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Abstract
One important problem in financial optimization is to search for robust investment plans that can maximize return while
minimizing risk. The market environment, namely the scenario of the problem in optimization, always affects the return
and risk of an investment plan. Those financial optimization problems that the performance of the investment plans largely
depends on the scenarios are defined as scenario-based optimization problems. This kind of uncertainty is called scenario-
based uncertainty. The consideration of scenario-based uncertainty in multi-objective optimization problem is a largely under
explored domain. In this paper, a nondominated sorting estimation of distribution algorithm with clustering (NSEDA-C)
is proposed to deal with scenario-based robust financial problems. A robust group insurance portfolio problem is taken as
an instance to study the features of scenario-based robust financial problems. A simplified simulation method is applied to
measure the return while an estimation model is devised to measure the risk. Applications of the NSEDA-C on the group
insurance portfolio problem for real-world insurance products have validated the effectiveness of the proposed algorithm.

Keywords Multi-objective optimization · Uncertainty handling · Estimation of distribution algorithm · Financial investment

Introduction

Uncertainty is ubiquitous in financial optimization problems.
The uncertainties in financial optimization problems lead to
uncertain returns of investments. Therefore, in the issue of
financial investment, investors always aim at searching for
robust investment plans that can not only gain a considerable
return but also avoid excessive risk in uncertain environ-
ments. That is to say, many financial optimization problems
can be formulated as robust optimization problems with two
objectives, returnmaximization and riskminimization [1–4].
Themain challenge in robust financial optimization problems
is to deal with the uncertainties in investment properly.

In general, there are four kinds of popular ways to deal
with uncertainties inmulti-objective problems (MOPs). First,
for those problems that the fitness functions are derivable and
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the uncertainties can be easily expressed by mathematical
formulas, the traditional mathematical derivation method is
an important method to handle uncertainties [1, 2]. Second,
traditional Monte Carlo (MC) simulation method is popu-
lar to deal with complex uncertainties which are difficult to
express by mathematical formulas [3–7]. According to the
lawof large numbers, the frequencyof a randomevent is close
to its probability under the same environment and a large
number of repeated experiments. Therefore, the results of a
large number ofMC simulations can be employed to approx-
imate the objectives of the problem. The accuracy of the
estimation increases with the number of simulation accord-
ing to the lawof large numbers. Third, for those problems that
the uncertainties obey certain probability distribution such as
the noise with normal distribution, one popular approach is
to estimate the expectation value of the solution by the aver-
age value of each parameter [8]. Last, surrogate models such
as radial-basis-function network [9], back propagation neu-
ral network [10] and general regression neural network [11]
are also widely applied to deal with uncertainties in MOPs
especially to approximate the risk due to their good fitting
ability [12, 13].

Despite the above methods, a special scenario-based fea-
ture in financial optimization has been noticed [14]. In most
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of financial optimization problems, the influence of the sce-
nario on the result is greater than the quality of the solution.
In other words, the return of a good investment plan in the
negative market (i.e., most of the products are not prof-
itable) may be worse than the return of a bad investment
plan in the positive market (i.e., most of the products can
gain considerable profits). For instance, with the outbreak of
COVID-19, the financial market is greatly impacted. Even
though the best investment plan under the COVID-19 cir-
cumstance cannot get the same return as a bad investment
plan in a normal circumstance [15]. Another example is
that in severe drought years, even with the optimal planting
scheme, the harvests of cereals are not as well as an unsuit-
able planting scheme in a harvest year [16]. These kinds
of scenario-based uncertainties commonly appear in various
robust financial optimization problems whose objective is
minimizing risk while maximizing return. The special char-
acteristics of scenario-based uncertainties make the existing
approaches inefficient.

First, due to the complexity of scenario-based uncertainty,
the problem is difficult to express by a precise mathematical
model. Therefore, traditional mathematical derivation meth-
ods are difficult to apply in this kind of uncertainty problem.
Second, traditionalMC simulationmethod is not effective for
the scenario-based robust optimization problem since huge
amounts of simulations are needed to stabilize the expecta-
tion value in financial problems, which are time-consuming.
Third, for the scenario-based robust optimization problem
considered in this paper, the uncertainties are influenced by a
lot of factors and do not obey certain distribution. Therefore,
the estimation approach is not applicable to this problem.
Last, according to our analyses, the surrogate models are
ineffective to approximate the risk considered in this paper
due to the scenario-based characteristics of the uncertainty.
Themethods for solving uncertainty inMOPs and their draw-
backs are concluded in Table 1.

To cope with this special kind of scenario-based robust
optimization problem, a nondominated sorting estimation of
distribution algorithm with clustering (NSEDA-C) is pro-
posed in this paper. An insurance portfolio problem [17] is
studied as an instance of the multi-objective robust finan-
cial optimization problem. The nondominated sorting (NS)
approach [18], which has been widely applied to address
MOP is applied to cooperate with the estimation of distribu-
tion algorithm (EDA) [19]. EDA is a stochastic optimization
algorithm with great ability to deal with uncertain opti-
mization problems due to the compatibility of its inherent
stochastic and the uncertainties in the optimization prob-
lem [20]. Moreover, a clustering method [21] is applied to
find more peaks during the evolution process. The popula-
tion in NSEDA is divided into several clusters according
to Euclidean distance [22]. The distribution models are
constructed in each cluster independently. In view of the

Table 1 Methods for solving uncertainty in MOPs and their drawbacks

Methods Scope of application Drawbacks

Mathematical
derivation method

Problems that the
fitness value are
derivable and the
uncertainties can
be expressed by
mathematical
formulas

The scenario-based
uncertain
optimization
problems are
difficult to express
by a precise
mathematical
model

Traditional MC
simulation method

Problems which are
difficult to express
by mathematical
formulas

Huge amounts of
simulations are
needed to stabilize
the expectation
value of the
problems, which
are
time-consuming

Estimation with
average parameter

Problems that the
uncertainties obey
certain probability
distribution such
as the noise with
normal
distribution

The uncertainties in
the problems are
influenced by a lot
of factors and do
not obey certain
distribution

Surrogate model Approximation
problems of the
risk

Ineffective due to
the scenario-based
characteristics of
the uncertainty

scenario-based feature in robust financial optimization prob-
lems, this paper introduces two novel strategies to address
the estimation of return and risk based on feature analysis of
the problem.

On the one hand, to coordinate with the scenario-based
characteristic of the uncertainty, a simplified simulation strat-
egy is proposed to reduce the number of simulations when
estimating the return. In this kind of uncertain optimization
problem, although there are huge fluctuations in themarket, a
good portfolio plan canwithstand thefluctuations and outper-
forms the poor portfolio plans in the same scenario for most
of the time. Therefore, in the evolution process, the quality
of the solutions can be distinguished by only one simulation,
which can save a huge amount of computational resources.

On the other hand, a data-driven heuristic estimation
model is devised tomeasure the risk of the problem.Although
the calculation of the return can be simplified to one simu-
lation due to its scenario-based characteristics, the risk of
the portfolio plan is incalculable by only one simulation. In
the proposed NSEDA-C, since only an approximative rank
of the variance is needed to find Pareto-optimal solutions, a
problem-heuristic estimation model is constructed based on
the historical data to approximate the rank of the variance.
The accuracy of the estimation model is measured by the
Spearman rank correlation coefficient [23]. A high Spear-
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man rank correlation coefficient indicates that it is effective
to apply the proposed estimationmodel as a substitute for the
variance when searching for the Pareto-optimal solutions.

The remaining part of the paper proceeds as follows:
background information about MOPs and robust financial
optimization problems is given in “2”. “5” gives a specific
example of the discussed scenario-based robust optimiza-
tion problems and analyzes the problem thoroughly based
on the given example. “Nondominated sorting estimation
of distribution algorithm” elaborates the proposed NSEDA-
C. Experiments are conducted in “18” where the proposed
NSEDA-C is compared with other algorithms. Finally, the
conclusion of the whole article is summarized in “26”.

Backgrounds

Since the problem considered in this paper is essentially a
MOP, background information about MOPs is given in this
section for those who are not familiar with MOPs. After
that, we give a further description of the considered robust
financial optimization problems and review some popular
approaches to deal with robust financial optimization prob-
lems.

Multi-objective problems

MOPs [24–26] have been widely applied in a large number
of fields in real life, such as transportation problem [27, 28],
recommendation system [29], shortest path problem [30],
and analog design automation [31]. In general, a MOP with
m decision variables and n objectives are defined as follows
[32]:

max f (x) � ( f1(x), f2(x), ... fn(x))

subject to x � (x1, x2, ...xm) ∈ �,
(1)

where �⊆Rm is the search space. Here, the objectives are
contradictious, which means that no solution can reach the
optimal value for all the objectives simultaneously. For two
solutions, s1 is said to dominate s2 if and only if

∀i ∈ {1, 2, ...n} : fi (s1) ≥ fi (s2)

∧∃ j ∈ {1, 2, ...n} : fi (s1) > fi (s2).
(2)

If a solution s is not dominated by any other solutions in
a set �′, s is said to be a nondominated solution in �′. s
is Pareto-optimal solution if and only if s is nondominated
in the whole search space �. The set of objective values
corresponding to a set of Pareto-optimal solutions is called
Pareto-optimal front.

Efforts have been made to find the Pareto-optimal solu-
tions and the Pareto-optimal front for MOPs by evolutionary

computation. Among these algorithms, the most popular
two works are nondominated sorting genetic algorithm
II (NSGA-II) [18] and MOEA based on decomposition
(MOEA/D) [33].NSGA-II propose a fast nondominated sort-
ing approach which improves the computational complexity
of Pareto dominated sorting from O(NP3) to O(NP2), where
NP is the population size. MOEA/D has addressed the issue
that NSGA-II is inefficient when dealing with high dimen-
sional MOPs. In MOEA/D, a MOP is decomposed into
several scalar optimization subproblems by uniformly dis-
tributed weight vectors. For each newly generated solution,
solutions near the subproblem are replaced by an aggregate
function.

Treatments of noise are the most important problems in
uncertainMOPs. In noisyMOPs, the evaluation of the fitness
function is disturbed by noise such as loss during image pro-
cessing [34], transmission noise [35] or line crosstalk noise
[36]. Noisy MOPs can be described as the following equa-
tion:

max f̂ (x) � (
f ′
1(x), f ′

2(x), ... f
′
n(x)

)

where f ′
i (x) � fi (x) + N (0, σ 2

i ) or f ′
i (x) � fi (x) × N (0, σ 2

i ).
(3)

Here, f i ′(x) � f i(x) + N(0, σ i
2) stands for additive noise

while f i ′(x) � f i(x)×N(0, σ i
2) stands for multiplicative

noise. Generally, the noise in the function is assumed to be
normally distributed with mean value 0 and standard devia-
tion σ i.

The most common method to deal with noisy MOPs is
to approximate the fitness value with MC simulation. For
example, Babbar et al. [7] proposed a modified NSGA-II
that applied a clustering method to the ranking scheme in
NSGA-II to select and evolve nondominated solutions over
the objective space. The performances of the algorithms
in noisy environments are improved a lot by the proposed
method. Their work is then followed by Boonma and Suzuki
[6] with the introduced of a noise-aware dominance oper-
ator called α-dominance operator. The proposed operator
identified the dominance relationship between two candi-
date solutions by statistically processing their objective value
samples. After that, Rakshit et al. [5] modified the traditional
differential evolution for multi-objective (DEMO) [37] in the
presence of noise by three strategies: adaptive sample size
selection, consideration of determining statistical expecta-
tion as the measurement and consideration of slightly worse
trial solutions. Then, they improved their work by employ-
ing determining defuzzified centroid value of the samples as
the measurement of fitness value and proposed an extending
DEMO for optimization in the presence of noise [38]. Espe-
cially,Wang et al. [8] paid attention to the regularity property
of the Pareto set inMOPs and embedded the regularitymodel
in NSGA-II to cope with noises.
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Robust financial optimization problems

Robust financial optimization problems are a special kind of
MOP that usually consist of two objectives. The first objec-
tive is the return on investment,which needs to bemaximized.
The second objective is the risk of investment, which needs
to be minimized. In general, robust financial optimization
problem can be formulated as

max f (x) � ( f1(x), f2(x)) where

f1(x) � return and f2(x) � −risk.
(4)

The most traditional method is applying mathematical
derivation strategies to solve robust financial optimization
problems. For example, Patnaik andTiwari [1] appliedValue-
at-Risk approach to measure market risk which helps to
find out robust solutions that can maximize the return while
minimize market risk. Duan [2] applied convex vector opti-
mization to deal with multi-objective portfolio problem and
search for robust solutions with return maximization and risk
minimization.

Another popular approach is to simulate the investment
processwithMCsimulation. For example,Mukerjee et al. [3]
applied anondominated sortinggenetic algorithm (NSGA-II)
cooperates with MC simulation to handle the robust risk-
return trade-off problem which searches for robust solutions
that can make a balance between the risk and the return in
bank loan management. Lin et al. [4] proposed a mean–vari-
ance model with simulation to search for robust solution that
can rebalance the transaction costs and minimum transaction
lots.

However, few of existing literature has paid attention to
the scenario-based uncertainties in robust financial optimiza-
tion problems and devised algorithms based on this kind of
uncertainties. Those existing algorithms are not effective for
the scenario-based robust financial optimization problems
due to the hindrance of special uncertainties in the problem.
Therefore, this paper focuses on the features of scenario-
based robust financial optimization problems and designs a
specific optimization algorithm according to this special fea-
ture.

Scenario-based robust optimization problem

In this section, a data-driven group insurance portfolio prob-
lem is introduced as an instance of scenario-based robust
optimization problems. Analyses are made based on the
group insurance portfolio problem to study the feature of
scenario-based robust optimization problems.

Group insurance portfolio problem

The study of data-driven insurance portfolio problem first
started from [17] as an single-objective deterministic prob-
lem where only the maximization of the return of a single
insured is considered as the objective of the problem and an
approximated expectation reward is applied as the objective
function. After that, an extension is made in [14, 39] which
considers the optimization problem of a whole group and
taken the mean value of uncertain simulation result as the
objective function. Now, we further expand this problem to a
two-objective robust optimization problem considering both
the maximization of the return and the minimization of the
risk of a whole group as the objectives.

Inspired by the measurement of risk from Markowitz’s
work [40], the objective function is formulated as

max f (X,β) � ( f1(X,β), f2(X,β))

where f1(X,β) � mean S(X,β)

f2(X,β) � −std S(X,β).

(5)

where X denotes the investment amount in endowment
policies and β denotes the choice of hospitalization policies.
f 1 is the return of the portfolio plan which is calculated by
the mean value of a huge number (ten thousand in this paper)
of simulated return S(X, β). f 2 is the risk of the portfolio
plan which is calculated by the sample standard deviation
of a huge number (ten thousand in this paper) of simulated
return S(X, β). A brief pseudocode of the simulation process
is given in Algorithm 1, which has been elaborated in [14].
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Fig. 1 Result distribution of group insurance portfolio problem

Feature analysis of group insurance portfolio
problem

Analyses are made on group insurance portfolio problems in
the following four situations to study the features of scenario-
based robust optimization problems:

1. t0 � 30, 45, 50; T � 20;
2. t0 � 30, 45, 50; T � 30;
3. t0 � 30, 30, 35; T � 20;
4. t0 � 30, 30, 35; T � 30.

Here, t0 denotes the initial ages of different insureds in
the group and T denotes the time duration of the investment
considered in the problem.

Distribution of the results

First, we explore the distribution of the two objectives in the
group insurance portfolio problem to verify that this prob-
lem is an optimizable multi-objective problem. On the one
hand, thoseproblemswith positively relatedobjectives canbe
treated as single-objective problems sincewhenoneobjective
is optimized, the others are also optimized.On the other hand,
those problems with completely contradictory objectives are

Table 2 Pearson correlation coefficients of the objectives

t0 � 30 45 50
T � 20

t0 � 30 45 50
T � 30

t0 � 30 30 35
T � 20

t0 � 30 30 35
T � 30

0.34 − 0.29 0.12 − 0.55

not optimizable since as long as one solution performs better
than another in one objective, its performance must be worse
in the other objectives.

1000 independent solutions are generated randomly and
their returns and risks are estimated in 10,000 simulated sce-
narios. Result distribution in four situations is given in Fig. 1.
It can be discovered that these two objectives are partially
contradictory. Although solutions with high returns have rel-
atively high risks in general, there are still superior solutions
that not only the returns are high but also the risks are low.

To further validate the rationality of applying these two
objectives to constitute a multi-objective optimization prob-
lem, the Pearson correlation coefficients between these two
objectives are researched. The Pearson correlation coeffi-
cients between these two objectives in four situations are
given in Table 2. Since the Pearson correlation coefficients
of these two objectives are neither too high nor too low
in the four situations, it is reasonable to construct a multi-
objective optimization problem with these two objectives.
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Situation with different Pearson correlation coefficient rep-
resents multi-objective optimization problem with different
difficulty. In the first and third situations, since the objectives
are more consistent, it is easier to find out robust solutions
than in the second and fourth situations.

Stability analysis of the objectives

Then, we analyze the stability of the objectives through their
convergence graph. In each situation, we randomly generate
one solution as a representative to carry on the study. The
mean value and the standard deviation of the simulated return
within 300 simulations are given in Fig. 2.

In the first situation, the mean value is stabilized after
150 simulations while the standard deviation is stabilized
after 250 simulations. In the second situation, both the mean
value and the standard deviation have not been stabilized
within 300 simulations. In the third situation, the mean value
is stabilized after 200 simulations while the standard devi-
ation has not been stabilized within 300 simulations. In the
fourth situation, both the mean value and the standard devi-
ation have not been stabilized within 300 simulations. That
is to say, more than 300 simulations are needed to gain an
accurate approximation of both of the objectives in all the
situations in the group insurance portfolio problem.

Since the simulation process is the most time-consuming
process during optimization, it is not cost-effective to calcu-

late the fitness value of the objectives with more than 300
simulations. Therefore, alternative approximation strategies
are needed to estimate the objectives of the problem to avoid
expensive computational cost.

Characteristic analysis of the return

Therefore, we explore the characteristics of the return by cal-
culating the probability that the better solution outperforms
the worse solution in each situation. Fifteen pairs of solu-
tions are randomly chosen in each situation. The return of
each pair of solutions is simulated in the same 10,000 sce-
narios. The solution with a higher mean value of the return
in 10,000 scenarios is regarded as the better solution while
the solution with a lower mean value is regarded as the worse
solution in each pair of solutions. The ratios of the scenarios
that the better solution outperforms the worse solution for
each pair of solutions are given in Table 3. The mean values
of the ratio in each situation are also given in Table 3.

It can be discovered in Table 3 that in the considered group
insurance portfolio problem, it is very possible that a better
solution will outperform a worse solution in the same sim-
ulated scenario. Due to this scenario-based characteristic of
the uncertainty, a corresponding approach is designed to save
computational costs, which will be elaborated later.

Fig. 2 Convergence graph of the two objectives
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Table 3 Probability that the better solution outperforms the worse solution

Mean P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15

t0 � 30 45 50
T � 20

0.90 0.90 0.97 0.86 0.90 0.80 0.84 0.93 0.90 0.86 0.93 0.90 0.92 0.86 1.00

t0 � 30 45 50
T � 30

0.89 0.85 0.82 0.96 0.97 0.84 0.93 0.93 0.90 0.86 0.93 0.86 0.90 0.91 0.86

t0 � 30 30 35
T � 20

0.97 0.98 1.00 0.95 0.96 0.97 0.98 0.91 1.00 0.98 0.87 0.98 1.00 0.92 0.98

t0 � 30 30 35
T � 30

0.97 0.99 1.00 0.99 0.94 0.97 1.00 0.97 0.96 0.93 0.95 0.97 0.91 0.99 0.97

Table 4 Approximation error of the risk

RBF BP GRNN 10 MC 20 MC 50 MC

t0 � 30 45 50
T � 20

0.57 0.69 0.57 0.44 0.32 0.24

t0 � 30 45 50
T � 30

0.63 0.63 0.55 0.62 0.37 0.22

t0 � 30 30 35
T � 20

0.48 0.74 0.50 0.41 0.35 0.25

t0 � 30 30 35
T � 30

0.60 0.76 0.52 0.72 0.38 0.26

Approximation of the risk

Lastly, although the calculation of the return can be simplified
due to its scenario-based characteristics, the calculation of the
risk still remains a big challenge. Therefore, we search for an
approximation approach of the measurement of risk. Three
widely applied surrogate models are investigated including
radial-basis-function (RBF) network [9], back propagation
(BP) neural network [10] and general regression neural net-
work (GRNN) [11]. Except for these three surrogate models,
the accuracy of a small number of MC simulation (including
10 simulations, 20 simulations and 50 simulations) is also
investigated. The approximation error is calculated by the
following equation:

e � | f − fe|
max( f , fe)

, (6)

where f is the fitness value of risk calculated by 10,000
MC simulations and f e is the approximation value of the risk.
The approximation errors are given in Table 4.

It can be discovered that all the surrogate models are not
suitable for the approximation of the risk in group insurance
portfolio problem since the approximation errors are rather
large. This situation may be caused by the scenario-based
characteristics of the problem. Since the uncertainty of the
problem is highly related to the simulated scenario, it is hard
for those surrogate models to estimate the sample standard
deviation of the simulated return accurately.

As for the small number of MC simulations, the approx-
imation accuracy of 10 simulations and 20 simulations is
also poor. The accuracy of 50 simulations is relatively better,
but compared with the increase in computational cost, the
increase in accuracy is not enough.

Thus, another estimation approach with higher accuracy
and lower computational cost is needed to estimate the risk in
group insurance portfolio problem. Since the group insurance
portfolio problem is constructed based on a huge number of
historical data. The historical data and distribution of the pay-
out of each endowment policy are applied to simulate the cash
value or death compensation for the insured. The historical
data of the mortality rate and incidence rate are applied to
simulate the lifespan and health condition of the insured.
Therefore, the idea of constructing a heuristic estimation
model with these huge number of historical data naturally
come to our mind. The detailed introduction of this data-
driven heuristic estimation model will be given in the next
section.

Nondominated sorting estimation
of distribution algorithmwith clustering

General framework

To solve the proposed group insurance portfolio problem
with two objectives, a nondominated sorting estimation
of distribution algorithm with clustering (NSEDA-C) is
devised. The general framework of the proposed NSEDA-C
is composed of two parts: the nondominated sorting strategy
and the clustering estimation of distribution algorithm.

Nondominated sorting strategy

The nondominated sorting strategy applied in this paper was
first proposed by Deb [18] and widely applied to solve multi-
objective especially two-objective problems.

123



3996 Complex & Intelligent Systems (2022) 8:3989–4003

The pseudocode of nondominated sorting strategy is given
inAlgorithm 2. Specially, for those individuals with the same
rank, diversity preservation ability is applied to distinguish
the individuals. The diversity preservation ability of the indi-
vidual is measured by the crowding distance for a sorted
population I with l individuals:

dim �

⎧
⎪⎨

⎪⎩

∞ if i � 1 or i � l

Ii+1.m − Ii−1.m otherwise

f max
m − f min

m

, (7)

di�
M∑

m�1

dim, (8)

where f max
m and f min

m are the maximum and minimum value
of the m-th objective. Ii.m denotes the m-th objective value
of the i-th individual andM is the number of objectives in the

problem. For two individuals with the same dominated rank,
the one with larger crowding distance is considered better.

Clustering estimation of distribution algorithm

In this paper, a clustering estimation of distribution algo-
rithm (CEDA) [14] designed for mixed variable optimization
is applied as the optimizer to deal with the group insurance
portfolio problem. The CEDA executes according to the fol-
lowing steps.

Step 1: Initialization with constraint handling. An ini-
tial population is generated randomly in sequence to ensure
its feasibility. Each individual in the population stands for
a candidate portfolio plan of the group insurance portfolio
problem. Since the total investable amount of the group is
fixed, the upper bound of investment amount to each endow-
ment policywill be limited by the investment amount to other
endowment policies. Therefore, the investment amount to
each endowment policy is initialized one by one to ensure
that the solution is feasible. Once the investment amount to
an endowment policy is determined, the corresponding value
will be subtracted from the remaining amount to other endow-
ment policies according to its payment period. Moreover, to
avoid the phenomenon that the investment of individuals con-
centrated in the first few policies, the initialization sequence
is randomly disrupted for each individual.

Step 2: Construction of probabilitymodels in each cluster.
The elite individuals in the population, which are found out
by the nondominated sorting method and crowding distance
are applied to construct the probability model for the next
generation. After NPbest elite individuals are found, they are
assigned to cn crowds according to Euclidean distance. That
is, generate a reference point randomly and choose the indi-
vidual nearest to the reference point as the seed for clustering.
Assign the cs– 1 individuals nearest to the seed to the same
crowd with the seed. Then, remove these individuals from
the population and repeat the same process to obtain the rest
crowds until all the elite individuals are assigned to the appro-
priate crowd. After that, the probability models are built in
each crowd according to the individuals in each crowd. For
the investment amount of endowment policies, the models
are Gaussian or Cauchy distribution with expectation equals
to the mean value of individuals in the crowd and variance
equals to the variance of individuals in the crowd. In terms of
the choice of hospitalization policies, the probability models
are built based on a histogram method. The probability of
hospitalization policy to be chosen equals to the proportion
of this choice among the elite individuals in the crowd during
this generation. The hospitalization policy appears frequently
among the elite individuals in a crowd has a higher proba-
bility to be chosen as the hospitalization policy in the next
generation.
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Step 3: Generation of new populations in each cluster.
The new population is generated according to the proba-
bility models in each crowd. For the investment amount of
endowment policies, the new population is sampled byGaus-
sian or Cauchy distribution according to the performance of
these two distributions in the last generation. The distribu-
tion appears frequently among the elite individuals in a crowd
has a higher probability to be chosen as the distribution for
the next generation. In terms of the choice of hospitalization
policy, the roulettewheel selectionmethod is applied to deter-
mine the decision of hospitalization policies in each crowd
for the next generation. The NP newly generated individuals
and the original NP individuals are combined to constitute
the candidate population for the next generation. The NP
better individuals in the candidate population according to
dominated rank and crowding distance are chosen to form
the population of the next generation.

Step 4: Termination Check. While the termination crite-
rion is satisfied, the Pareto-optimal solutions with rank 1 in
this generation are exported. Otherwise, a new generation is
started from Step 2.

The overall procedure of the proposed NSEDA-C is given
in Algorithm 3.

Simplified simulation approach for the estimation
of return

As we have discussed, the group insurance portfolio prob-
lem is a scenario-based optimization problem with a high
probability that a solution with a higher expectation return
will have a higher estimated return in the same simulated
scenario. For this feature, a simplified simulation approach
is applied for the estimation of return. During the evolution
process, the returns for all the individuals are estimated in the
same scenario (the illness or death situation of each insured
is the same in the simulation of each solution). Instead of the
mean value of several simulated results, only one scenario is

simulated for the calculation of return in this paper. Due to
the scenario-based characteristic and the analysis, it is very
likely that the quality of the solutions in terms of the return
can be reflected by the return of the solutions in only one
scenario. A huge number of fitness evaluations can be saved
by the simplified simulation approach.

Estimationmodel of the risk

Since the surrogate models have been validated ineffective
for the estimation of the risk, a heuristic estimation model is
constructed based on the historical data of the insurance poli-
cies according to the characteristic of financial optimization
problems. The estimation model is calculated by the sum of
risk index of endowment policy and hospitalization policy:

f ′
2(X,β) �

n∑

k�1

⎛

⎝
n1∑

i�1

mi∑

j�1

xki j yi j�
k
i j + r

(
βk

)
⎞

⎠, (9)

where n1 is the number of endowment policies and mi is the
number of payment periods of the i-th endowment policy.
xki j is the investment amount of the k-th insured to the i-th
endowment policy with the j-th payment period. yij is the
duration of the j-th payment period of the i-th endowment
policy. � k

i j is the risk factor of the i-th endowment policy

with the j-th payment period. In addition, r(βk) is the risk
factor of hospitalization policy for the k-th insured. Here, the
risk factor � k

i j is calculated by

� k
i j � 1

T

T∑

t�0

σi j (tk0 , tk0 + t)

μi j (tk0 , tk0 + t)
, (10)

where T is the investment duration considered in the problem
and tk0 is the purchasement age of the k-th insured. σ ij(·) and
μij(·) are the standard deviation and mean value calculated
from the historical data of the endowment policy.

The risk factor of the hospitalization policy is calculated
by

r (βk) �
n2−βk
∑

s�1

⎛

⎜
⎝

⎛

⎜
⎝1 −

tk0 +T∏

t�tk0

(
1 − pks (t)

)
⎞

⎟
⎠ · zks

⎞

⎟
⎠ (11)

where n2 is the number of hospitalization policies. pks (t) is
the incident rate of the disease in the s-th degree for the
k-th insured at time t. zks is the historical average medical
expense of the disease in the s-th degree for patients with
similar condition to the k-th insured.

Although the proposed estimation model cannot approx-
imate the accurate value of f 2 (X, β), it can estimate the
performance of the solutions in terms of the risk. To a large
extent, if the value of f ′

2(X,β) for a solution is larger than
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Table 5 Average spearman
correlation coefficient Estimation model 10 MC 20 MC 50 MC RBF BP GRNN

t0 � 30 45 50, T � 20 0.78 0.45 0.71 0.78 − 0.06 0.04 0.02

t0 � 30 45 50, T � 30 0.75 0.49 0.58 0.71 0.09 − 0.01 0.16

t0 � 30 30 35, T � 20 0.82 0.64 0.72 0.84 − 0.02 − 0.08 0.02

t0 � 30 30 35, T � 30 0.77 0.43 0.69 0.74 − 0.22 − 0.05 0.08

another, the value of f 2 (X, β) for this solution is very likely
to be larger at the same time. The Spearman correlation coef-
ficient [41] is applied to evaluate the accuracy of the rank for
the estimated value of the solutions. Spearman correlation
coefficient evaluates the correlation between two arrays with
the same length based on the degree of agreement in terms
of the rank:

ρ � 1 −
6

N∑

i�1
d2i

N (N 2 − 1)
, (12)

where di � xi – yi is the difference between the ranks of
the i-th element in the two arrays and N is the number of
elements in the arrays. ρ � 1 implies that the two arrays are
sorted exactly the same while ρ � − 1 implies that the two
arrays are sorted completely opposite. ρ � 0 implies that the
two arrays are sorted completely independently. |ρ|<0.4 indi-
cates that the rankings of the two arrays are lowly correlated.
0.4≤|ρ|<0.7 indicates that the rankings of the two arrays are
moderately related. In addition, 0.7≤|ρ|<1 indicates that the
rankings of the two arrays are highly correlated.

Experiments are made to validate the rationality of the
proposed estimation model. 100 feasible solutions are ran-
domly generated with sample standard deviation calculated
in 10,000 scenarios. Their Spearman correlation coefficient
of the sample standard deviation with the risk measured by
the estimationmodel is comparedwith the Spearman correla-
tion coefficient of the sample standard deviation with small
amounts of MC simulations (10, 20 and 50) and surrogate
models (RBF, BP and GRNN). The experiments are exe-
cuted 30 times independently to avoid statistical error. The
average values of the Spearman correlation coefficients are
given in Table 5.

It can be discovered that the accuracy of the proposed
estimation model is better than 10 and 20 times of MC simu-
lation and comparable with 50 times ofMC simulation while
a large number of computational resources can be saved. As
for the surrogate models, since it has been analyzed that it
is inappropriate for scenario-based uncertainty problem, the
Spearman correlation coefficients are also very low.

Experimental results

Experimental setting

To validate the effectiveness of the proposed approach,
experiments are done to compare the NSEDA-C with other
algorithms. First, NSEDA with simplified simulation con-
sidering the proposed estimation model as the objective of
risk is compared with NSEDA considering the mean val-
ues and sample standard deviations of small amounts of
MC simulation as the objective function value. Secondly,
the proposed NSEDA-C is compared with NSEDA with-
out clustering to validate the effectiveness of the clustering
approach. Thirdly, the proposed NSEDA-C is compared
with other multi-objective algorithms including differential
evolution for multi-objective optimization (DEMO) [37],
multiple objective particle swarm optimization (MOPSO)
[42], DEMO with noise (DEMON) [5] and NSGA-II with
α-dominance operator (NSGA-II-α) [6]. Lastly, NSEDA-C
is compared with other two robust optimization algorithms,
multi-objective evolutionary algorithm with robust approach
(MOEA-R) [43] and reduced Pareto set genetic algorithm
with robustness (RPSGA-R) [44].

All the algorithms are executed 30 times independently to
reduce the statistical error. The fitness evaluation times for all
the algorithms are set as 3×105 for fairness. The population
size of NSEDA-C is set as 1000 [14]. The population size of
NSEDA considering 10, 20 and 50 times of MC simulation
are set as 100, 50 and 20, respectively. The population size of
DEMOandDEMONare set as 50 [5, 37]. The population size
and archive size ofMOPSOare set as 40 and200, respectively
[42]. The population size of NSGA-II-α is set as 100 [6]. The
cluster number of NSEDA-C is set as 10 and the population
size of elite individuals of NSEDA-C is set as 450 [14]. The
mutation rate and crossover rate of NSGA-II-α are set as 0.02
and 0.9, respectively [6]. The crossover rate in DEMO and
DEMON is set as 0.9 [5, 37]. The reduction rate inMOEA-R
is set as 0.5 [43]. The dispersion parameter in RPSGA-R is
set as 0.5 [44].

In the experiments, several real-life insurance products are
considered in the following four situations, where t0 is the
initial ages of different insureds in the group and T is the

123



Complex & Intelligent Systems (2022) 8:3989–4003 3999

Fig. 3 The estimated Pareto Fronts of each algorithm

time duration considered during investment:

1. t0 � 30 45 50, T � 20;
2. t0 � 30 45 50, T � 30;
3. t0 � 30 30 35, T � 20;
4. t0 � 30 30 35, T � 30.

All the solutions obtained from the above algorithms
are considered together and the nondominated solutions
among them are applied to construct the approximated Pareto
Front of the group insurance optimization problem which is
denoted as P. The approximated Pareto Front obtained by
each algorithm is denoted as A. The inverted generational
distance (IGD) and spacing (S) are employed to evaluate the
performance of the algorithms [45]:

IGD(A, P) �
∑|P|

i�1 d(pi , A)

|P| , (13)

where d(pi, A) is the minimum Euclidean distance from
the i-th member in P to the members in A. A small IGD value
implies that A is close to P indicating a good performance of
the algorithm:

S(A) �
√√
√√ 1

|A| − 1

|A|∑

i�1

(d − di )2, (14)

di � min
(∣∣ f1i − f1 j

∣∣ +
∣∣ f2i − f2 j

∣∣), (15)

where d is the mean value of di and f ij is the i-th objective
value of the j-th solution in A. A small S value implies that
the members in A are spaced almost equidistantly indicating
a good performance of the algorithm.

The estimated Pareto Front of each algorithm

For an intuitive comparison of algorithms, the estimated
Pareto Fronts optimized by each algorithm are printed as
points with different colors in Fig. 3. The overall estimated
Pareto Fronts gained by all the algorithms are indicated by
black lines in Fig. 3. The mean value and sample standard
deviation of the solutions are re-evaluated in 10,000 scenar-
ios to obtain a more accurate objective value. The estimated
Pareto Fronts in Fig. 3 are constructed by the nondominated
solutions in terms of the new objective value. It can be dis-
covered that compared with other algorithms, the estimated
Pareto Fronts gained by the proposed NSEDA-C (red points)
are closer to the overall estimated Pareto Fronts in all of the
four situations. That is to say, the performance of NSEDA-C
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Table 6 Average IGD and S value for all the algorithms

NSEDA-
C

NSEDA 10 MC 20 MC 50 MC DEMO MOPSO DEMON NSGA-II-
α

t0� 30 45
50

T� 20

IGD 5.781E +
04

7.105E +
04

8.296E +
04

9.298E +
04

1.073E +
05

1.007E +
05

9.622E +
04

3.954E +
07

8.739E +
04

pvalue – 3.020E-
11+

3.020E-
11+

3.020E-
11+

4.573E-
09+

5.494E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

S 8.361E +
05

1.490E +
06

1.209E +
06

2.092E +
06

1.045E +
06

1.688E +
06

4.884E +
05

8.935E +
06

7.854E +
05

t0� 30 45
50

T� 30

IGD 2.853E +
07

2.854E +
07

2.857E +
07

2.859E +
07

2.857E +
07

2.857E +
07

2.855E +
07

7.305E +
07

2.855E +
07

pvalue – 1.777E-
10+

4.077E-
11+

6.696E-
11+

3.474E-
10+

5.072E-
10+

2.034E-
09+

4.975E-
11+

3.835E-
06+

S 3.205E +
06

3.723E +
06

5.789E +
06

5.912E +
06

4.306E +
06

4.749E +
06

1.759E +
06

2.968E +
07

1.575E +
06

t0� 30 30
35

T� 20

IGD 2.838E +
04

4.403E +
04

5.218E +
04

5.208E +
04

7.930E +
04

5.229E +
04

5.517E +
04

5.438E +
04

4.966E +
04

p value – 3.020E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

3.020E-
11+

S 2.716E +
05

3.795E +
05

7.013E +
05

9.552E +
05

1.104E +
06

5.388E +
05

6.588E +
05

6.284E +
06

3.720E +
05

t0� 30 30
35

T� 30

IGD 1.109E +
07

1.109E +
07

1.111E +
07

1.112E +
07

1.113E +
07

1.111E +
07

1.112E +
07

9.839E +
07

1.111E +
07

pvalue – 3.020E-
11+

3.020E-
11+

3.020E-
11+

7.288E-
03+

3.020E-
11+

3.020E-
11+

6.121E-
10+

3.020E-
11+

S 2.357E +
06

2.445E +
06

4.693E +
06

5.854E +
06

4.193E +
06

4.628E +
06

4.161E +
06

2.269E +
07

4.093E +
06

The p-values smaller than 0.05 indicate that the difference are significance and are highlighted with bold. What’s more, the algorithms with the
smallest IGD and S value are also highlighted with bold to indicate their good performances

is better than other algorithms on the whole. However, fur-
ther calculations of the indicators are needed to confirm this
cognition. Since we do not know the true Pareto Fronts of
the group insurance portfolio problem in advance, the over-
all estimated Pareto Fronts gained by all the algorithms are
applied to evaluate the performances of the algorithms.

Comparison results

The average IGD and S value in 30 independent runs for
all of the algorithms are given in Tables 6 and 7. To verify
the significance of the difference, the p values of IGD for
Wilcoxon rank sum test [46] compared with the proposed
NSEDA-C are also given in Tables 6 and 7. The p-values
smaller than 0.05 indicate that the difference are significance
and are highlighted with bold. What’s more, the algorithms
with the smallest IGD and S value are also highlighted with
bold to indicate their good performances.

Comparison among NSEDA and small amount of MC

To verify the effectiveness of the proposed simplified sim-
ulation strategy and the estimation model, NSEDA with

these two approaches are compared with NSEDA consid-
ering small amounts of MC simulation as objective function
values. Since the simplified simulation strategy only gener-
ated one scenario for the evaluation of the return, it has to
be integrated with the estimation model, otherwise the risk
cannot be evaluated.

It can be discovered from Table 6 that the NSEDA with
the proposed approaches outperforms the NSEDA consid-
ering small amounts of MC simulation. Specifically, in the
first situation, the average IGD for NSEDA is smaller than
the average IGD for the other three algorithms significantly.
As for the average S value, it is a bit larger than the algo-
rithms considering 10 simulations and 50 simulations. On
one hand, the difference in S value is much smaller than the
difference in IGD considering the magnitude. On the other
hand, the value of IGD is much more significant than the
value of S for the evaluation of the multi-objective algo-
rithms considered in this paper. Therefore, NSEDA with the
proposed approaches outperforms the other three algorithms
in general in the first situation. In the second and fourth situ-
ations, average IGD values for NSEDA are smaller than the
average IGD values for the other three algorithms slightly.
As for the average S values, they are also smaller than the
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Table 7 Average IGD and S
value for NSEDA-C and robust
optimization algorithms

NSEDA-C MOEA-R RPSGA-G

t0� 30 45 50
T� 20

IGD 5.781E + 04 8.100E + 04 7.862E + 04

pvalue – 2.922E-09+ 5.072E-10+

S 8.361E + 05 4.091E + 05 2.518E + 05

t0� 30 45 50
T� 30

IGD 2.853E + 07 2.854E + 07 2.855E + 07

pvalue – 1.868E-05+ 6.528E-08+

S 3.205E + 06 7.029E + 05 8.204E + 05

t0� 30 30 35
T� 20

IGD 2.838E + 04 4.770E + 04 4.798E + 04

pvalue – 3.020E-11+ 3.020E-11+

S 2.716E + 05 2.245E + 05 1.368E + 05

t0� 30 30 35
T � 30

IGD 1.109E + 07 1.110E + 07 1.110E + 07

pvalue – 6.722E-10+ 9.919E-11+

S 2.357E + 06 1.116E + 06 9.964E + 05

The p-values smaller than 0.05 indicate that the difference are significance and are highlighted with bold.
What’s more, the algorithms with the smallest IGD and S value are also highlighted with bold to indicate their
good performances.

other algorithms. Therefore, it can be concluded that NSEDA
with the proposed approaches outperforms the other three
algorithms in the second and fourth situations. In the third
situation, both the average IGD value and average S value for
NSEDA are smaller than the other algorithms significantly.
Therefore, it can easily draw a conclusion that NSEDA with
the proposed approaches outperforms the other three algo-
rithms in the third situation. Therefore, the effectiveness of
the proposed simplified simulation strategy and the estima-
tion model has been validated.

Comparison between NSEDA-C and NSEDA

Toverify the effectiveness of the clusteringmethod,NSEDA-
C with clustering is compared with NSEDA without cluster-
ing. It can be discovered that in all the situations, both the
average IGD value and average S value for NSEDA-C are
smaller than NSEDA. Therefore, it can easily draw a conclu-
sion that NSEDA-C outperforms NSEDA.

The effectiveness of the clustering method has been
validated. This is because the group insurance portfolio opti-
mization problem considered in this paper is a multimodal
problem with several peaks. With the help of clustering
method, more peaks can be discovered during the evolution
process which leads to a more promising performance of the
algorithm.

Comparison among NSEDA-C and other multi-objective
algorithms

To verify that the NSEDA-C is effective for the proposed
group insurance portfolio problem, NSEDA-C is compared
with other multi-objective algorithms. Four multi-objective
algorithms including two deterministic algorithms (DEMO

and MOPSO) and two uncertain algorithms (DEMON and
NSGA-II-α) are chosen as comparison algorithms.

In all the situations, the average IGD value for NSEDA-
C is smaller than the average IGD values for the other four
algorithms significantly. As for the average S value, it is a bit
larger than MOPSO and NSGA-II-α in the first and second
situations. Since the IGD value is more important for the
evaluation of the algorithms in the multi-objective problem
considered in this paper, the performance of NSEDA-C is
regarded as the best among five algorithms. The effectiveness
of the NSEDA-C can be validated through the experimental
results.

Comparison among NSEDA-C and robust optimization
algorithms

To make the results more convincing, we further compared
the proposed NSEDA-C with two robust optimization algo-
rithms, MOEA-R and RPSGA-R.

The comparison results are given in Table 7. It can be
discovered that the average IGD value for NSEDA-C is sig-
nificantly smaller than MOEA-R and RPSGA-R in all the
situations. Since there are robust handling approach embed-
ding in MOEA-R and RPSGA-R, the average S value for
NSEDA-C is larger than the other two algorithms. However,
the value of IGD is much more important for the evaluation
of the algorithms in the multi-objective algorithms consid-
ered in this paper. Therefore, the proposedNSEDA-C ismore
suitable to deal with the group insurance portfolio problem
compared with these two robust optimization algorithms.
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Conclusions

In this paper, a nondominated sorting estimation of distri-
bution algorithm with clustering is proposed to deal with
the group insurance portfolio problem with two objectives,
return maximization and risk minimization. To improve
the effectiveness of the algorithm, a simplified simulation
approach is applied to estimate the return taking advantage of
the scenario-based characteristic of the problem. Moreover,
since the surrogate models are unsuitable for the scenario-
based problem, a heuristic estimation model is designed to
estimate the risk of the problem.

This paper explores the application of the simplified
simulation approach and the problem-based heuristic esti-
mation model to scenario-based uncertain multi-objective
optimization problems. However, some procedures of insur-
ance investment have been ignored when considering group
insurance portfolio problem in this paper, such as surrender
and additional investment, which can be added in the future
work.
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