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Abstract

Background and aims: Hepatocellular carcinoma (HCC) is one of the most common

heterogeneous tumors that occurs after chronic liver diseases and hepatitis virus infec-

tion. Immune-related genes (IRGs) and their ligands regulate the homeostasis of tumor

microenvironment, which is essential for the treatment of HCC and its prognosis. This

study aimed to investigate the clinical value of IRGs in predicting the prognosis of HCC.

Methods: We downloaded RNA-seq data and clinical information from TCGA data-

base. Samples were randomly divided into training cohort and testing cohort. The

“limma” R package was performed to identify differentially expressed IRGs (DEIRGs)

between HCC group and normal group. Prognostic DEIRGs (PDEIRGs) were obtained

by univariate Cox analysis. LASSO and multivariate Cox analysis were used, and a

prognostic risk model was constructed. In order to better demonstrate the clinical

value of our model in predicting overall survival rate, a nomogram was constructed.

To further investigate the molecular mechanism of our model, gene set enrichment

analysis (GSEA) was performed.

Results: Compared with the low-risk group, the high-risk group had a significantly worse

prognosis. Moreover, our prognostic risk model can accurately stratify tumor grade and

TNM stage. Importantly, in our model, not only immune checkpoint genes were well

predicted, but also human leucocyte antigen-I molecules were revealed. GSEA suggested

that “MAPK signaling pathway,” “mTOR signaling pathway,” “NOD like receptor signaling

pathway,” “Toll like receptor signaling pathway,” “VEGF signaling pathway,” “WNT sig-

naling pathway” had significant correlations with the high-risk group.

Conclusion: Overall, our study showed that our prognostic risk model can be used to

assess prognosis of HCC, which may provide a certain basis for the survival rate of

patients with HCC.
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1 | INTRODUCTION

Hepatocellular carcinoma (HCC) is caused by chronic hepatitis, cirrho-

sis, and liver fibrosis. The vast majority of patients, including those

who exceed Milan Criteria, can only receive palliative care, with low

long-term survival.1 It is worth noting that the prognosis of patients

with bile duct metastasis and intrahepatic hematoma is not

optimistic,2 which may ultimately contribute to the development and

treatment of HCC. Previous studies have shown that tumor-

infiltrating immune cells were highly relevant for prognosis and identi-

fication of immunotherapy targets in HCC.3 Therefore, identification

of prognostic differentially expressed immune-related genes

(PDEIRGs) is of great significance for improving the prognosis, evalu-

ating therapeutic effect and overall survival (OS). However, the risk

assessment of IRGs in prognosis of HCC is rarely explored and further

analysis is needed.

In recent years, tumor immunotherapy has received more and

more attention. The success of immunotherapy strategies such as

immune checkpoint (ICI) blockade in several tumors has established the

role of immunotherapy.4 Immunotherapy can be broadly divided into

ICI therapies and adoptive cell therapies (ACTs), of which ICIs mainly

function through receptor/ligand recognition,5,6 while ACTs involve the

infusion of pathogen-specific T cells from a donor to recipient.6 IRGs

play a crucial role in regulating receptor/ligand activity in ICIs treat-

ments.5 Therefore, IRGs may be used as a reference for sensitivity

indexes to tumor immunotherapy and perform personalized treatment.

At present, tumor immunotherapy for HCC has achieved remark-

able progress. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)

and programmed death-ligand 1 (PD-L1) inhibitors have effectively

prolonged the OS of patients with advanced HCC (including distant

metastasis).7 However, some HCC patients were not sensitive to ICIs,

which may be due to the abnormal expression of IRGs.6 Identification

of PDEIRGs may be helpful for implement individualized treatment

and evaluation of prognosis in HCC patients. In this study, we con-

structed a prognostic risk model based on PDEIRGs and demonstrated

that our prognostic risk model has an important role in predicting the

prognosis of HCC patients and contributes to individualized therapy

at least to a certain extent.

2 | METHODS

2.1 | Sample information

RNA sequence data and clinicopathological information of HCC

patients were obtained through The Cancer Genome Atlas (TCGA)

database (https://cancergenome.nih.gov/), and the RNA-seq data and

clinical information were matched according to patients' ID. This study

met the publication guidelines stated by TCGA. All data used in the

study was obtained from TCGA, hence ethics approval and informed

consent were not required.8 IRGs and transcription factors (TFs) terms

were downloaded from the ImmPort database (https://www.immport.

org/home)9 and Cistrome project (http://cistrome.org/),10 respectively.

2.2 | Construction of the prognostic risk model

DEIRGs were identified by Wilcoxon test, and cut-off value was set

to false discovery rate (FDR) <0.05, |log2 fold-change (FC)| >2. To

improve reliability of our prognostic risk model, HCC patients

(N = 370) were randomly divided into training cohort (N = 185) and

testing cohort (N = 185; Table 1). PDEIRGs which used to construct

our prognostic risk model were identified by LASSO and multivari-

ate Cox analysis. The risk score was calculated by mRNA expression

and estimated regression coefficients, and our prognostic risk model

was validated with testing cohort and entire TCGA cohort. First,

PDEIRGs were identified by univariate Cox analysis, then LASSO

analysis was used to prevent the model from overfitting. Finally,

multivariate Cox analysis was used to construct a prognostic risk

model.

2.3 | Risk score calculation

To calculate risk score of each HCC patient, we calculated the esti-

mated regression coefficients by multivariate Cox analysis. Patients

were divided into high/low-risk groups based on the risk score.11 The

following computational formula was used for this analysis:

Risk score=
Xn

i=1
coefficient of gene ið Þ× expression value of gene ið Þð Þ

gene i represents the ith gene, and coefficient of (gene i) represents

the estimated regression coefficient of the ith gene.

2.4 | Selection of immune checkpoint genes and
human leucocyte antigen-I

We also studied the relationship between human leucocyte antigen-I

(HLA-I) molecules and our prognostic risk model. A list of 24 HLA-I

molecules were derived from TSNAdb database (http://biopharm.zju.

edu.cn/tsnadb/).12 We investigated three genes previously reported

to be crucial targets of immune checkpoint inhibitors: programmed

cell death 1 ligand 1 (PD-L1), cytotoxic T-lymphocyte associated pro-

tein 4 (CTLA-4), T cell immunoglobulin-3 (TIM-3).13-15

2.5 | Kyoto Encyclopedia of genes and genomes
enrichment analysis

In order to explore the potential immune molecular mechanisms and

immune pathways underlying our prognostic risk model, we con-

ducted gene set enrichment analysis (GSEA) to find enrichment items

predicted to correlated with Kyoto Encyclopedia of genes and

genomes (KEGG) pathways. Family-wise error rate (FWER) P < .01

and FDR q < .01 were considered statistically significant. “c2.cp.kegg.

v7.0.symbols.gmt” were applied in GSEA analysis.16,17
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2.6 | Construction and validation of a predictive
nomogram

Nomogram makes the results of our prognostic risk model more read-

able and has higher clinical value. All independent prognostic factors

determined by multivariate Cox analysis were included to establish a

nomogram to determine the possibility of three-OS in the patients with

HCC. Then we evaluated the effectiveness of the nomogram. The cali-

bration curve of the nomogram was drawn to observe the prediction

probability of the nomogram relative to the observation rate. Subse-

quently, we used the time-dependent receiver characteristic operator

(ROC) curve to compare the nomogram that includes all independent

prognostic factors with the nomogram that includes only one.

2.7 | Statistical analysis

R software was used to perform all statistical analyses, and P < .05

was considered statistically significant. Quantitative variables were

analyzed using a t test for paired samples or Wilcoxon rank-sum test

for unpaired samples as appropriate. Person correlation coefficient

test was used to determine the rank correlation among the different

variables. Kaplan-Meier analysis with Wilcoxon rank sum test/log-

rank test was used to analyze the survival outcomes between the

high/low-risk groups using the R package “Survival” and “Survminer,”

Wilcoxon rank sum test was used in the training/entire TCGA cohorts

and log-rank test was used in the testing cohort. Multivariate Cox

analysis was used to identify whether our prognostic risk model could

be used as an independent prognostic factor for the prognosis of

HCC. Time-dependent ROC analysis was used to evaluate the accu-

racy of our prognostic risk model.18,19

3 | RESULTS

3.1 | Expression of IRGs in HCC

The clinical information of 377 HCC patients were shown in Table S1.

The mRNA expression of 2498 IRGs in HCC tissues and adjacent tis-

sues was examined. As shown in Figure 1A, compared with adjacent

tissues, there were 116 DEIRGs in HCC tissues, among which mRNA

of 96 genes were found to be significantly up-regulated, while that of

20 genes were down-regulated. In order to study the predictive value

of DEIRGs in HCC, univariate Cox analysis was performed. As shown

in Figure 1B, of the 116 DEIRGs, 19 genes (PDEIRGs) were signifi-

cantly associated with OS of the HCC patients.

3.2 | Construction of TFs-regulatory network

To further explore PDEIRGs involve in regulating network, the rela-

tionship between PDEIRGs and differentially expressed TFs (DETFs)

was analyzed. Compared with adjacent tissues, there were 31

DETFs in HCC tissues (Figure 1C). Then, the correlation between

31 DETFs and 19 PDEIRGs were detected (correlation

coefficient >0.3 and P < .05), showing that there was a significant cor-

relation between 19 DETFs and 12 PDEIRGs. Furthermore, “Cyto-

scape” software was performed to construct a TFs-regulatory

network to reveal a direct correlation (Figure 1D).

3.3 | Construction of the four-PDEIRG-based
prognostic risk model

Among 377 HCC patients, seven of them belonged to the same sam-

ples with different order numbers, so they were excluded. A total of

370 patients were randomly separated into a training cohort

(N = 185) and testing cohort (N = 185). The baseline characteristics

were summarized in Table S2. In order to study the predictive value

of PDEIRGs in HCC, LASSO-modified Cox analysis was carried out in

the training cohort to further narrow the scope of PDEIRGs, thereby

determining the risk genes suitable for constructing the prognostic

risk model (Figure 2A, Table 2). BIRC5, PLXNA3, FGF13, and GAL

were selected for subsequent analysis (Figure 2B). We calculated a

risk score of each HCC patient based on the mRNA expression and

regression coefficients of four genes. The following computational

formula was used for this analysis: Risk score = 0.024 × BIRC5

expression+0.139 × PLXNA3 expression+0.213 × FGF13 expression

+0.144 × GAL expression. It is worth noting that the regression coef-

ficient of BIRC5 is weak, but significant, indicating that even though

its regression coefficient is weak, it does affect the prognosis of HCC.

We then calculated the risk score for each HCC patient and used the

“Survminer” R package to find the optimal cut-off for the risk score.

According to the risk scores of the patients, the patients in the train-

ing cohort were divided into the high- and the low-risk group. Kaplan-

Meier curve and the time-dependent ROC were used to evaluate the

TABLE 1 Grouping of the HCC patients

Clinical parameters Variable Training cohort (N = 185) Testing cohort (N = 185) Entire TCGA cohort (N = 370)

Risk group High-risk 93 (50.27%) 92 (49.73%) 185 (50.00%)

Low-risk 92 (49.73%) 93 (50.27%) 185 (50.00%)

Existing status Alive 123 (66.49%) 121 (65.41%) 244 (65.95%)

Dead 62 (33.51%) 64 (34.59%) 126 (34.05%)

Abbreviation: HCC, hepatocellular carcinoma.

PAN ET AL. 3 of 10



prognostic ability of our prognostic risk model. The prognosis of

patients in the high-risk group was worse than that in the low-risk

group in the training cohort (Figure 2C). The area under the ROC

(AUC) values at 1, 3, 5-year in the training cohort were 72.2%, 65.7%,

and 60.7%, respectively, which showed that our prognostic risk model

had good prediction ability (Figure 2D). Risk curve, ranked risk scores,

and analyzed distribution in the training cohort were shown in Fig-

ures 2E–G.

Using the optimal cut-off calculated from the training cohort, we

divided the testing cohort and entire TCGA cohort into two risk

groups. In two different cohorts, the OS was lower in the high-risk

group than which in the low-risk group (Figure 3A,D). AUC values at

1-, 3-, 5-year were 67.7%, 65.9%, and 66.6% in the testing cohort,

while 70.0%, 65.2%, 63.0% in entire TCGA cohort (Figure 3B,E). To

study patients' risk in two cohorts, we plotted risk curves, ranked risk

scores, and analyzed distribution (Figure 3C,F).

3.4 | Evaluation of independent prognostic value
of our prognostic risk model

In order to determine whether our prognostic risk model could be

used as an independent predictive factor, we used univariate and

multivariate Cox analysis. Cox analysis showed that risk score calcu-

lated from our prognostic risk model was associated with the patients'

OS (Figure 4A). To evaluate the accuracy of the risk score in predicting

the survival status of HCC patients, the ROC curve of clinical parame-

ters was plotted (Figure 4B). These results indicated that risk score

can accurately reveal prognosis and may be more accurate than other

clinical parameters.

3.5 | Construction and validation of a predictive
nomogram

We then used five independent prognostic factors including age, gen-

der, TNM stage, tumor grade, and risk score to establish a nomogram

to predict the 3-year OS of HCC patients (Figure 4C). As shown in

Figure 4D, the calibration plot showed that the nomogram (combined

model) could accurately estimate mortality. The AUCs of our prognos-

tic risk model, age model, gender model, tumor grade model, TNM

stage model, and combined model were 0.659 (95% confidence inter-

val [CI] 0.576-0.742), 0.509 (95% CI 0.421-0.598), 0.545 (95% CI

0.472-0.618), 0.538 (95% CI 0.459-0.617), 0.679 (95% CI

0.605-0.754), 0.651 (95% CI 0.602-0.787) for 3-year OS, respectively

(Figure 4E).

F IGURE 1 Expression profiles of immune-related genes (IRGs), transcription factors (TFs), and TF-based regulatory network in hepatocellular
carcinoma (HCC). (A) Heatmap and volcano plot of IRGs. (B) Identification of prognostic differentially expressed IRGs (PDEIRGs) through
univariate Cox analysis. (C) Heatmap and volcano plot of TFs. (D) TF-based regulatory network. The blue dots represent PDEIRGs, the red dots
represent differentially expressed TFs that correlated with PDEIRGs in terms of their mRNA expression

4 of 10 PAN ET AL.



3.6 | Association between our prognostic risk
model and clinical characteristics of HCC

In order to evaluate the role of our prognostic risk model in predicting

the tumor biological behavior of HCC, Pearson correlation analysis

was used to analyze the relationship between risk score and clinical

information including age, gender, TNM stage, tumor grade. As shown

in Figure 5, we found that there were different risk scores in the

groups by tumor grade, TNM stage, which implied that the capacity of

invasion and metastasis of high-score HCC samples was significantly

higher.

3.7 | Correlation between our prognostic risk
model and immune genes expression

In the process of new antigen presentation and T cell lysis, the

key step is controlled by HLA-I, which presents intracellular poly-

peptides on the cells surface for T cell receptor recognition.

Down-regulation of HLA-I may reduce antigen presentation and

promote immune escape, which is prevalent in a series of cancers

and is associated with poor prognosis.20,21 As shown in Figure 6,

compared with the low-risk group, HLA-DMA, HLA-DMB, HLA-

DOA, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA2, HLA-DQB1,

F IGURE 2 Construction of a novel prognostic risk model. (A) LASSO coefficient profiles of four prognostic differentially expressed immune-
related genes (IRGs). (B) The hazard ratio and 95% confidence interval established by multivariate Cox analysis were shown in the forest plot.
Kaplan-Meier curve. (C) Time-dependent receiver characteristic operator curve, (D) risk curve, (E) ranked risk scores, (F) and analyzed distribution
(G) in the training cohort

TABLE 2 Multivariate Cox analysis
of four PDEIRGs

Gene Regression coefficients HR HR.95L HR.95H P-value

BIRC5 0.024 1.024 1.009 1.039 .001

PLXNA3 0.139 1.149 1.032 1.279 .011

FGF13 0.213 1.237 0.958 1.597 .102

GAL 0.144 1.155 1.034 1.291 .011

Abbreviations: HR, hazard ratio; PDEIRGs, prognostic differentially expressed immune-related genes.
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HLA-DQB2, HLA-DRA, HLA-DRB1, and HLA-DRB6 were higher in

the high-risk group.

Tumor escape from the surveillance of immune system by multiple

ways, in which controlling access of ICIs is an important process of

tumor immune escape.22 At present, CTLA-4 and PD-L1 are the two

important routes for tumor immune escape. The mechanism of tumor

treatment by immunosuppression is to inhibit the activation of ICI path-

ways and avoid T cell inactivation, so as to enhance the anti-tumor

immune activity.23 In our study, we evaluated three key ICIs: PD-L1,

CTLA-4, and TIM-3. We found that our prognostic risk model was posi-

tively related to them, suggesting that our model may be used for eval-

uation and measurement of response to ICIs in HCC (Figure 7).

3.8 | Prognostic risk model mediated multiple
immune-related pathways

In order to explore the underlying molecular mechanisms and the sig-

naling pathways of our prognostic risk model, we performed GSEA to

compare the high-risk group and the low-risk group in HCC. KEGG

enrichment suggested that “MAPK signaling pathway,” “mTOR signal-

ing pathway,” “NOD like receptor signaling pathway,” “Toll like recep-

tor signaling pathway,” “VEGF signaling pathway,” “WNT signaling

pathway” had significant correlations with the high-risk group

(Figure 8A).

4 | DISCUSSION

ICIs, such as PD-L1, play an important role in the treatment of HCC.24

However, some patients are not sensitive to ICIs, and even worsen

after treatment. The OS rate of immune-related adverse events,

including hepatic, is dramatically improved in patients treated with a

combination of CTLA-4 and PD-L1 inhibition.25-27 For example, lung

cancer patients treated with either pembrolizumab or nivolumab, the

median time to onset of anti-PD-1 and anti-PD-L1 therapy-induced

hepatotoxicity was 25 weeks (range: 4-31 weeks), while it was

4 weeks (range: 0.1-23 weeks) in the melanoma patients treated with

F IGURE 3 Validation of our prognostic risk model. Kaplan-Meier curve (A), time-dependent receiver characteristic operator (ROC) curve (B),
risk score charts (C) in the testing cohort. Kaplan-Meier curve (D), time-dependent ROC curve (E), risk score charts (F) in entire TCGA cohort
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nivolumab, and 19 weeks (range: 0.3-93 weeks) in those treated

with pembrolizumab.28 The appearances may be due to the disorder

in the binding of ICs to ICIs, in addition, the differential expression

of IRGs directly affects the sensitivity and affinity of this binding.29

Therefore, it is important to identify PDEIRGs and determine their

roles in the sensitivity of HCC patients to the efficacy of ICIs. In our

study, we analyzed expression of 2498 IRGs in HCC patients and

found 116 DEIRGs, of which 96 were up-regulated and 20 down-

regulated. Using IRGs to enhance immune response and destroy

immune escape state of tumor cells has become one of the impor-

tant strategies to tumor immunotherapy. Some works have shown

that local application of IL-12 can better exert antitumor effects. On

the one hand, IL-12 directly involve in tumor characteristics in an

autocrine manner, on the other hand, IL-12 is effectively expressed

locally in the tumor cells, activating immune cells in the form of

paracrine.30

F IGURE 4 Characteristics of our prognostic risk model in entire TCGA cohort. A, Univariate and multivariate Cox analysis of our prognostic

risk model. B, Time-dependent ROC curve analysis of our prognostic risk model and other clinical characteristics at 3-year. C, For each patient,
five lines were drawn upward to determine the points received from the five predictors in the nomogram. The sum of these points was located on
the “Total Points” axis. Then a line was drawn downward to determine the possibility of 3-year overall survival of hepatocellular carcinoma. D,
The calibration plot for internal validation of the nomogram. The Y-axis represented actual survival, and the X-axis represented nomogram-
predicted survival. E, The time-dependent ROC curves of the nomogram compared for 3-year overall survival in hepatocellular carcinoma

F IGURE 5 The different risk scores in hepatocellular carcinoma. The risk scores were group by TNM stage (A) and tumor grade (B)
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Constructing a prognostic risk model based on immune cells or

IRGs to predict prognosis has been reported. Chen et al constructed a

model based on 22 immune cells to evaluate the prognosis of patients

with HBV-related HCC.31 To evaluate the clinical characteristics and

prognosis of HCC patients, a prognostic risk model was constructed

by collecting five different HCC databases.32 These results suggested

that the evaluation of the changes in immune cells or immune genes is

vital for the prognosis of HCC. In this research, a novel prognostic risk

model was constructed to predict prognosis and immunotherapy

effect in HCC. Our prognostic risk model not only accurately reflected

OS of HCC, but also proved risk score can be used as an independent

factor to evaluate prognosis. More importantly, our prognostic risk

model can effectively reflect the TNM stage and tumor grade, and

help to implement personalized treatment.

HLA-I plays a key role in process of antigen presentation and

killer lymphocytes (CTLs) recognition of tumor cells. The reduction or

absence of HLA-I expression is generally considered to be the mecha-

nism by which tumor cells escape CTL cell killing. Seventy sections of

HCC patients (56 blacks, 14 Caucasians) were used for tissue staining,

which proving that HLA-I expression was up-regulated in 94.3% of

F IGURE 6 Relationship between our prognostic risk model and HLA-I expression in entire TCGA cohort. Risk score and HLA-DMA (A), HLA-
DMB (B), HLA-DOA (C), HLA-DPA1 (D), HLA-DPB1 (E), HLA-DPB2 (F), HLA-DQA2 (G), HLA-DQB1 (H), HLA-DQB2 (I), HLA-DRA (J), HLA-DRB1
(K), HLA-DRB6 (L)

F IGURE 7 Association between crucial immune checkpoint genes and our prognostic risk model. Significant positive association between our
prognostic risk model and PD-L1 (A), CTLA-4 (B), and TIM-3 (C)
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cases.33 Furthermore, HLA-I is expressed in at least 10 human hepa-

toma cell lines,34 indicating the HLA-I may regulate tumor biological

process. We found that our prognostic risk model was inversely related

to various HLA-I expression. The ICI pathways consisting of PD-1/

CD279 and related ligand PD-L1/CD274 evades immune surveillance

during T cell-mediated immune killing. Extensive evidence suggested

that blocking PD-1/PD-L1 interactions can enhance immune normaliza-

tion and anti-cancer responses.35,36 Among patients receiving

sorafenib, the objective response rate was 55%, suggesting that only a

partial benefit, although OS was extended by 15.6 months. In addition,

PD-1/PD-L1 blockers have lower liver toxicity than conventional

drugs.25 In our study, PD-L1, CTLA-4, and TIM-3 were observed to be

positive with risk score, which was consistent with previously reports.

Although our study also constructed a prognostic risk model based

on tumor immune microenvironment of HCC, it differed from previous

studies. First, we predicted PDEIRGs through Cox and LASSO analysis,

which effectively avoids overfitting, and these genes have not been

reported in previous prognostic risk models. Second, our study

established a novel four-IRG prognostic risk model and a nomogram to

predict the OS of HCC, which may help individual clinical decision mak-

ing for treatment. Third, we verified that our prognostic risk model can

accurately reflect the clinical stratification and prognosis of HCC. Since

our prognostic risk model reduces the need for whole-genome sequenc-

ing for all HCC patients, it may be more routine and cost-effective in

practice. Fourth, the calibration chart shows that the nomogram (our

prognostic risk model and combined model) can more accurately assess

mortality. More importantly, our prognostic risk model shows signifi-

cantly improved performance, especially in predicting the expression

levels of ICIs and HLA-I molecules, indicating that it more accurately

reflects the changes in the immune microenvironment of HCC. However,

in our study, there are a few shortcomings, because we only collected

data from TCGA without other clinical samples. In addition, the expres-

sion and prognostic effects of these four PDEIRGs at the RNA and

protein level are worthy of further study, all the mechanical analyses in

our study are descriptive, and further functional experiments are needed

to clarify the underlying mechanisms of them. In sum, based on the

above results, we believed that our prognostic risk model can accurately

reflect the clinical stratification of HCC, and predict OS of patients with

different risks, which was helpful for the risk assessment of prognosis.
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