
Structural bioinformatics

Foldalign 2.5: multithreaded implementation for

pairwise structural RNA alignment

Daniel Sundfeld1,2, Jakob H. Havgaard1, Alba C. M. A. de Melo2 and

Jan Gorodkin1,*

1Center for Non-Coding RNA in Technology and Health, IKVH, University of Copenhagen, Frederiksberg, Denmark

and 2Department of Computer Science, University of Brasilia, Brası́lia, DF, Brazil

*To whom correspondence should be addressed.

Associate Editor: Ivo Hofacker

Received on 23 July 2015; revised on 14 December 2015; accepted on 16 December 2015

Abstract

Motivation: Structured RNAs can be hard to search for as they often are not well conserved in their

primary structure and are local in their genomic or transcriptomic context. Thus, the need for tools

which in particular can make local structural alignments of RNAs is only increasing.

Results: To meet the demand for both large-scale screens and hands on analysis through web ser-

vers, we present a new multithreaded version of Foldalign. We substantially improve execution

time while maintaining all previous functionalities, including carrying out local structural

alignments of sequences with low similarity. Furthermore, the improvements allow for comparing

longer RNAs and increasing the sequence length. For example, lengths in the range 2000–6000

nucleotides improve execution up to a factor of five.

Availability and implementation: The Foldalign software and the web server are available at http://

rth.dk/resources/foldalign

Contact: gorodkin@rth.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent research points towards an increasing awareness of struc-

tured RNAs in genomic and transcriptomic sequences (Gorodkin

et al., 2010; Westhof and Romby, 2010). However, the tools needed

for structural analysis, such as pairwise local structural RNA align-

ments, are not yet fully developed.

Foldalign (Havgaard et al., 2007) is a tool that explicitly carries

out local pairwise structural alignment of RNA sequences based on

the Sankoff algorithm (Sankoff, 1985). Even though tools like

CMfinder can carry out local RNA structure alignment on multiple

sequences (Yao et al., 2006), the pairwise problem is still of key

interest. A range of other methods for RNA structural alignments

focusing more on the global alignment (Dowell and Eddy, 2006;

Knudsen and Hein, 2003) have been proposed, but only a few ef-

forts were made to parallelize these methods (Fu et al., 2014;

Sukosd et al., 2011).

The relevancy of a parallel version of the pairwise Sankoff algo-

rithm is underpinned by its time complexity of OðL6Þ, where L is the

sequence length. This makes it prohibitive for long sequences, but

Foldalign uses several heuristics: a maximum length of the alignment,

k, and a maximum difference, d between any two subsequences being

aligned. This reduces the time complexity to OðL2k2d2Þ. However,

runtime and memory is further substantially improved using several

other heuristics like limiting the multiloop calculation and pruning of

the alignment score, for details see Havgaard et al. (2007). All these

heuristics can be used in a parallel version of the algorithm, which we

address here, providing new opportunities for both large-scale ana-

lysis as well as case-based analyses through a web interface.

2 Implementation and results

The core Foldalign algorithm has six nested loops (Supplementary

Section 1) which are subject for parallelization. The first and second

VC The Author 2015. Published by Oxford University Press. 1238
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(8), 2016, 1238–1240

doi: 10.1093/bioinformatics/btv748

Advance Access Publication Date: 24 December 2015

Applications Note

http://rth.dk/resources/foldalign
http://rth.dk/resources/foldalign
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text: i
Deleted Text: ,
Deleted Text: Westhof and Romby, 2010;
Deleted Text: can carry
Deleted Text: Knudsen and Hein, 2003;
Deleted Text: Sukosd <italic>et<?A3B2 show $146#?>al.</italic>, 2011;
Deleted Text: by
Deleted Text: large
Deleted Text: case
Deleted Text: i
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
http://www.oxfordjournals.org/

loops have the values i ¼ L1;L1 � 1; . . . ;1 and

k ¼ L2;L2 � 1; . . . 1, where L1 and L2 are the lengths of the se-

quences S1 and S2. The current multithreading model is based on the

fact that many of the cells can be calculated in parallel. Foldalign div-

ides the dynamic programming matrix in long term memory (LTM),

for cells that can only be part of a multibranch loop rule and short

term memory (STM), for others. While processing (i, k), the algorithm

only writes to STM cells with coordinates (i, k), ði� 1; kÞ, ði;k� 1Þ; ð
i� 1; k� 1Þ and LTM cells with coordinates (i, k).

In the multithreaded version, t ¼ 1;2; :::;N threads are created,

and each thread works on its own value of i. Every thread sequen-

tially calculates the cells ðit;L2Þ ! ðit;1Þ. When a thread finishes

calculating all the it cells, it restarts with a new it ¼ it �N value.

Figure 1a shows an example of the STM with one and two threads,

respectively. When using multiple threads, a lock is required to

avoid race condition, in order to guarantee that position (i, k) is

processed only if position ðiþ 1; k� 1Þ has been processed, see

Supplementary Section 2. Simultaneous operations at long-term

memory are protected by one lock per (i, k). Once a thread finishes,

cells that can be part of the multibranch loop are kept in long-term

memory, and cells in short term memory are released.

The proposed parallel algorithm was implemented in Cþþ,

using POSIX threads (pthreads). The benchmarking was done on a

machine with two Intel Xeon E5-2650 processor, each one with 8

cores at 2.00 GHz and 32 GB RAM.

We measured the execution time and memory consumption on

randomly generated sequences with varying GC-content and lengths

from 2000 nt to 6000 nt. GC-content was fixed in bins in the range

from 20% to 60% and G to C and A to U ratios were set to one. In

Figure 1b, the average elapsed time and memory consumption are

shown for 5 random sequences with 6000 nucleotides, d ¼ 25 and k
¼ 1000. Using 8 threads, the elapsed time is reduced from 4:44 h to

57.1 min (4:98� faster). Using 2 or 4 threads, the reduction is to

2:24 h (1:97� faster) and 1:11 h (3:95� faster). This result is con-

sistent with other lengths (2000–6000), k values (1000–1500) and

GC-Content (20–60%), see Supplementary Sections 3 and 4.

Increasing the number of threads does not considerably increase

the memory consumption, because most resources are shared by the

threads. This is exemplified in Figure 1b, where 2 threads require

only 1.14 times more memory and 8 threads require 1.99 more. We

also ran a test with 16 threads, which did not yield any improvement

over 8 threads. This is in line with other efforts on parallelizing

RNA folding algorithms, see Supplementary Section 3.1. The speed-

ups are also consistent with other sets of sequences with different

lengths. See Supplementary Sections 1–3 for tests with other random

and real sequence sets, more details about the thread design pattern

and synchronization, some optimizations included in our solution,

and the simplified recursion function. Due to major changes in the

code, we re-executed the tests made in previous versions to evaluate

the performance, using datasets with Rfam sequences. In this test,

we verified that the localization performance (Havgaard et al.,

2007) has not changed in the new version.

Furthermore, the locateHits tool for post-processing Foldalign

screens has been reimplemented using Cþþ and now includes a set

of pre-calculated parameters for the P value calculation making it

substantially faster than the previous Perl implementation. The

scores from the random sequences were used to calculate the ex-

treme value distribution parameters of the Foldalign scores for the

sequences in the 20–60% GC-content range (Supplementary Section

4). Previous versions of Foldalign used an interactive method which

is statistically unsound or requires the user to run several alignments

with random sequences. The webserver has also been updated. The

multithreading and new hardware makes it possible for the server to

structurally align longer sequences, up to 10 000 nt, with a max-

imum alignment length of 1000 nt (see Section 5 in the

Supplementary Material).

3 Conclusion

We presented a multithreaded version of Foldalign. This new version

was carefully designed to keep all the previous program functional-

ities, such as the dynamical pruning heuristic, limiting the calculation

of branch points, and the option to perform local and global align-

ments. It opens up new possibilities to search for structured RNAs in

much longer sequences in reasonable time. One great advantage of

the multithreaded version is that it allows for better exploitation of

the available hardware when the number of jobs which can run on a

given machine is smaller than the number of cores available in the

machine due to memory constraints. With the previous version of the

algorithm it is necessary to let the extra cores run idle, but now they

can be put to use. Foldalign is producing predictions with the same

accuracy but in a fraction of the time compared to the previous ver-

sion. It may produce more accurate predictions than it was previously

Fig. 1. (a) Parallel design example of two sequences. Every cell corresponds to a bidimensional matrix. Red and blue are cells processed by threads t1 and t2, re-

spectively. Dark red/blue are cells that have already been processed, light red/blue are cells being processed and white or grey are cells to be processed next. The

dashed area represents cells that are being read and written by one thread. (b) The Foldalign execution time and memory consumption according to the number

of threads. This set contains 5 random sequences with length 6000, GC-content from 40% to 50%, d ¼ 25 and k ¼ 1000. The linear speed up is the ideal speedup,

when n threads are used and Foldalign is executed n times faster. With 8 threads, the elapsed time is reduced from 4:44 h to 57.1 min (4.98� faster), while con-

suming 1.99�more memory

D.Sundfeld et al. 1239

Deleted Text:)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text: long
Deleted Text: long
Deleted Text: ,
Deleted Text: ,
Deleted Text: –
Deleted Text:)
Deleted Text: ,
Deleted Text: ,
Deleted Text: ours
Deleted Text: utes
Deleted Text: ours
Deleted Text: ours
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: % to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text:)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text: post
Deleted Text: -
Deleted Text: %–
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: section
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv748/-/DC1
Deleted Text: c

possible, with the much more relaxed constraint parameters d and k
values. The perspective for this new tool is to contribute significantly

to further analysis of structured RNAs in long sequences including

specific case analysis through the web server.

Funding

This study was supported by the Innovationfund Denmark, the Danish

Research Council for independent research (FTP), the Lundbeck foundation,

the Danish Center for Scientific Computing (DCSC, DeiC), and CAPES

Foundation, Ministry of Education of Brazil, Brası́lia - DF (99999.005168/

2014-07).

Conflict of Interest: none declared.

References

Dowell,R.D. and Eddy,S.R. (2006) Efficient pairwise RNA structure predic-

tion and alignment using sequence alignment constraints. BMC

Bioinformatics, 7, 400.

Fu,Y. et al. (2014) Dynalign II: common secondary structure prediction for

RNA homologs with domain insertions. Nucleic Acids Res., 42,

13939–13948.

Gorodkin,J. et al. (2010) De novo prediction of structured RNAs from gen-

omic sequences. Trends Biotechnol., 28, 9–19.

Havgaard,J.H. et al. (2007) Fast pairwise structural RNA alignments by prun-

ing of the dynamical programming matrix. PLoS Comput. Biol., 3,

1896–1908.

Knudsen,B. and Hein,J. (2003) Pfold: RNA secondary structure prediction

using stochastic context-free grammars. Nucleic Acids Res., 31,

3423–3428.

Sankoff,D. (1985) Simultaneous solution of the RNA folding, alignment and

protosequence problems. SIAM J. Appl. Math., 45, 810–825.

Sukosd,Z. et al. (2011) Multithreaded comparative RNA secondary structure

prediction using stochastic context-free grammars. BMC Bioinformatics,

12, 103.

Westhof,E. and Romby,P. (2010) The RNA structurome: high-throughput

probing. Nat. Methods, 7, 965–967.

Yao,Z. et al. (2006) CMfinder–a covariance model based RNA motif finding

algorithm. Bioinformatics, 22, 445–452.

1240 Foldalign 2.5

