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Abstract: Chronic liver diseases are a major global health burden, and cases of these conditions
continue to rise in many countries. A diverse range of insults can lead to chronic liver disease, but
they are all characterised by the infiltration and accumulation of immune cells within liver tissue and,
if progressive, can lead to tissue fibrosis and cirrhosis. In this review, we focus on the role of stabilin-1
in two key processes that contribute to liver disease, namely, the recruitment of lymphocytes into liver
tissue and the response of macrophages to tissue injury. Stabilin-1 is constitutively expressed on the
sinusoidal endothelium of the liver and contributes to the homeostatic scavenging function of these
cells. Epithelial damage in the context of chronic liver disease leads to the upregulation of stabilin-1
at sites of tissue injury, specifically at sites of immune cell recruitment and on subpopulations of
hepatic macrophages. Functionally, stabilin-1 has been shown to mediate transendothelial migration
of lymphocyte subsets in the setting of pro-inflammatory-activated human liver endothelium. In
experimental models of liver fibrosis, stabilin-1 promotes the uptake of products of chronic oxidative
stress by a subset of hepatic macrophages and suppresses their release of pro-inflammatory mediators
that regulate tissue remodelling. These studies highlight the active contribution that scavenger
receptors such as stabilin-1 can make in regulating chronic inflammation and tissue fibrosis, and their
potential as novel therapeutic targets for these conditions.
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1. Introduction

Concurrent with the widespread obesity epidemic and increasing alcohol consumption worldwide,
chronic inflammatory liver diseases in adults are significantly contributing towards a global burden on
human health; indeed, the incidence of liver disease in the UK alone has risen over 400 % since the 1970s
to become the third most common cause of premature death [1]. In addition to the increasing incidence
of non-alcoholic steatohepatitis (NASH; fatty liver disease) and alcohol-related liver disease (ARLD) [2],
other aetiologies, such as viral hepatitis and autoimmune liver diseases, are also contributing to the
rising occurrence of chronic liver disease [3,4]. Each disease aetiology elicits a specific pattern of
injury, which is largely dependent on the site of initial damage; for example, NASH is triggered
by lipotoxicity in hepatocytes, resulting in parenchymal inflammation [5], whereas autoimmune
disease, primary sclerosing cholangitis (PSC), is driven by bile duct injury and characterised by portal
inflammation, ductular proliferation and loss of bile duct function [6]. Nevertheless, regardless of
the aetiology, patients with progressive disease follow a common pathophysiology, underpinned by
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excessive immune cell infiltration of liver tissues, immune activation and fibrosis. Fibrosis, or scarring,
results from the activation of hepatic stellate cells, a population of liver-resident pericytes, which
differentiate under inflammatory conditions to a myofibroblast phenotype, resulting in the production
of extracellular matrix proteins [7]. In chronic liver diseases, sustained activation of hepatic stellate
cells, perpetuated by the chronicity of the inflammatory insult, leads to the excessive accumulation
of scar tissue within the liver, which ultimately culminates in loss of liver function, cirrhosis and,
eventually, end-stage liver failure or hepatocellular cancer (HCC).

2. Recruitment of Immune Cells to the Liver

In the event of injury or infection, such as those repeatedly incurred in chronic liver diseases,
immune cells are recruited from the systemic circulation of the blood into the inflamed tissue, in
order to eliminate the inflammatory trigger and/or contribute to tissue repair [8]. This migration of
immune cells from the blood is mediated via a multi-step process, collectively known as the leukocyte
adhesion cascade (Figure 1). During the initial stages of the leukocyte adhesion cascade, immune
cells are captured from the flow of circulating blood and roll on the luminal surface of the blood
vessel. Subsequently, immune cells undergo arrest, followed by firm adhesion and, finally, they
transmigrate, either between (paracellular pathway) or through (transcellular pathway), the cells of the
endothelial barrier and into the tissue [9]. This sequential process is orchestrated by a large number
of endothelial-expressed chemokines [10] and adhesion molecules [8,11], which are able to elegantly
control the subset of immune cell recruited to the site of inflammation in a highly specific manner.
Additionally, due to its potential to disrupt endothelial integrity, the process of transmigration is itself a
highly selective process as it requires extensive cytoskeletal remodelling to accommodate the passage of
the immune cell [12]. Unsurprisingly, under physiological conditions, the transmigration of leukocytes
is stringently regulated by the endothelial cell to minimise both vascular leakage and the number of
immune cells crossing the vascular wall; nevertheless, this process can become highly dysregulated in
the diseased state. More recently, it has become clear that leukcocytes can migrate across endothelium
through two distinct pathways: a conventional paracellular route via cellular junctions, and a second
route termed transcellular migration where a leucocyte migrates directly through the endothelial cell
body. Why leucocytes may use two distinct pathways and the functional consequences are unclear,
but the act of leukocyte migration also acts to ‘prime’ the tissue-infiltrating immune cells in order to
produce an efficient and effective immunological response in the relevant inflamed tissue [13]; however,
this process can also become imbalanced and further perpetuate the disease state.
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Figure 1. Lymphocyte trafficking in chronic liver disease. Lymphocyte recruitment from the circulation
into liver tissue occurs within the low shear specialized channels of the hepatic sinusoids that are lined
by hepatic sinusoidal endothelial cells and the macrophage liver resident population, the Kupffer cells.
During liver injury, the signals of damaged epithelial cells lead to activation of hepatic stellate cells
in the Space of Disse underneath the sinusoidal endothelium. The sinusoidal endothelium itself is
activated and upregulates the expression of adhesion molecules, which promote the recruitment of
lymphocytes from circulation in an organ specific manner. This involves an adhesion cascade where
lymphocytes in circulation undergo a tethering step leading to firm adhesion and activation on the
endothelial surface, followed by their transendothelial migraton into liver tissue.

Generally, immune cell recruitment occurs in the post-capillary venules of the relevant inflamed
tissues; however, in the liver, this process occurs within the unique low shear flow environment
of the narrow hepatic sinusoidal microvasculture [14]. The hepatic sinusoids are lined by a highly
specialised and functionally unique endothelium [15]. Liver sinusoidal endothelial cells (LSEC) are
phenotypically very distinct from conventional vascular endothelial cells and are more analogous
to lymphatic endothelial cells [16]; they also lack a basement membrane [17], with atypical cellular
junctions [18,19] and membranous pores, called fenestrations [20]. The combinatory effect of the
structural characteristics of the sinusoids and the phenotype of the LSEC themselves significantly
modifies the mechanism of immune recruitment in the liver. The narrow, low shear stress environment
of the hepatic sinusoids negates the initial rolling steps of the leukocyte adhesion cascade [14]. As a
consequence, LSECs express negligible levels of classical adhesion molecules, such as selectins [16].
The selectin family of proteins are key in the initial stages of the leukocyte adhesion cascade in more
conventional endothelial cells [21], and their lack of expression in LSEC presents the opportunity for a
range of atypical adhesion molecules to play a more prominent role in the recruitment process [22–25]
(Figure 2). In addition, the latter stages of the adhesion cascade are also affected by the phenotype of
LSEC, with studies utilising primary human LSEC in vitro demonstrating that a significant proportion
(~40%) of adhered lymphocytes preferentially migrated via the transcellular route, a process that was
significantly reduced in more conventional endothelial cells (human umbilical vein endothelial cells;
HUVEC) [19]. The same study also highlighted a novel migratory pathway in which lymphocytes
were able to migrate horizontally in the endothelial layer into adjacent LSEC. These processes were
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interferon-γ-mediated and were thought to be facilitated by the unique junctional complexes expressed
by LSECs (Figure 3).
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Figure 2. The molecular mechanisms of lymphocyte trafficking in liver disease. The recruitment
of lymphocytes in the hepatic sinusoids is mediated by a combination of surface receptors and
chemoattractant cytokines. In conventional recruitment, lymphocytes undergo a rolling step that
is mediated by selectins. Selectins are absent in the sinusoidal channels, and after a brief tethering,
lymphocytes undergo activation and firm adhesion mediated by a combination of chemokines presented
on the endothelium and binding to chemokine receptors on the lymphocyte surface (for example,
the inflammatory chemokines CXCL9, 10, and 11 binding to the chemokine receptor CXCR3, or the
chemokine CXCL16 binding to CXCR6). Following activation, the lymphocytes bind via integrins to
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). The
final step is transendothelial migration, which has been shown to be mediated by ICAM-1, vascular
adhesion protein-1 (VAP-1), and stabilin-1.
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Figure 3. The routes taken by lymphocytes during transendothelial migration. Detailed analysis of the
last step of the adhesion cascade where lymphocytes cross the endothelial barrier have demonstrated
that several routes can be taken. The conventional route is the paracellular route, where lymphocytes
migrate directly between endothelial cellular junctions. The second route, which appears to occur in
the liver at a high frequency, is the migration of lymphocytes directly through the body of the cell,
termed the transcellular migration. This route of migration has been described in other microvascular
beds including the lymphatics and bone marrow. An additional novel route has also been described
where lymphocytes invade into the body of the endothelial cell and then migrate directly into the
adjacent endothelial cell termed ‘intracellular crawling’. Stabilin-1 has been shown to contribute to
both transcellular migration and intracellular crawling.
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As is appropriate to their primary physiological function in the removal of endogenous and
exogenous waste from the bloodstream [26], LSEC are known to express a wide array of scavenger
receptors (SRs) [15,27]. There is increasing evidence that some of these endothelial-expressed scavenger
receptors exhibit a secondary function as atypical adhesion molecules, as they are able to directly bind
leukocyte-expressed ligands, thus facilitating the trafficking of leukocytes [11]. Scavenger receptors are
known to be multifunctional due to the array of ligands they can recognise, and this has been shown
with stabilin-1 [28]. Gathering evidence suggests that this property allows stabilin-1 to contribute
to cell adhesion in the low shear flow environments of the lymph nodes and hepatic sinusoids, and
therefore could potentially regulate immune cell recruitment to sites of inflammation and tissue injury.

3. Stabilin-1 Mediates Lymphocyte Transendothelial Migration across Specialised Vascular Beds

Stabilin-1, also known as FEEL-1 (fasciclin, EGF-like, laminin-type EGF-like, and link
domain-containing scavenger receptor-1) [29] or common lymphatic endothelial and vascular
endothelial receptor (CLEVER)-1 [30], is a highly evolutionarily conserved type I transmembrane
protein and was the first member of the Class H family of scavenger receptor to be described. The
expression of stabilin-1 is inducible in conventional vascular endothelia, in response to angiogenic and
proinflammatory stimuli [31], but it is constitutively expressed in relatively high levels in the more
unconventional non-continuous sinusoidal endothelia of the spleen [32], lymph nodes [33,34] and
liver [23]. Additionally, the expression of stabilin-1 appears to be upregulated within the sinusoids
of chronically diseased human liver tissues [23]. As a scavenger receptor, stabilin-1 is able to bind a
wide variety of ligands, such as modified lipoproteins (LDLs) [35,36], phosphotidylserine expressed on
apoptotic cells [37–39], secreted protein acidic and rich in cysteine (SPARC) [40], placental lactogen [41]
and bacterial microparticles [29]. In addition to its role as a scavenger receptor, there is gathering
evidence that stabilin-1 also regulates lymphocyte trafficking across specialised vascular beds.

The adhesive function of stabilin-1 was first described in high endothelial venules (HEVs) and
lymphatic vessels, with antibody blockade inhibiting migration of T cells and B cells across HEVs
to the draining lymph nodes [30,34]. Consistent with this, our lab subsequently described a role
for stabilin-1 in the transendothelial migration of lymphocytes, through the transcellular pathway,
in LSEC monolayers in vitro. These studies were undertaken under conditions that mimicked the
physiological flow and proinflammatory microenvironment of the hepatic sinusoids during liver
injury, and showed that stabilin-1 preferentially mediates the transmigration of regulatory CD4+ T
cells (Tregs) and B-cells [19,23,42]. Interestingly, it has previously been suggested that stabilin-1 is also
able to support the trafficking of myeloid cells in vivo [30,34]; however, in the context of LSEC, its
role in the recruitment of myeloid cell subsets has yet to be explored. The findings that stabilin-1
preferentially mediates the recruitment of Tregs and B cells could have significant implications for
tumour development in the liver. Tregs function as a subset of T cells, which actively suppress effector
T cell responses by both cell contact and non-contact pathways [43]. They play an important role in
preventing autoimmunity, but have also been implicated in tumour development, with accumulation
of Tregs in the tumour microenvironment being a poor prognostic feature in several tumours [44–46].
More recently, B cells have also been implicated in primary liver cancer development, with IgA
producing cells preventing effective CD8 tumour cytotoxic responses in models of hepatocellular
cancer (HCC) [47]. We have previously shown that stabilin-1 is not only upregulated at inflammatory
sites of leucocyte recruitment, but also in vessels supplying HCCs [23]. In addition, a study undertaken
by Karikoski et al. showed significantly fewer Tregs in murine tumour models when stabilin-1−/− mice
were compared to wild type controls and also demonstrated smaller primary and metastatic tumours
in stabilin-1−/− mice, compared to wild type mice [48].

4. Stabilin-2

Given its structural homology to stabilin-1, it is perhaps not unexpected that stabilin-2, the
second member of the Class H scavenger receptor family, is also found in LSEC and has similarly been
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implicated in leukocyte recruitment. Stabilin-2, also known as FEEL2 or HARE (hyaluronan receptor for
endocytosis), has been shown to bind a diverse range of ligands, such as hyaluronan [49], acLDLs [29],
heparin [50,51], apoptotic [52,53], and bacterial microparticles [29]; therefore, it is unsurprising that
stabilin-2 is expressed in isolated human LSEC [54] and murine LSEC [55,56]. In addition, stabilin-2
has also been shown to mediate the binding of peripheral blood lymphocytes (PBLs) to human LSEC
in vitro [54]. The study, by Jung et al., demonstrated that αMβ2 integrin on PBLs was able to bind to
the fasciclin 1 (FAS1) domains of stabilin-2, mediating the firm adhesion step of the adhesion cascade
under flow conditions in vitro. Nevertheless, this still remains the only investigation of lymphocyte
binding to LSEC-expressed stabilin-2 to date and, as monocytes [57] and neutrophils [58] also express
αMβ2, it would be interesting to investigate whether or not stabilin-2 is also able to mediate the binding
of these myeloid populations. Furthermore, to the authors’ knowledge, the expression of stabilin-2
has not yet been explored in chronically inflamed human liver tissues or experimental inflammatory
models, and so the physiological relevance of stabilin-2’s ability to bind leukocytes is also unknown.

5. The Role of Macrophages in Liver Disease

Whilst lymphocyte infiltration is a hallmark of all chronic adult liver diseases and the role of
endothelial/lymphocyte interaction is a key step in this process, there is now a significant body of
evidence that macrophages also play a major role in orchestrating liver injury. Macrophages are a
critical arm of the innate immune system, acting as sentinels to detect foreign pathogens and danger
signals released by tissue injury. They are armed with a range of pattern recognition receptors
that include both toll-like receptors (TLRs) and scavenger receptors [59]. In the liver, the tissue
resident macrophages, known as Kupffer cells, positioned within the hepatic sinusoids, are relatively
stationary and do not migrate. Recent studies have demonstrated that the source of tissue-resident
macrophages, such as Kupffer cells, have an origin independent from circulating monocytes and the
adult bone marrow haematopoiesis, and are derived from the fetal yolk sac and are long-lived and
self renew [60]. With the onset of liver injury due to hepatocyte damage from toxins or pathogens,
the release of danger signals leads to the activation of Kupffer cells through recognition by surface
receptors and the downstream triggering of the inflammasome [61]. This leads to the release of factors
such as the chemokine CCL2, which play a critical role in the recruitment of circulating monocyte
populations into liver tissue during injury, which then mature into distinct macrophage subsets [62,63].
Careful analysis of these macrophage populations in a murine model of acute liver injury induced by
administration of N-acetyl-p-aminophenol (APAP) demonstrates a reduction in the resident Kupffer
cell population [64]. The injury triggered a significant infiltration of monocytes from the circulation,
which were characterised by Ly6C high expression, and this process was mediated by the chemokine
receptor CCR2 on these monocytes. A third subset was identified characterised by Ly6C low expression
and predominated during the resolving phase. The Ly6C low subset of macrophages are known to
have a patrolling behaviour and have higher expression of scavenger receptors, with the spleen acting
as a reservoir for these monocytes whilst the Ly6C high population being derived from the bone
marrow [65]. Ly6C high monocytes in mice are analogous to human classical (CD14++/CD16-) and
intermediate monocytes (CD14+CD16+), with Ly6C low monocytes representative of the non-classical
monocytes with higher CD16 expression (CD14+CD16++). Intriguingly, during sterile injury of the
liver a further subset of macrophages were noted, which infiltrated from the peritoneal cavity through
the liver capsule and were characterised by the transcription factor GATA-6 [66]. Along with these
phenotypic subsets, macrophages are profoundly sensitive to their microenvironment, leading to
plasticity and the suggestion that they can switch from one phenotype to the other. Building on
these phenotypic studies and going on to use macrophage depletion techniques at different stages
of injury, it has become clear that macrophages can have opposing roles at different stages of liver
injury. During the initiation of damage, infiltrating macrophages contribute to pro-inflammatory
pathways and the progression of liver fibrosis, and inhibiting their recruitment or depleting them
has been shown to prevent injury progression. However, their depletion once the injury is removed
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has been shown to delay resolution and, in chronic models, prevent tissue remodeling [67]. These
macrophage subsets are characterised by distinct surface receptors, including scavenger receptors
as well as characteristic secretory profiles of cytokines and mediators of tissue remodelling that
drive the functional impact on inflammation and resolution in the liver [68]. The mechanism of how
macrophage subsets influence inflammation and fibrosis is of great interest in order to understand
their potential regarding cell therapy and the potential of manipulating macrophage behaviour in
situ [69]; there is now a strong body of evidence that macrophages contribute mediators that can
activate hepatic stellate cells (HSCs). HSCs, as mentioned earlier, are the liver resident pericyte and
are characterised by neural markers (glial fibrillary acidic protein (GFAP) and synaptophysin), store
Vitamin A [70], and play a central role in chronic liver disease. Upon liver injury, they become activated
and transform into myofibroblasts, which subsequently promote tissue loss and architectural distortion
through the excessive release of extracellular matrix (ECM) and increased contractility. Macrophages
are known to release transforming growth factor beta (TGF-β), a key activator of HSCs, as well as
chemokines, which promote HSC migration and other proinflammatory cytokines that drive fibroblast
activation [71]. With better understanding of long-term outcomes in patients with liver disease, and
the use of animal models, it is clear that liver fibrosis does not follow a linear progressive pathway but
is a highly dynamic process of repair and damage, with dramatic resolution of fibrosis possible [72].
The mechanisms of how macrophages contribute to this repair is also being elucidated, predominantly
using rat and murine models of repetitive toxin-induced injury that lead to HSC activation and hepatic
fibrosis, such as carbon tetrachloride (CCl4), followed by careful analysis of the healing phase. Matrix
metalloproteinases (MMPs) play a key role in the degradation of ECM, and pro-resolution macrophages
have been shown to express specific MMPs including MMP12 and MMP13 [73]. Interestingly, the
physical process of phagocytosis of apoptotic cells by macrophages drives a phenotypical change in
macrophages, leading to the down-regulation of fibrotic/inflammatory factors to the upregulation of
proresolution factors including MMPs but also arginase-1, which has been shown to have anti-fibrotic
properties [68].

6. Stabilin-1 Plays a Distinct Role in Macrophage-Mediated Tissue Remodelling during
Liver Injury

It has long been recognised that stabilin-1 is expressed on specific populations of tissue-resident
macrophages, including placental macrophages, subpopulations of skin macrophages and lymph node
macrophages [31,32,74–76]. Interestingly, previous studies of the normal liver have not described
it on Kupffer cells and demonstrated expression restricted to the liver sinusoidal endothelium [74].
Stabilin-1 appears to have a relatively low expression on circulating immature monocytes, but has
been shown to be upregulated in the setting of familial hypercholesterolaemia (FH) [77]. It was
hypothesised that stabilin-1 was induced on these monocytes in order to support the clearance of
increased deposits of oxidised low density lipoproteins (oxLDLs) from vessel walls associated with FH.
In vitro studies with monocytes have clearly shown that stabilin-1 is highly upregulated by stimulation
with IL-4 and dexamethasone [49]. In these macrophages, stabilin-1 has been shown to have both
scavenging roles and contributes to intracellular sorting. For example, efficient uptake of SPARC by
alternatively activated macrophages was mediated by stabilin-1 [40]; in addition, stabilin-1 has been
shown to interact with human Glyco_18-domain-containing proteins and regulates their trafficking to
lysosomes [78]. These findings have led to the conclusion that stabilin-1 makes an important functional
contribution to alternatively-activated (M2) macrophages, as opposed to classically-activated (M1)
macrophages, which are generated in cell culture by stimulating monocytes with interferon-γ. M2
macrophages have traditionally been considered anti-inflammatory macrophages, with features that
promote wound healing and resolution but are also features of tumour associated macrophages
(TAMs). Recent work has highlighted stabilin-1 upregulaton in TAMs in a range of cancers, and in an
in vivo model of breast cancer the uptake of SPARC, a tumour inhibiting factor, by stabilin-1 on TAMs
promoted tumor progression [79].
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It is now clear that, whilst this M1/M2 polarisation can be generated in vitro, the presence of
such polarized macrophage subsets in the disease setting is questionable. Phenotypic profiles of
macrophages in disease settings appear to be much more dynamic than the M1/M2 paradigm, and
this has been confirmed in the context of the liver, where macrophages isolated from hepatic tissue
during injury expressed inflammatory and resolution markers simultaneously, suggesting alternative
classification is required [80]. In murine models of liver injury, CD11b+/F4/80+ macrophage subsets
that were defined by Gr1 expression and lacked expression of neutrophil marker Ly6G were shown to
be proinflammatory and promote fibrosis, whereas the low expression of Ly6C identified subsets that
were anti-inflammatory and contributed to healing [63,68]. Studies in human liver disease identified
the accumulation of the CD14++CD16+ subsets of macrophages, which expressed pro-inflammatory
and profibrogenic cytokines and are therefore likely to play an important role in liver fibrosis [81].

The generation of stabilin-1 knockout mice has helped to elucidate the contribution of stabilin-1
to hepatic macrophage function. Stabilin-1 knockout mice demonstrated that these mice had a normal
lifespan, but histological analysis of the liver demonstrated a mild deposition of collagen fibres, which
were absent from wild type counterparts; however, combined knockout of stabilin-1 and stabilin-2
led to premature death. This increased mortality rate was attributed to glomerular fibrosis, driven by
diminished scavenging of profibrotic factors, with growth differentiation factor(GDF)-15 particularly
implicated [56]. In our studies, utilising stabilin-1 knockout mice, we aimed to understand the
contribution of stabilin-1 in the context of liver injury and repair. Analysis of well-established models
of chronic liver injury, including CCl4 repetitive injury and a resolution phase, revealed stabilin-1
deficiency had a significant impact on both fibrosis deposition within the liver and its subsequent
resolution. Stabilin-1-deficient mice developed an exacerbation of fibrosis in-keeping with the fibrotic
changes noted in previous findings, but also a profound impairment of fibrosis resolution. Histological
analysis demonstrated that whilst stabilin-1 was restricted to endothelium in the uninjured liver, upon
chronic damage, there was a sub-population of stabilin-1+ macrophages detectable. Mechanistically,
the recognition of oxLDLs, specifically malondialdehyde-LDL, by stabilin-1 macrophages led to a
suppression of the production of the pro-inflammatory chemokine CCL3, which is known to have
a significant effect on fibroblast phenotype. The increased expression of CCL3 from macrophages
led to high numbers of GFAP+ fibroblasts, which would explain the excessive deposition of ECM
(Figures 4 and 5). Interestingly, the deficiency of stabilin-1 had transcriptional effects on liver-derived
macrophages, skewing them to a pro-inflammatory phenotype with increased TNF-alpha expression
and reduced arginase levels. In addition, the suppression of Ly6C low populations, whose increase
in injury, as described earlier, is critical to fibrosis resolution, was evident [35]. The importance of
stabilin-1 expression on macrophages in fibrosis resolution was confirmed by the use of both cell-specific
knockouts and the adoptive transfer of macrophages to reverse this defect in the setting of stabilin-1
deficiency during fibrosis resolution [35]. Additional transcriptional analysis of hepatic macrophages
demonstrated higher expression on mature macrophages rather than immature recruited monocytes.
Whether the major contribution of macrophage stabilin-1 in liver fibrosis is due to upregulation on
resident Kupffer cells or monocyte- derived macrophages that are recruited from the circulation is still
unclear, as experiments with organ-specific knockout or Kupffer cell-specific knockout of stabilin-1, to
our knowledge, are yet to be performed.
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Figure 4. The scavenging role of stabilin maintains homeostasis in the liver by the uptake of products
of oxidative stress. Stabilin-1 contributes to the hepatic uptake of circulating oxidized low-density
lipoproteins (oxLDLs). In the setting of stabilin-1 deficiency, these oxLDLs lead to a proinflammatory
response specifically, leading to increased levels of the chemokine CCL3, which drives the proliferation of
liver-resident fibroblasts and causes an increase in collagen fibres in the livers of stabilin-1 knockout mice.

(A) (B)

Figure 5. Stabilin-1 expression on hepatic macrophages protects against excessive tissue damage from
chronic oxidative stress. (A) In models of chronic liver injury, the repetitive damage to hepatocytes leads
to oxidative stress and lipid peroxidation, which leads to the formation of malondialdheyde-lipoproteins
(MDA-LDL), which accumulate in the liver. Stabilin-1 expression on hepatic macrophages leads to the
uptake of MDA-LDL, which leads to the formation of ceroid-laden macrophages that are found at sites
of scarring. The active uptake of MDA-LDL by stabilin-1 positive macrophages suppresses the release
of pro inflammatory mediators such as CCL3. (B) In the setting of stabilin-1 deficiency, there is a loss of
these ceroid-laden macrophages and a lack of accumulation of MDA-LDL within hepatic macrophages.
The stabilin-1-deficient hepatic macrophages are shifted to a pro-inflammatory phenotype including
excessive release of CCL3, and this is associated with excessive scarring from activated liver fibroblasts
and delayed healing after liver injury.
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7. Conclusions

Chronic liver disease is a major global cause of mortality and death, and currently there are no
licensed therapies to treat the tissue fibrosis that drives these conditions. Gaining a better understanding
of the regulatory pathways in disease pathophysiology could lead to novel therapies. In this review, we
have highlighted the emerging contribution of the scavenger receptor stabilin-1 to two key pathogenic
mechanisms in progressive liver disease, namely, the recruitment of lymphocytes and the scavenging
function of macrophages. Stabilin-1 is expressed at sites of lymphocyte recruitment in the human
liver, including the hepatic sinusoidal channels and on neovessels at site of liver tissue injury. It
is also upregulated on hepatic macrophages during disease, and actively regulates their release of
pro-inflammatory mediators. Scavenger receptors have been traditionally considered to be a family
of receptors with significant redundancy, but this assumption is being challenged, and they are now
considered to be an important link between tissue injury and immune responses [82]. Stabilin-1 is an
example of a homeostatic receptor within the liver, but also has an additional impact on the immune
microenvironment during liver inflammation and fibrosis.
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