the network 7). This was designed to discuss the behaviour of the 
proposed GO-based evaluation framework. If the new evaluation framework is sufficiently trustworthy, despite 
the fact that it is very conservative (and thus it strongly penalizes the performance evaluation of the algorithms) 

Figure 3.  Performance evaluation in network 1, 2, 3, 4, 5, 6. Different colours are used to distinguish: the 
classical network science reliability models (black); the traditional network biology models (green); the two 
new local-community models based on the rule C1 and its normalized version C1* (red); the two new local-
community models based on the rule C2 and its normalized version C2* (magenta). The triangle symbol is 
adopted to mark the non-normalised algorithms.
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Figure 4.  Performance evaluation in network 7, 8, 9. Different colours are used to distinguish: the classical 
network science reliability models (black); the traditional network biology models (green); the two new local-
community models based on the rule C1 and its normalized version C1* (red); the two new local-community 
models based on the rule C2 and its normalized version C2* (magenta). The triangle symbol is adopted to mark 
the non-normalised algorithms. (D) Mean performance of each method computed as average sAUR (x-axis) 
and AUP (y-axis) on the nine considered networks.

Figure 5.  (A,B) Comparison between C1* mean performance and the mean performance of the other methods 
across all the networks according to AUP and sAUR. (C,D) Comparison between the mean performance of 
normalized and non-normalized methods across all the networks according to AUP and sAUR. The standard 
error is reported as a red colour deviation on top of each bar that indicates the mean value. P-values are reported 
on top of each panel, indicating the level of significance of the comparison. (E,F) mean AUP and sAUR values 
across all the networks computed for the C1* algorithm considering different denominator exponents.
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we should observe that all the algorithms (even the ones that generally do not perform well) offer a higher perfor-
mance on this structurally resolved network than in the other networks.

The final GO adjacency matrices (one for each network), which were used to evaluate the algorithm precision, 
are available at the web-link provided in the Declaration section at the bottom of the article.

Results and Discussion
The first notable result is that C1* is the best among the proposed algorithms considering their mean perfor-
mance (Fig. 4D) across all the first 9 networks that are of size (less than 8000 nodes) significantly smaller than the 
network 10 (around 13000 nodes) of Menche et al.2. I will discuss separately, at the end of this section, the reliabil-
ity performance on the network 10 to confirm that the findings attained on networks of smaller size are valid also 
in this network which represents one of the largest currently available for human interactome2.

The mean performance of C1* is significantly better (Mann-Whitney test applied) than the mean performance 
of the other methods both for AUP (Fig. 5A) and sAUR (Fig. 5B). For instance, Fig. 2 displays the precision curves 
of the three best algorithms (one for each method category) in network 1, and it is evident that C1* clearly out-
performs the others. To provide a simple and clear visualization of the algorithms’ performance, in the next fig-
ures I report the plots of the sAUR vs AUP values attained by the different algorithms in the considered networks. 
C1* offered the best performance in 6/9 networks (Figs 3 and 4) and scored in the first positions in the remaining 
three (Figs 3 and 4). All the other indices fluctuate in different positions along the evaluations in the diverse net-
works, and there is not one algorithm that scores always second in general. This is a relevant confirmation of the 
robustness of the performance attained by C1*. We can interpret this promising result as an indication that C1* 
might be an important component of an unknown and generalised model useful also to evaluate the reliability of 
a protein interaction. According to C1* a protein interaction has higher reliability: if the common neighbour 
proteins (of the seed proteins, Fig. 1) are isolated in a complex (local community) and have low tendency to inter-
act with other external proteins (this message is formally contained in C1 that is the numerator of the C1* math-
ematical formula); and if the seed proteins also have low propensity to interact with other proteins external to the 
local community (message contained in the denominator, Fig. 1). Interestingly, I decided to design the C1* for-
mula with exponent two at the denominator, because the operation of squaring a binomial introduces a 
cross-term ⋅ ⋅nLCL nLCL(2 )x y  that particularly penalizes interactions between seed nodes that are both 
enriched for nLCL. Thus, this cross-term particularly penalizes interactions between proteins that have both high 
propensity to interact with other proteins external to the local community. Figure 5E,F shows the mean perfor-
mance of C1* across all the networks for different denominator exponents ranging from 1 to 7. Exponent 2 is the 
best solution, in fact C1* performance diminishes for exponents larger than 2. This is reasonable because larger 

Figure 6.  New GO-based evaluation framework. (A) Mean AUP values (y-axis, computed as average of all the 
methods for each network) and standard errors (red bars) for each network (x-axis). (B) Coefficient of variation 
(y-axis) of the AUP values for each network (x-axis). (C) Mean sAUR values and standard error for each 
network. (D) Coefficient of variation of the sAUR values for each network.
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exponents introduce additional cross-terms that become predominant in the formula causing a wrong 
estimation.

The second important result is that all the normalised indices (marked with a circle symbol in Figs 3 and 4) 
performed better than the non-normalised ones (marked with a triangle symbol in Figs 3 and 4). This difference 
is statistically significant (Mann-Whitney test applied) across all the networks (Fig. 5C,D). Therefore, the fact 
that seed proteins have a low propensity to interact with other proteins external to the local community (message 
contained in the denominator of the normalised algorithms) might be in general an important rule for assessing 
reliability in PPINs. This explains why PA is always the worst algorithm in any evaluation (Figs 3 and 4) and the 
cross-term introduced by the exponent 2 in the C1* formula is so effective.

CN is an index that performs very well in social networks (because it is reasonable that the more people you 
know in common with another person, the higher is the likelihood that you interact with him\her), but here it 
does not perform efficiently. This suggests that the rule “the more proteins are in common between two proteins, 
the higher is the likelihood that they interact” might play a secondary part and is not of primary importance for 
assessing link reliability in PPINs. On the contrary, C1 is a correction of CN where, as discussed above, “the more 
the common neighbour proteins are isolated in a complex (local community), the higher is the reliability of the 
seed proteins’ interaction”. This rule is promising because C1 is the best ranked non-normalised index in 8/9 
networks (Figs 3 and 4) and scored second (of the non-normalised indices) in the remaining one (Fig. 4A). C1 is 
also the best non-normalised algorithm for mean performance across all the networks (Fig. 4D). The fact that the 
C1 rule is performing better than CN has also mere physical motivations due to the molecular scale of the system 
and the respective driven forces behind the network formation. The morphological and spatial constrains of the 
operational units assembled in the local communities play an important role for tuning the specific LCP architec-
ture of the network. Here, each protein molecule has a specific 3D steric effect and a selective ability to bind other 
proteins that are determined by the physical laws respectively at the atomic and molecular scale of the system. 
Hence, it is expected that the mere CN rule fails, because of a limitation intrinsic to the physical characteristics of 
the operational unit (the protein) assembled in the network.

The algorithms based on the maximization of the iLCL (C2, C2*, LCL, CAR, CAA, CRA, CJC, CPA) per-
form in general slightly better than CN (Figs 3 and 4), a fact evident in Fig. 4D where average performances are 
reported. This suggests that the rule “the more interactions occur between the common neighbour proteins, 
the higher is the reliability of the seed proteins’ interaction” appears of moderate relevance and certainly less 
important than C1’s rule, which consists in the minimization of the eLCL (see Fig. 1 and section 2 for details). 
Interestingly, also in this case the normalization produced a favourable effect. In fact, C2* performed always 
better than C2: a further confirmation that the low propensity of the seed node proteins to interact with proteins 
external to the local community might be a relevant factor for link reliability in PPINs.

The third key result of the study is that considering the network 10 - which is one of the largest and completed 
blueprints of the human interactome2 - C1 and C1* confirm to be the most precise methods in assessing link reli-
ability (Fig. 7). This finding stresses again the importance to minimize the links external to the local-community 

Figure 7.  Performance evaluation in network 10. Different colours are used to distinguish: the classical 
network science reliability models (black); the traditional network biology models (green); the two new local-
community models based on the rule C1 and its normalized version C1* (red); the two new local-community 
models based on the rule C2 and its normalized version C2* (magenta). The triangle symbol is adopted to mark 
the non-normalised algorithms.
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in order to correctly assess the reliability of a protein interaction, and might play an important part also to build 
mechanistic models based on local-community topology for prediction of protein interactions. I will dedicate a 
separated study to the investigation of this subject.

It is now the turn to discuss the results obtained using the new GO-based evaluation framework. The network 
7 is a high quality structurally resolved network, thus we expect that in this network all the algorithms should 
perform significantly better than in the other networks, and should also give similar performances with a reduced 
AUP and sAUR variability. In quantitative terms, it means that in network 7 we expect to observe a higher mean 
algorithm performance with a standard error lower than in the other networks. The plots provided in Fig. 6A,C 
show that the expected behaviour of the mean and standard error is confirmed by the data; and the coefficient of 
variation reported in Fig. 6B,D confirms that the extent of performance variability (in relation to mean perfor-
mance) of all the algorithms in network 7 is significantly lower than in the other networks. Besides to verify that 
the AUP values obtained by the algorithms in network 7 are statistically different from the performance values 
obtained in the other networks, I created two groups. In the first group I put the AUP values obtained by the 
reliability algorithms applied in network 7, and in the second group I put the AUP values obtained by the same 
algorithms in the other networks. The Mann-Whitney test applied to compare the two groups produced a highly 
significant statistical difference (p-value < 0.001), suggesting that the proposed GO-evaluation framework is able 
to emphasize a significant improvement of performance of all the reliability indices in a network that is high qual-
ity and structurally resolved. The comparison was repeated also for the sAUR values providing the same signifi-
cant conclusion. These results considered all together could be expected only if the evaluation framework is well 
posed. I agree that GO annotations may be subject to experimental bias or come from not very reliable sources. 
Yet, the framework here proposed, using an integrated approach that combines together the BP and CC catego-
ries (to get a more conservative evaluation), provides an encouraging new alternative to deal with this drawback. 
In fact, considering Fig. 4D (mean performance across the first 9 relatively small size networks) and the Fig. 7 
(performance on the large size network 10), we can notice that there is a reasonable matching between the most 
reliable interactions (according to topological reliability assessed by C1*) and the most reliable according to their 
biological annotations (considering our new GO-based evaluation framework). This is evident because the AUP 
values for C1* in Fig. 4D are around 0.6 and in Fig. 7 are around 0.7, which indicates a fair agreement between 
topological and GO-based scoring. Since I propose to combine the semantic similarities of biological process and 
cellular component GO-annotations, in a new measure of biological relevance for PPIs, it might be argued that 
this strategy is too restrictive in comparison to considering the two sematic similarities separately. In order to 
address this doubt and to clarify the extent to which this can represent a problem, I computed the area under the 
precision-recall curve (AUPR) of each method in each network considering separately (Suppl. Table 1 to Suppl. 
Table 10): biological process (BP), cellular component (CC), molecular function (MF) and the new strategy I 
propose that is the intersection of BP and CC, therefore it is indicated with I(B,C). In order to offer a general 
comparison of the 4 different evaluation strategies, I summarized in Table 1 what is the best method (it means 
ranked number 1 for AUPR) in each network according to the four different evaluation paradigms. The result is 
that both BP and CC have a congruent evaluation trend with I(B,C) that dispels the suspicion that I(B,C) is too 
restrictive. On the other hand, it appears evident that, as conjectured in the Methods, MF is not a proper measure 
to point out the best reliability method because it does not bring to any clear conclusion across the networks. In 
addition, we can gather that, also according to this evaluation based on AUPR, C1* seems the best mechanistic 
model across our experiments to assess link reliability in protein interactomes.

Hereafter, we will take care to discuss the issues and possible solutions associated to the network incomplete-
ness. PPIs are known to be incomplete and thus there might be a research bias not only in terms of GO but also 

Network AUPR (BP) AUPR (CC)
AUPR 
(MF) AUPR I(B,C)

Ranking

Method Count

Yeast (Ben Hur et al.27 C1* C1* FSW C1*
Yeast (Chen et al.22 C1* C1* FSW C1* C1* 18/40

Yeast (Das et al.28 C1* FSW C1* C1* FSW 11/40

Plant (AIMC 2011) FSW FSW ACD FSW RA 4/40

Worm (BioGRID 2012) FSW FSW CPA ACD CPA 2/40

Fly (BioGRID 2012) C1* C1* C1* C1* ACD 2/40

Human (Wang et al.20 RA C1* PA RA C1 1/40

Human (Das et al.28 C1* C1 RA C1* C2* 1/40

Human (Rolland et al.31 FSW FSW C2* FSW PA 1/40

Human (Menche et al.2 C1* RA CPA C1*
Total occurrence C1* (6/10) C1* (4/10) — C1* (6/10)

Table 1.  Top method in each network according to AUPR performance measure considering different gene-
ontology-based (GO-based) evaluations. From the left, the first column reports the name of the network 
considered. Second to fifth columns report the best method according to the following GO-based evaluations: 
biological process (BP), cellular component (CC), molecular function (MF) and the new strategy I propose that 
is the intersection of BP and CC, therefore it is indicated with I(B,C). On the right part of the table, it is reported 
the ranking of the methods. This ranking is obtained by counting for each method the number of times it arrives 
first across all the four different evaluations considering all the networks.
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in terms of topological biases. In fact, well-studied proteins might have more connections merely by the fact that 
they are well studied, while orphaned proteins might be disproportionately ‘underconnected’ by research bias. 
The topological incompleteness might influence the performance of these methods that rely only on network 
topology. Future studies might consider computational experiments aimed to quantitatively investigate the extent 
to which the performance of these methods is modified by introducing controlled network topology perturba-
tions. A first question could be to assess whether some algorithms are specifically susceptible to edge removal 
quantifying a possible performance drop. For instance, the performance of methods for link reliability or predic-
tion can be evaluated with networks were 10% or 20% of the edges are removed uniformly at random (a proce-
dure known as link sparsification). However, it should be remarked that this procedure, if not correctly applied, 
can represent a bias itself, in fact removing percentage of links larger than 20% can be misleading because the 
removal procedure does not respect the intrinsic rules of growth of the interactome, and therefore can introduce a 
bias by its own in the organization of the network topology. Nevertheless, in one of my previous studies8 I showed 
that local-community-based models (such as CAR) display a good performance robustness in protein interaction 
prediction when PPINs are subject to progressive link sparsification. On the other hand, other important ques-
tions related to network topology perturbation experiments could be to investigate whether some algorithms 
are particularly susceptible to edge rewiring (for instance rewiring under preservation of degree distribution) 
or random addition of false-positive links. An interesting idea could be to test how the methods’ performance 
is modified when a certain percentage of random edges which should possess low link reliability is added to the 
original topology. For instance, add 10% random edges with low link reliability according to GO-annotation 
and evaluate how many of those pop up among the 10% edges predicted to be most reliable or least reliable. This 
would give a further indication for the network de-noising capabilities of the different methods. Furthermore, 
similar experiments could be repeated using generative models which resemble the topological features (average 
degree, average clustering, etc.) of real protein interactomes63 and could represent a ground-truth for benchmark-
ing how different methods behave in presence of topological perturbation. On this regard, a first solution could be 
to adopt the duplication-mutation/divergence model which was specifically created64 and further developed65 for 
protein networks, although a recent study spotted that it presents many limitations66. Another solution could be to 
adopt new classes of soft random geometrical graphs, such as the nonuniform-popularity-similarity-optimization 
model67,68, that allow a fine tuning of many network features such as clustering, small-wordness, node hetero-
geneity, rich-clubness and community structure. Yet, the limitation of using generative models for generation 
of synthetic protein interactome is that nobody know the authentic generative model behind these networks, 
therefore it is better to fairly compare the performance using diverse types and classes of generative models, in the 
hope to converge to results that resemble the ones observed using real networks. To conclude this paragraph, it is 
clear that future studies should put additional effort especially to investigate and develop gold standard methods 
for evaluation of algorithms which perform link reliability and prediction in PPINs.

To summarize, this study is aimed to investigate local-structure similarity-based models, and to disclose and 
understand some of the constitutive topological rules that emerge from the mechanistic forces behind PPINs’ 
self-organization. The advantage of these local mechanistic models - in respect to global models such as machine 
learning methods - is that they are based on an explicit and interpretable rule of organization. Whereas, unlikely, 
machine learning methods build (learn) an implicit model that in general cannot be disclosed in an interpretable 
rule of organization. However, many local models have the limitation that they cannot assign reliability to interac-
tions that do not present common neighbours, a drawback not affecting global methods. A previous study showed 
that the local-community-paradigm models can significantly outperform some methods based on machine learn-
ing dimension reduction in link prediction of PPNIs8,36 and drug-target interactions37, but new advanced global 
methods have been recently published3,4,7,9,69. Future studies on link reliability, topological denoising and confi-
dence scoring should compare the novel local models with the state-of-the-art global methods, with the aim to 
unveil and analyse what are the common set of links correctly scored by both the classes of predictors and what 
are, instead, the set of links specifically and correctly scored by each single class or method. A careful exam-
ination should help to clarify what are the strategies to merge the predictions of heterogeneous methods in a 
unique tool such as IntScore4 that, with the rise of network medicine, will become increasingly useful for reliable 
network-based computational analysis in precision and systems medicine2,11,70,71.
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