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Abstract: Dolphins are well-regarded sentinels for toxin exposure and can bioaccumulate a cyan-
otoxin called β-N-methylamino-L-alanine (BMAA) that has been linked to human neurodegenerative
disease. The same dolphins also possessed hallmarks of Alzheimer’s disease (AD), suggesting a
possible association between toxin exposure and neuropathology. However, the mechanisms of
neurodegeneration in dolphins and the impact cyanotoxins have on these processes are unknown.
Here, we evaluate BMAA exposure by investigating transcription signatures using PCR for dolphin
genes homologous to those implicated in AD and related dementias: APP, PSEN1, PSEN2, MAPT,
GRN, TARDBP, and C9orf72. Immunohistochemistry and Sevier Münger silver staining were used
to validate neuropathology. Methylmercury (MeHg), a synergistic neurotoxicant with BMAA, was
also measured using PT-GC-AFS. We report that dolphins have up to a three-fold increase in gene
transcription related to Aβ+ plaques, neurofibrillary tangles, neuritic plaques, and TDP-43+ intra-
cytoplasmic inclusions. The upregulation of gene transcription in our dolphin cohort paralleled
increasing BMAA concentration. In addition, dolphins with BMAA exposures equivalent to those
reported in AD patients displayed up to a 14-fold increase in AD-type neuropathology. MeHg was
detected (0.16–0.41 µg/g) and toxicity associated with exposure was also observed in the brain. These
results demonstrate that dolphins develop neuropathology associated with AD and exposure to
BMAA and MeHg may augment these processes.

Keywords: Alzheimer’s disease; animal models; anthropogenic contaminates; blue-green algae;
cetaceans; cyanotoxins; neurofibrillary tangles; TDP-43

Key Contribution: Genes implicated in the onset of Alzheimer’s disease and related dementias
in humans were evaluated in stranded dolphins. Gene expression and severity of associated neu-
ropathology were examined in the context of cyanotoxin and methylmercury exposure.

1. Introduction

Dolphins are exposed to a number of environmental stressors that can alter behav-
ior and reduce lifespan [1–3]. A common insult faced by dolphins are environmental
toxins, which are linked to a number of mortality events [4,5]. One emerging toxin is
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β-N-methylamino-L-alanine (BMAA), a non-protein amino acid produced by cyanobac-
teria that has been linked to neurodegenerative disease, including Alzheimer’s disease
(AD) and amyotrophic lateral sclerosis (ALS) [6–8]. BMAA can biomagnify in marine
and terrestrial food chains, where it can bioaccumulate in marine apex predators and
humans [6,8–12]. Exposure to BMAA causes excitotoxicity in neurons, glial activation,
and tangled proteins in the brain [13,14]. Our laboratory detected BMAA in brains of
stranded dolphins at concentrations higher than those found in individuals with AD and
ALS [8,15]. Furthermore, the same dolphins possessed concurrent pathological hallmarks
of AD, suggesting cyanotoxin exposure could be associated with the occurrence or the
progression of neuropathology [15–17].

In addition to cyanotoxins, anthropogenic contaminates (ACs) generated by agricul-
tural and industrial processes can persist in the aquatic environment, are poorly metab-
olized, and can cause toxicity. ACs are potential threats to dolphins and other marine
mammals [18]. ACs such as methylmercury (MeHg), a potent neurotoxicant, can also bio-
magnify in the marine food web and concentrate in the brain [19]. Therefore, the combined
exposures to both cyanotoxins and ACs are a major concern [20]. For example, in vitro,
co-application of MeHg and BMAA caused synergistic necrosis to neurons [21]. Thus,
experimental models are needed to better understand the potential neurotoxic interactions
between cyanotoxins and ACs.

Dolphins provide a non-transgenic and natural model of toxin exposure [17,22]. Un-
derstanding the progression of toxin-related neurodegeneration in this marine mammal
would provide relevant information regarding potential human exposures [22]. Here, we
performed gene expression and histopathological analysis on the brains of dolphins with
documented exposure to the BMAA toxin [15]. Gene transcription markers related to
common neurodegenerative diseases in humans were evaluated in dolphin brain regions
involved in cognitive and motor functions with qPCR primers specific to the dolphin
genome. Neuropathological analysis was also performed on the same cohort. In addition,
MeHg was measured in brain tissues to evaluate a potential co-exposure with BMAA.

2. Results
2.1. Stranded Dolphins

Short-beaked common dolphins (Delphinus delphis; n = 7) observed stranded in Mas-
sachusetts between the months of March and April in 2012 that were examined by Davis
et al. were assessed in this study. The remaining dolphins analyzed by Davis et al. could
not be included in our analyses due to the exhaustion of these specimens [15]. Our dolphin
cohort consisted of 43% females and 57% males, among which 43% were adults and 57%
were subadults. Necropsy findings ranged from brucellosis infection to unknown causes
of death. The median and interquartile range (IQR) weight of dolphins in our cohort was
77.0 (45.0) kg. The median length was 185 (39) cm and the average RIN value from RNA
extracted from the dolphin brain was 9.6 (0.60) (Table S1).

2.2. BMAA Exposure

BMAA and its structural isomers (2,4-DAB & AEG) were previously detected in
our dolphin cohort and reported by Davis et al. in 2019 [15]. The median concentration
of BMAA detected across all dolphins was 166.0 (112.0) µg/g and ranged from 20.2 to
323.3 µg/g. To determine the relationship of toxin exposure to gene transcription signatures,
we ranked dolphins by BMAA exposure (Table 1). For gene transcription and neuropathol-
ogy assessments, dolphins were grouped in the following two categories based on their
environmental exposure (EE) to BMAA either being less than ([EE] < AD; 20.2–97.7 µg/g;
n = 3) or greater than ([EE] > AD; 166.0–323.3 µg/g; n = 4) the concentration found in
patients diagnosed with AD (139.5 (120.6) µg/g; n = 12) (Figure 1) [8]. To normalize our
PCR data, we used dolphin IFAW 12-228 Dd, which had the lowest detectable BMAA
concentration and was relatively free of AD neuropathology (Figure 1).



Toxins 2021, 13, 697 3 of 15

Table 1. Toxin Detection and BMAA Exposure Classification of Stranded Dolphins.

Agency ID Exposure Category BMAAφ (µg/g) MeHg (µg/g) BMAA:MeHg

IFAW 12-228 Dd *
[EE] < AD

20.2 0.411 49:1
IFAW 12-200 Dd 73.0 0.163 448:1
IFAW 12-198 Dd 97.7 0.252 388:1

IFAW 12-223 Dd

[EE] > AD

166.0 0.315 527:1
IFAW 12-229 Dd 175.6 0.278 632:1
IFAW 12-205 Dd 185.0 0.165 1121:1
IFAW 12-201 Dd 323.3 0.395 818:1

Median (IQR) 166.0 (112.0) 0.278 (0.230) 572:1 (430.0)
Min–Max 20.2–323.3 0.163–0.411 49:1–1121:1

φ Data derived from Davis et al. 2019. * Dolphin used to normalize PCR gene expression data.

Figure 1. Comparative BMAA Toxicology. The BMAA toxin was detected in the parietal lobe
region of stranded dolphins (n = 7) [15] and the cerebral cortex of human postmortem brain samples
from non-demented (CTL; n = 12) and Alzheimer’s disease (AD) patients (n = 12) using HPLC-
FD [8]. The median BMAA concentration detected was 165.9 (112.0) µg/g with concentrations
ranging from 20.2 to 323.3 µg/g across all dolphins. Each dolphin was ranked based on their BMAA
concentrations and then compared with the levels of BMAA detected in humans with clinically
diagnosed AD (139.5 (120.6) µg/g). Using this comparison, our dolphin cohort was then divided into
two categories based on environmental BMAA exposure concentration being less than (salmon bars)
or greater (cayenne bars) than those found in AD patients (black bar). Dolphin analysis (**, p = 0.0027,
***, p = 0.0002; **, p = 0.0016; ****, p < 0.0001; ANOVA); Human analysis: (****, p < 0.0001; ns, no
significance Mann Whitney Test).

2.3. Gene Expression Markers

All seven genes of interest were expressed in the parietal lobe (PL), orbital lobe (OrL),
and cerebellum (Cer) brain regions (Supplementary Table S2, Figure 2). Each gene displayed
a region-specific expression (Figure 2A–C). The median fold changes in expression for
six of seven gene markers were upregulated above baseline (Supplementary Table S3).
Transcription levels were most robust in the OrL brain region, especially for the APP
(p = 0.0187, ANOVA) and MAPT (p = 0.0460, ANOVA) genes (Supplementary Table S3,
Figure 2B). In addition, dolphins with the highest fold change in gene transcription also
had the highest BMAA exposure (Figure 3). The increase in gene expression was especially
observed in the MAPT (p = 0.0141; ANOVA) and TARDBP (p < 0.0001; ANOVA) genes,
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which were upregulated in some dolphins as high as 2.6- and 2.9-fold above baseline,
respectively (Figure 3E,F and Supplementary Table S3).

Figure 2. Brain Region-Specific Analysis of Gene Transcription. (A–C) qPCR was performed to determine the fold change
in transcription levels of genes involved in the development of amyloid-beta (Aβ+) plaques, neurofibrillary tangles (NFTs),
and neuronal intracytoplasmic inclusions (NCIs). Top panels: Tissue samples were taken from the parietal lobes (PL,
yellow), orbital lobe (OrL, green), and cerebellum (Cer, orange). Bottom panels: Heat maps displaying the relative fold
change in gene expression of genes analyzed ranked in order of increasing BMAA exposure. Dolphin IFAW 12-228 Dd
was used as a normalization control. BMAA concentrations measured in the PL region is indicated in panel A. Dolphins
displayed upregulated gene transcription for all seven genes across all three brain regions. The OrL region showed the most
upregulated transcription of genes, especially in genes involved in development of NFTs and NCIs (B). Gene transcription
accounted for 24.6% of the total variance in the PL, 41.4% in the OrL and 34.3% in the Cer. Whereas, BMAA exposure
accounted for 37.8% of the total variance in the PL, 26.4% in the OrL, and 28.9% in the Cer (p < 0.0001 Two Way ANOVA).

2.4. Neurofibrillary Tangles

We have previously demonstrated that short-beaked common dolphins develop dys-
trophic neurites and neuropil threads in the auditory and visual areas of the cerebral cor-
tex [15]. Here, we show that the same dolphins possessed NFTs, a hallmark of AD, in the PL,
OrL, and Cer brain regions (Figure 4). We observed numerous and widespread NFTs with
morphological characteristics similar to those found in advanced AD (Figure 4A–E,H–L).
Quantitative image analysis of brain sections shows that the PL region had the greatest me-
dian density of NFTs at 26.0 (30.0) per mm2 across all stranded dolphins. A similar density
of NFTs was observed in the OrL region, at 15.0 (23.0) per mm2, and the Cer region had
the lowest density of NFTs 8.0 (3.0) per mm2. Dolphins with BMAA exposures equivalent
to or above those found in AD patients ([EE] > AD group) had a 14.0-fold increase in the
density of NFTs in the PL (p = 0.0013, two-way ANOVA) and 5.2-fold increase in the OrL
(ns, Two-Way ANOVA) (Figure 5A,B). The density of NFTs in the Cer region remained
unchanged regardless of BMAA exposure (Figure 5C).
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Figure 3. Gene Transcription and BMAA Exposure. Dolphins were categorized into groups based on
their BMAA exposure being less than ([EE] < AD) or greater than ([EE] > AD) those concentrations
observed in AD patients. Gene expression markers measured in the orbital lobe region are shown
above. Dotted line indicates the fold change of our dolphin with the lowest BMAA exposure
(IFAW 12-228 Dd). (A–C) Transcription of genes implicated in the development of amyloid-beta
plaques were modestly increased up to 1.2-fold in [EE] > AD dolphins (APP, *, p = 0.0386; PSEN1,
****, p < 0.0001; ns, PSEN2, p = 0.1034; t-Test). (D–G) Whereas, genes responsible for the development
of neurofibrillary tangles and neuronal intracytoplasmic inclusions had a more robust increase in
transcription (1.5-fold) (GRN, **** p < 0.0001; MAPT, * p = 0.0141; TARDBP, **** p < 0.0001; C9orf72,
** p = 0.0029, t-Test) (ns: ns, no significance).

2.5. Neuritic Plaques

We have previously shown that dolphins developed widespread Aβ+ plaques in the
cerebral cortex and brainstem [15]. Here, we show the same dolphins possess Aβ+ plaques
in the PL, OrL, and Cer brain regions and are associated with NPs, a form of plaque most
correlated with dementia (Figure 4E,F) [23]. The density and morphology of these lesions
were highly similar to those observed in AD (Figure 4L,M). NPs, like NFTs, displayed a
similar density and distribution across our brain regions of analysis. The PL region had the
greatest median density at 23.0 (29.0) per mm2 followed by the OrL region, at 19.0 (48.0) per
mm2. Again, the Cer region had the lowest density of NPs 13.0 (10.0) per mm2. The [EE]
> AD dolphin group had a 5.5-fold greater density of NPs in the PL (p = 0.0013, two-way
ANOVA) and 3.0-fold density in the OrL (ns, two-way ANOVA) (Figure 5A,B). However,
unlike NFTs, we observed a 1.6-fold increase in NPs in the Cer region in the [EE] > AD
group (p = 0.0356, two-way ANOVA) (Figure 5C).
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Figure 4. Comparative Neurohistopathology. Sevier Münger silver staining highlights neurofibrillary tangles (NFTs),
neuritic plaques (NPs), neurointracytoplasmic inclusions (NCIs), and amyloid-beta (Aβ+) plaque morphology in the
dolphin brain that are analogous to those found in advanced Alzheimer’s disease (AD). (A,H) Intact neurons with normal
cytoarchitecture. (B,I) Early NFTs with granular inclusions surrounding the cell soma and processes. Arrow highlights an
adjacent diffused plaque. (C,J) Mature NFTs with dense paired helical filaments and nuclear changes indicative of dying
neurons. (D,K) Ghost or tombstone tangles characterizing dead neurons. (E,L) NPs containing dense cores surrounded by
neuronal cell bodies and processes. (F,M) Clusters of Aβ+ plaques and (G,N) pathological TAR DNA-binding protein 43
(TDP-43) NCIs in the orbital lobe region of dolphins and the frontal cortex of an 84-year-old female with advanced AD.
Scale bars = 25 µm.

Figure 5. Alzheimer’s Disease Neuropathology and BMAA Exposure. (A) In the parietal lobe,
dolphins with BMAA exposure equivalent or greater than those found in Alzheimer disease (AD)
patients ([EE] > AD group, n = 20 tissue sections from 4 dolphins) showed a 14-fold increase in
neurofibrillary tangles (NFTs) and a 5.2-fold increase in neuritic plaques (NPs) in comparison to
dolphins with less exposure ([EE] < AD; n = 15 tissue sections from 3 dolphins) (**, p = 0.0013;
***, p = 0.0001; ANOVA). (B) The orbital lobe, also showed a 5.5- and 3.2-fold increase in NFTs and
NPs, respectively (*, p = 0.0196; ANOVA; ns = no significance). (C) NFT neuropathology in the
cerebellum was relatively unchanged with BMAA exposure. However, the density of NPs increased
1.6-fold in the [EE] > AD (**, p = 0.0356; **, p = 0.0052; ns = no significance).

2.6. TDP-43 Neuronal Intracytoplasmic Inclusions

The pathological form of phosphorylated TDP-43, a protein encoded by the TARDBP
gene (Figure 3F), was also observed in the dolphin brain (Figure 4G). All dolphins displayed
widespread TDP-43 NCIs regardless of their BMAA exposure category. TDP-43 NCIs were
observed throughout all cortical layers and had similar morphological characteristics to
those observed in AD patients (Figure 4G,N).
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2.7. Methylmercury Exposure

MeHg was detected in the PL region of all dolphins (seven in seven; 100%). The
median concentration of MeHg was 0.278 (0.23) µg/g and ranged from 0.163–0.411 µg/g
(Table 1). The ratio of tissue BMAA to MeHg was 527:1 (430.0) and ranged from 49:1–1121:1.
Pathological changes commonly associated with MeHg neurotoxicity were also present.
We observed neuronal atrophy and loss of the cerebellum, neuropil rarefaction, gliosis, and
microinfarcts across all MeHg+ dolphins in our study cohort (Figure 6).

Figure 6. Histopathology Associated with Methylmercury Toxicity and Dolphin Stranding. (A) Cere-
bellar Purkinje neurons display disorganization with pallor of the perikaryon (chromatolysis) and
vacuolation. In addition, granular cell loss and microcavitation with accompanying gliosis was
observed in the cerebellum of dolphin IFAW 12-228 Dd. (B) A blood vessel that displayed thickening
of the adventitia and media with expansion of the perivascular spaces, indicative of continuous
seepage of serum proteins was observed in IFAW12-228 Dd. (C) Alzheimer’s type-2 astrocytes
(arrow), a cellular marker associated with toxin exposure, was observed in the orbital lobe of dolphin
IFAW 12-205 Dd. (D) Microvascular lesion in the parietal lobe. The microinfarct has a large area
of subcortical necrosis (arrow), with hypoxic-ischemic neurons in the superficial cortical layers of
dolphin IFAW 12-198 Dd (E). (F) Subarachnoid hemorrhage observed in the OrL region containing
erythrocytes and activated macrophages in Virchow-Robin space (arrow) in dolphin IFAW 12-228 Dd.
(40× digital pathology scan; Scale bar = 250 µm).

2.8. Additional Histopathological Findings

Our dolphin cohort also displayed several neurohistopathological changes that are
commonly observed in stranded cetaceans. We observed wide-spread hypoxic ischemic
changes in neurons of the cerebral cortex and cerebellum (Figure 6E). In addition, we
observed vascular changes such as hemorrhage in the perivascular space with apparent
protein leakage, which may be part of a terminal process associated with cardiovascular
collapse (Figure 6B,F). Finally, gross and microscopic evaluation for pathological changes
associated with neurobrucellosis were not observed (Supplementary Figure S1).

3. Discussion

Links between chronic dietary exposure to environmental toxins and progressive
neurodegenerative disease continue to accumulate [24–29]. Here, we investigate the effects
of BMAA and MeHg, two environmental neurotoxins known to bioaccumulate in the
marine food chain, concentrate in apex predators, and have synergistic effects on neural
cells [19,30–33]. Our necropsy cohort consisted of a small group of dolphins that were found
stranded in Massachusetts, which frequently reports a number of harmful algal blooms
and MeHg contamination [4,34,35]. Our study aimed to detect BMAA and MeHg in brain



Toxins 2021, 13, 697 8 of 15

tissues, determine if the bioaccumulation of these neurotoxins could induce or potentiate
neurodegenerative changes, and relate these findings to potential human exposures [36,37].

Here, we show both BMAA and MeHg present in the brains of stranded dolphins.
The occurrence of both neurotoxins in CNS tissues may suggest a potential mechanism
for synergies through chronic dietary exposure [38,39]. When absorbed into target tissues,
the elimination half-life of these toxins can range from 1 to 120 days [40–43]. Thus, the
slow removal of these molecules from the brain provides a toxic reservoir that can cause
neuronal injury over the course of years [11]. BMAA is a nonprotein amino acid that crosses
the blood brain barrier (BBB), where it can enter the free amino-acid pool and incorporate
into proteins at serine residues to cause misfolding [14,40,44,45]. Chronic dietary exposure
to BMAA has been linked to ALS/ Parkinson dementia complex (PDC) of Guam and causes
a neurodegenerative phenotype associated with AD and ALS in primate models [14,45–48].
Since BMAA has been documented in diverse ecosystems around the world, exposure of
marine and terrestrial mammals to this toxin is a global concern [38].

In addition to toxin exposures, we also demonstrate the same dolphins displayed
increased expression of gene markers and neuropathology associated with the onset of AD
and related dementias (ADRD). Both the gene expression and the severity of neuropathol-
ogy were amplified in dolphins with BMAA exposures equivalent to those reported in AD
patients [6,8]. TDP-43 NCIs, which have been implicated in AD, ALS/PDC, and several
other dementias were also observed in the dolphin cerebral cortex and cerebellum [49–54].
Concurrent TDP-43 proteinopathy is associated with greater atrophy of the hippocampus
and accelerated cognitive decline in humans [52]. Here, we show that stranded dolphins
positive for the BMAA toxin have increased TARDBP gene transcription and frequent
TDP-43 protein intracytoplasmic inclusions. The abnormal regulation of the TDP-43 gene
and protein provides a potential mechanism of synergy for BMAA and MeHg [13,45,55–57].
The presence of AD-like pathology with concurrent TDP-43 lesions further supports the
use of dolphins as a natural model of neurodegenerative disease [15–17]. Future studies
are needed to understand the impact of toxin exposure on TARDBP gene transcription and
the occurrence of TDP-43 proteinopathy in short-beak common dolphins.

MeHg is a neurotoxic organometallic cation form from inorganic mercury in the ma-
rine environment [58]. The most predominant route of MeHg exposure is the consumption
of contaminated fish and seafood [12,33,58]. Once ingested, MeHg is absorbed and trans-
ported freely across the BBB where it can strongly associate with thiol groups on proteins
to cause oxidative stress, disrupt calcium homeostasis, and trigger neuronal death [59].
MeHg exposure has been implicated in Minamata disease, a crippling neurological dis-
order affecting more than 2200 patients that consumed contaminated fish and seafood
from Minamata Bay in Japan between the 1950s and 1960s [60]. Governments have now
provided strict regulation and guidelines on the recommended weekly intake of MeHg [61].
However, there is a concern that long term subclinical doses of MeHg can cause cognitive
impairment, chronic disease, and has been proposed to be a possible contributor to the
onset of AD [33,62–64].

In our study cohort, the levels of MeHg detected were in the range of those found
in autopsy specimens of humans with chronic low dose poisoning [65–67]. Moreover, we
observed neurotoxic changes associated with MeHg exposure, including neuronal loss and
gliosis in the cerebellum [30]. However, due to our small sample size and the significant
overlap between neuropathology and MeHg neurotoxicity, it was difficult to determine
MeHg’s synergy with BMAA. However, the presence of both toxins suggests a synergistic
or, at minimum, additive potential to induce neurodegeneration. Possible mechanisms
of combined toxicity may include both BMAA’s and MeHg’s ability to cause glutathione
depletion, glutamate dyshomeostasis, mitochondrial dysfunction, and the stimulation of
the unfolded protein response [15,44,68–71].

Finally, dolphins can develop infectious diseases that can cause behavioral changes,
neurodegeneration, and mortality events [2,72,73]. In our cohort, three dolphins were diag-
nosed with brucellosis, a bacterial infection common to marine and terrestrial mammals as
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well as humans [74]. The Brucella ceti bacteria can cause chronic illnesses ranging from skin
lesions to neurobrucellosis [74]. In this study, gross and microscopic findings associated
with B. ceti neuroinfection in our dolphins with brucellosis were not observed [75,76]. In
addition, the B. ceti infection did not have an effect on ADRD gene transcription nor the
severity of neuropathology. However, the presence of neuroinfection and inflammation
should be considered when assessing neuropathological changes from cyanotoxin or MeHg
exposure, as their effects can contribute to the progression of neurodegeneration.

4. Conclusions

We demonstrate that stranded dolphins demonstrate an upregulated transcription
of genes linked to human neurodegenerative diseases. Dolphins also possessed AD-type
pathological changes. The progression of AD pathology was paralleled by increasing
BMAA exposure. Furthermore, dolphins displayed pathological TDP-43 inclusions and
MeHg neurotoxicity, both known to modify the course of dementia in humans. Taken
together, this dolphin model further supports that environmental exposure over the lifespan
may represent a risk factor for developing neurodegenerative disease.

5. Methods and Materials
5.1. Dolphins

Female and male short-beaked common dolphins subadult to adult (n = 7; Delphinus
delphis) were collected from stranding sites in Massachusetts in 2012 under a federal
permit authorized by the National Ocean and Atmospheric Administration (NOAA). The
estimated age class for dolphins was determined as described in Geraci et al. [77]. Physical
assessments were performed on-site and dolphins in poor health were euthanized. No
dolphin was euthanized for the purpose of this research study. Necropsies were performed
within 24–48 h by the Woods Hole Oceanographic Institute Marine Research Facility (WHOI
MRF) and International Fund for Animal Welfare (IFAW) [77]. Gross assessments were
performed with ancillary pathogen testing where appropriate (Supplementary Table S1).
One brain hemisphere was frozen at−80 ◦C and the contralateral preserved in 10% buffered
formalin. Hemispheres were alternated to randomize laterality. Frozen parietal lobe (PL),
orbital lobe (OrL), and cerebellum (Cer) were sampled for PCR and histopathology assays.

5.2. Extraction of Dolphin RNAs

Total ribonucleic acid (RNA) was extracted from 100 mg of frozen tissue sampled
from the PL, OrL and Cer regions using RNeasy Lipid Tissue Mini Kit (Qiagen Inc., Ger-
mantown, MD, USA). DNase I on-column treatment (Qiagen Inc., Germantown, MD, USA)
was applied to samples to eliminate genomic DNA. RNA concentrations were measured
for each sample using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). To determine the quality of RNA, Agilent 2100 Bioanalyzer (Agilent
Technologies Inc., Santa Clara, CA, USA) was used to obtain an RNA integrity number
(RIN) (Supplementary Table S1). To perform our gene expression analysis, 5 µg of total
RNA was used to generate complementary DNA (cDNA) libraries for each sample using a
High Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA).

5.3. qPCR Analysis

Genes related to amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuritic
plaques (NPs), and nuclear and intracytoplasmic inclusions (NCIs) were analyzed: APP,
PSEN1, PSEN2, MAPT, GRN, TARDBP, and C9orf72. Gene expressions were measured
using custom dolphin AD PCR assays with a TaqMan Universal PCR Master Mix on
QuantStudio® 6 Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).
Custom TaqMan assays were designed by the Thermo Fisher Bioinformatics Team based
on the T. truncatus genome turTur1, a closely related cetacean species [78], in combination
with a limited sequence of D. delphis (ncbi.nlm.gov/bioproject/421547; accessed on 27
August 2021) (Supplementary Table S2). As an internal control, gene expression levels

ncbi.nlm.gov/bioproject/421547
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were normalized to 40S ribosomal protein S9 (RPS9), one of the most stable genes in
cetacean species [79]. The average Ct value for RSP9 sequence was 20.84 ± 0.03 with a
coefficient of variation of 1.23% for 63 PCR runs, showing a stable gene expression level.
Triplicate samples and a no template control (NTC) were performed for each assay. cDNA
(100 ng) was amplified and run at the following conditions: 2 min at 50 ◦C, 10 min at 95
◦C, 40 cycles: 15 sec at 95 ◦C and 1 min at 60 ◦C. Data analysis were performed using
QuantStudio® 6 Flex Real-Time PCR System Software v1.0. All real-time PCR data files
were imported into ExpressionSuite Software v1.0.4 (Applied Biosystems, Waltham, MA,
USA) to analyze relative expression across all plates using the comparative Ct method [80].
After normalization of data, a fold change was calculated using a dolphin with the lowest
detectable levels of BMAA as a baseline control.

5.4. HPLC-FD for BMAA Detection

High-performance liquid chromatography with fluorescence detection (HPLC-FD)
measurements previously reported by Davis et al. and Pablo et al. were used in the
study [8,15]. Briefly, BMAA was separated from N-(2-aminoethyl)glycine (AEG) & 2,4-
diaminobutyric acid (2,4-DAB) using reverse-phase elution (Nova-Pak C18 column,
3.9 mm × 300 mm) on a 1525 Binary HPLC pump and a 717 autosampler (Waters Corp.,
Milford, MA, USA). The mobile phase consisted of Eluent A (140 mM sodium acetate,
5.6 mM triethylamine, pH 5.7) and Eluent B (52% (v/v) aqueous acetonitrile) using a flow
rate of 1.0 mL/min and a 10 µL sample injection volume. Samples were eluted using
a 60 min gradient: 0 min 100% A; 2 min 90% A; 5 min 86% A; 10 min 86% A; 18 min
73% A; 30 min 57% A; 35 min 40% A; 37.5 mins100% B; 47.5 min 100% B; 50 min 100% A;
60 min 100% A. The samples were derivatized with an AQC fluorescent tag using 20 µL
of sample plus 20 µL AQC in 60 µL of borate buffer. Analytes were separated at 29.6 min
(AEG), 31.1 min (BMAA), and 33 min (2,4-DAB). Analyte detection was performed using
a 2475 Multi k-Fluorescence Detector (Waters Corp., Milford, MA, USA) with excitation
at 250 nm and emission at 395 nm. Measurements (4–5 per dolphin) were compared with
those spiked-in controls containing known amounts of standard (L-BMAA HCl, Sigma-
Aldrich, Inc. St. Louis, MO, USA). The limit of detection (LOD; 2.7 ng/mL) and limit of
quantification (LOQ; 7.0 ng/mL) were based on the standard deviation (SD) of response
and slope (S), calculated from the linearity of the response of BMAA. The following for-
mulas were used to obtain the LOD (3.3 × SD)/S and LOQ: (10 × SD)/S. The efficiency
of recovery for analytes was estimated by adding known amounts of a BMAA standard
spiked into a reference sample below the LOD.

5.5. PT-GC-AFS for MeHg Detection

Purge-and-trap gas chromatography-atomic fluorescence spectrometry (PT-GC-AFS)
was performed in an laboratory accredited by the National Environmental Laboratory
Accreditation Program (NELAP) for the analysis of MeHg [81]. Parietal lobe (PL) (200 mg)
was mixed with potassium hydroxide (KOH) in MeOH on a heat block, by adding 5 mL
of 25% KOH in MeOH solution to the sample, followed by heating on a dry bath for
2 h at 95 ◦C. After MeHg was extracted into KOH/MeOH solution, MeOH was added
into a digestion tube to bring the volume to 10 mL. An aliquot of KOH/MeOH extract
(20 µL) was transferred into an amber autosampler vial, which was filled with 30 mL of
diH2O. Then, 2.0 mL of citric buffer (0.5 M) and 0.05 mL of freshly thawed 1% Sodium
tetraethylborate solution was added, immediately after which the vial was topped off
with diH2O and tightly capped. The vial was put on an autosampler for analysis on a
PT-GC-AFS MERX MeHg System (Brooks Rand Instruments, Seattle, WA, USA) where Hg
species on the traps were desorbed, separated, pyrolyzed, and detected by AFS. Analytical
runs began with an initial calibration containing 5 non-zero points and a system blank.
The mean calibration factor (CFm), calculated from the calibration factor (CFx) for Hg in
each of the five standards using the system blank-subtracted peak height, was used for the
calculation of sample concentration. Each analytical batch included at least one method
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blank, a continuing calibration check samples (CCS), and a quality control sample (QCS).
All method blanks during analysis were below the LOD (0.002 mg/kg). CCS readings were
always within acceptable range (85–115% for Hg of initial calibration). Certified reference
material, DORM-2, was used as a QCS throughout the analysis and the recoveries for
the QCS samples (84–128% for MeHg) were always within acceptable range specified in
standard operating procedures (70–130% for MeHg).

5.6. Immunohistochemistry

Formalin-fixed paraffin embedded (FFPE) blocks were prepared from dolphin brains
as previously described [15]. For the designation of neuroanatomy, we used terminology
designated by Oelschlager et al. [82]. The following regions were sampled: parietal
lobe (PL), orbital lobe (OrL), and the cerebellum (Cer). Brain tissue sections (5 µm) were
prepared for immunohistochemistry as previously described [15]. Slides were stained with
hematoxylin and eosin (H&E) and Sevier Münger (SM) silver at AML laboratories using
stain kits (American MasterTech, Lodi, CA, USA) [83]. For IHC staining, hydrated slides
were incubated in 3% H2O2 in MeOH for 10 min, followed by rinsing in distilled water for
5 min. Slides were incubated in citrate buffer for 1 h, followed by washing in DiH2O on a
Thermolyne Roto Mix shaker and incubation in phosphate-buffered saline pH 7.4 (PBS) for
5 min. To block non-specific antibody binding, 10% normal donkey serum (NDS) in PBS
was applied to slides in a humidity chamber and incubated at room temperature for 30 min.
The following antibodies were applied: anti-β-amyloid 6E10 (1:800, Covance, Ann Arbor,
MI, USA), anti-phosphorylated TDP-43 Ser409/410 (1:800; Cosmo-Bio, Inc., Carlsbad, CA,
USA). Primary antibodies were incubated overnight at 4 ◦C. Slides were then rinsed in PBS
for 10 min, incubated in 2% NDS for 10 min, then rinsed in PBS. A biotin conjugated goat
anti-mouse or rabbit secondary antibody (1:200; Jackson Immunoresearch Laboratories, Inc.,
West Grove, PA, USA) was incubated on slides for 2 h at room temperature, rinsed with PBS
wash for 10 min, followed by the application of Avidin-Biotin Complex (ABC) peroxidase
solution (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h. ABC peroxidase was
detected using 3,3′-Diaminobenzidine solution (Thermo Fisher Scientific, Waltham, MA,
USA) for 10 min. Slides were washed in PBS, rinsed with distilled water, counterstained
with Gill No. 1 Hematoxylin, and rinsed with tap water. Brain tissues from an 84-year-old
female with advance AD pathological changes was used as a control. The donated tissues
were obtained from the University of Miami Brain Endowment Bank, a NIH NeuroBioBank
(IRB ethics number, 19920348 (CR00012340)).

5.7. Neuropathological Analysis

Histological slides were scanned at 40× (0.2 µm/pixel) using an EasyScan Pro 6 (Motic,
Schertz, TX, USA). Scans were annotated and exported to ObjectiveViewTM (Objective
Pathology, CAN). From each scan, five tiff images (1264 × 704 pixels) were exported to
FIJI ImageJ VER2.00-rc-69/1.52p (NIH, Bethesda, MD, USA) for analysis of AD pathology,
TDP-43 proteinopathy, and MeHg neurotoxicity. To determine the density of NFTs and NPs,
a (2 × 5) grid totaling 1 mm2 was applied to cortical layers II and III of the OrL and PL [84].
The Purkinje cell layer was analyzed for the Cer. ImageJ Cell Counter Ver 2.2.2 (University
of Sheffield, England, UK) software was used to enumerate pathological lesions.

5.8. Statistics

Statistical analyses were performed using Prism Version 9 (Graph Pad, San Diego,
CA, USA). Multiple comparisons were analyzed with ANOVA or two-way ANOVA with
Dunnett’s or Tukey’s multiple comparison test. Nonparametric data comparisons were
conducted using the Mann–Whitney test. The D’Agostino–Pearson and Shapiro–Wilk tests
were used to determine normality. Data are presented as the median (interquartile range)
and the significance level of alpha = 0.05.



Toxins 2021, 13, 697 12 of 15

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13100697/s1, Supplementary Figure S1: Pathological Findings Associated with Neuro-
brucellosis Were not Observed in Our Study Cohort; Supplementary Table S1: Stranded Dolphins;
Supplementary Table S2: Dolphin qPCR primers; Supplementary Table S3: Gene transcription Fold
Change in Stranded Dolphins.

Author Contributions: Conceptualization, D.A.D., S.P.G., and D.C.M.; methodology, D.A.D., S.P.G.,
S.A.B., and P.D.D.; software, D.A.D. and S.P.G.; validation, S.A.B., D.S.R., and T.M.C.; formal analysis
D.A.D. and S.P.G., investigation, D.A.D., S.P.G., and D.W.M.; resources, D.A.D., D.C.M., and P.A.C.;
data curation, D.A.D. and S.P.G.; writing—original draft preparation, D.A.D.; writing—review
and editing, D.A.D., S.P.G., S.A.B., D.S.R., D.C.M., and P.A.C.; visualization, D.A.D. and S.P.G.;
supervision, D.A.D.; project administration, D.A.D. and S.P.G.; funding acquisition, D.A.D. and P.A.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Herbert W. Hoover Foundation, The William Stamps
Farish Fund, and the Josephine P. & John J. Louis Foundation.

Institutional Review Board Statement: Stranded dolphins were collected from stranding sites under
a federal permit authorized by the National Ocean and Atmospheric Administration (NOAA) under
a Stranding Agreement as part of the Marine Mammal Health and Stranding Response Act. Our
studies were authorized by the NOAA Southeast Region Stranding Program and National Marine
Fisheries Service. The University of Miami Institutional Animal Care & Use Committee (IACUC)
reviewed and approved this study prior to the receipt of the dolphin biospecimens. The experiments
and handling of the dolphin tissues satisfied the requirements of the Marine Mammal Protection
Act pursuant to 50 CFR 216.22. Donated human postmortem brain tissues were obtained from the
University of Miami Brain Endowment Bank (IRB ethics number, 19920348 (CR00012340)).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and supporting materials for this study are available within
the article and the Supplementary Materials.

Acknowledgments: We acknowledge the assistance of IFAW for dolphin specimen collection. We are
very grateful for the expert guidance and consultation of Megan K. Stolen and Wendy Noke Durden
of the Hubbs-SeaWorld Research Institute, Florida. We like to thank Guangling Liu and Yong Cai,
Florida International University, for methylmercury analyses. We acknowledge Angela M. Amatruda,
AML Laboratories, St. Augustine, Florida for performing silver staining. We thank the University of
Miami Brain Endowment Bank, a NIH NeuroBioBank, for providing donated postmortem human
brain tissues for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Venn-Watson, S.K.; Jensen, E.D.; Smith, C.R.; Xitco, M.; Ridgway, S.H. Evaluation of annual survival and mortality rates and

longevity of bottlenose dolphins (Tursiops truncatus) at the United States Navy Marine Mammal Program from 2004 through 2013.
J. Am. Vet. Med Assoc. 2015, 246, 893–898. [CrossRef]

2. Bogomolni, A.L.; Pugliares, K.R.; Sharp, S.M.; Patchett, K.; Harry, C.T.; LaRocque, J.M.; Touhey, K.M.; Moore, M. Mortality trends
of stranded marine mammals on Cape Cod and southeastern Massachusetts, USA, 2000 to 2006. Dis. Aquat. Org. 2010, 88,
143–155. [CrossRef] [PubMed]

3. Jepson, P.D.; Deaville, R.; Acevedo-Whitehouse, K.; Barnett, J.; Brownlow, A.; Brownell, R.L., Jr.; Clare, F.C.; Davison, N.; Law, R.J.;
Loveridge, J.; et al. What caused the UK’s largest common dolphin (Delphinus delphis) mass stranding event? PLoS ONE 2013,
8, e60953. [CrossRef] [PubMed]

4. Fire, S.E.; Bogomolni, A.; DiGiovanni, R.A., Jr.; Early, G.; Leighfield, T.A.; Matassa, K.; Miller, G.A.; Moore, K.M.T.; Moore, M.;
Niemeyer, M.; et al. An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine
mammals from the U.S. New England coast. PLoS ONE 2021, 16, e0243570. [CrossRef] [PubMed]

5. Danil, K.; Berman, M.; Frame, E.; Preti, A.; Fire, S.E.; Leighfield, T.; Carretta, J.; Carter, M.L.; Lefebvre, K. Marine algal toxins and
their vectors in southern California cetaceans. Harmful Algae 2021, 103, 102000. [CrossRef] [PubMed]

6. Murch, S.J.; Cox, P.A.; Banack, S.A.; Steele, J.C.; Sacks, O.W. Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC
patients from Guam. Acta Neurol. Scand. 2004, 110, 267–269. [CrossRef] [PubMed]

7. Banack, S.A.; Johnson, H.E.; Cheng, R.; Cox, P.A. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar. Drugs
2007, 5, 180–196. [CrossRef]

https://www.mdpi.com/article/10.3390/toxins13100697/s1
https://www.mdpi.com/article/10.3390/toxins13100697/s1
http://doi.org/10.2460/javma.246.8.893
http://doi.org/10.3354/dao02146
http://www.ncbi.nlm.nih.gov/pubmed/20225675
http://doi.org/10.1371/journal.pone.0060953
http://www.ncbi.nlm.nih.gov/pubmed/23646103
http://doi.org/10.1371/journal.pone.0243570
http://www.ncbi.nlm.nih.gov/pubmed/33406141
http://doi.org/10.1016/j.hal.2021.102000
http://www.ncbi.nlm.nih.gov/pubmed/33980440
http://doi.org/10.1111/j.1600-0404.2004.00320.x
http://www.ncbi.nlm.nih.gov/pubmed/15355492
http://doi.org/10.3390/md504180


Toxins 2021, 13, 697 13 of 15

8. Pablo, J.; Banack, S.A.; Cox, P.A.; Johnson, T.E.; Papapetropoulos, S.; Bradley, W.G.; Buck, A.; Mash, D.C. Cyanobacterial
neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol. Scand. 2009, 120, 216–225. [CrossRef]

9. Berntzon, L.; Ronnevi, L.O.; Bergman, B.; Eriksson, J. Detection of BMAA in the human central nervous system. Neuroscience
2015, 292, 137–147. [CrossRef]

10. Brand, L.E.; Pablo, J.; Compton, A.; Hammerschlag, N.; Mash, D.C. Cyanobacterial blooms and the occurrence of the neurotoxin
beta-N-methylamino-L-alanine (BMAA) in South Florida aquatic food webs. Harmful Algae 2010, 9, 620–635. [CrossRef]

11. Murch, S.J.; Cox, P.A.; Banack, S.A. A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegener-
ative disease in Guam. Proc. Natl. Acad. Sci. USA 2004, 101, 12228–12231. [CrossRef]

12. Hammerschlag, N.; Davis, D.A.; Mondo, K.; Seely, M.S.; Murch, S.J.; Glover, W.B.; Divoll, T.; Evers, D.C.; Mash, D.C. Cyanobacte-
rial Neurotoxin BMAA and Mercury in Sharks. Toxins 2016, 8, 238. [CrossRef] [PubMed]

13. Yin, H.Z.; Yu, S.; Hsu, C.I.; Liu, J.; Acab, A.; Wu, R.; Tao, A.; Chiang, B.J.; Weiss, J.H. Intrathecal infusion of BMAA induces
selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord. Exp. Neurol. 2014, 261, 1–9. [CrossRef]

14. Cox, P.A.; Davis, D.A.; Mash, D.C.; Metcalf, J.S.; Banack, S.A. Dietary exposure to an environmental toxin triggers neurofibrillary
tangles and amyloid deposits in the brain. Proc. Biol. Sci. 2016, 283, 20152397. [CrossRef] [PubMed]

15. Davis, D.A.; Mondo, K.; Stern, E.; Annor, A.K.; Murch, S.J.; Coyne, T.M.; Brand, L.E.; Niemeyer, M.E.; Sharp, S.; Bradley, W.G.; et al.
Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins. PLoS ONE 2019, 14, e0213346. [CrossRef] [PubMed]

16. Gunn-Moore, D.; Kaidanovich-Beilin, O.; Gallego Iradi, M.C.; Gunn-Moore, F.; Lovestone, S. Alzheimer’s disease in humans and
other animals: A consequence of postreproductive life span and longevity rather than aging. Alzheimer’s Dement. J. Alzheimer’s
Assoc. 2017, 14, 195–204. [CrossRef]

17. Sarasa, M.; Pesini, P. Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res. 2009, 6,
171–178. [CrossRef]

18. Page-Karjian, A.; Lo, C.F.; Ritchie, B.; Harms, C.; Rotstein, D.S.; Han, S.; Hassan, S.M.; Lehner, A.F.; Buchweitz, J.P.; Thayer,
V.G.; et al. Anthropogenic Contaminants and Histopathological Findings in Stranded Cetaceans in the Southeastern United
States, 2012–2018. Front. Mar. Sci. 2020, 7, 630. [CrossRef]

19. Reif, J.S.; Schaefer, A.M.; Bossart, G.D. Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in
Humans: Closing the Loop. Vet. Sci. 2015, 2, 407–422. [CrossRef]

20. Metcalf, J.S.; Codd, G.A. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts
and Implications. Toxins 2020, 12, 629. [CrossRef]

21. Rush, T.; Liu, X.; Lobner, D. Synergistic toxicity of the environmental neurotoxins methylmercury and beta-N-methylamino-L-
alanine. Neuroreport 2012, 23, 216–219. [CrossRef]

22. Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 2011, 48, 676–690. [CrossRef]
23. Mirra, S.S.; Heyman, A.; McKeel, D.; Sumi, S.M.; Crain, B.J.; Brownlee, L.M.; Vogel, F.S.; Hughes, J.P.; van Belle, G.; Berg, L. The

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment
of Alzheimer’s disease. Neurology 1991, 41, 479–486. [CrossRef]

24. Field, N.C.; Metcalf, J.S.; Caller, T.A.; Banack, S.A.; Cox, P.A.; Stommel, E.W. Linking beta-methylamino-L-alanine exposure to
sporadic amyotrophic lateral sclerosis in Annapolis, MD. Toxicon Off. J. Int. Soc. Toxinol. 2013, 70, 179–183. [CrossRef]

25. Banack, S.A.; Metcalf, J.S.; Bradley, W.G.; Cox, P.A. Detection of cyanobacterial neurotoxin beta-N-methylamino-l-alanine within
shellfish in the diet of an ALS patient in Florida. Toxicon Off. J. Int. Soc. Toxinol. 2014, 90, 167–173. [CrossRef] [PubMed]

26. Masseret, E.; Banack, S.; Boumediene, F.; Abadie, E.; Brient, L.; Pernet, F.; Juntas-Morales, R.; Pageot, N.; Metcalf, J.; Cox, P.; et al.
Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS ONE 2013, 8, e83406. [CrossRef]
[PubMed]

27. Banack, S.A.; Murch, S.J.; Cox, P.A. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J.
Ethnopharmacol. 2006, 106, 97–104. [CrossRef] [PubMed]

28. Monson, C.S.; Banack, S.A.; Cox, P.A. Conservation implications of Chamorro consumption of flying foxes as a possible cause of
amyotrophic lateral sclerosis–parkinsonism dementia complex in Guam. Conserv. Biol. 2003, 17, 678–686. [CrossRef]

29. Finch, C.E.; Kulminski, A.M. The Alzheimer’s Disease Exposome. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2019, 15, 1123–1132.
[CrossRef] [PubMed]

30. Eto, K.; Marumoto, M.; Takeya, M. The pathology of methylmercury poisoning (Minamata disease): The 50th Anniversary of
Japanese Society of Neuropathology. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2010, 30, 471–479. [CrossRef] [PubMed]

31. Cox, P.A.; Sacks, O.W. Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 2002, 58,
956–959. [CrossRef]

32. Bell, E.A. The discovery of BMAA, and examples of biomagnification and protein incorporation involving other non-protein
amino acids. Amyotroph. Lateral Scler. Off. Publ. World Fed. Neurol. Res. Group Motor Neuron Dis. 2009, 10 (Suppl. 2), 21–25.
[CrossRef]

33. Foley, M.M.; Seidel, I.; Sevier, J.; Wendt, J.; Kogan, M. One man’s swordfish story: The link between Alzheimer’s disease and
mercury exposure. Complement. Ther. Med. 2020, 52, 102499. [CrossRef]

34. Wu, J.; Hilborn, E.D.; Schaeffer, B.A.; Urquhart, E.; Coffer, M.M.; Lin, C.J.; Egorov, A.I. Acute health effects associated with
satellite-determined cyanobacterial blooms in a drinking water source in Massachusetts. Environ. Health Glob. Access Sci. Source
2021, 20, 83. [CrossRef]

http://doi.org/10.1111/j.1600-0404.2008.01150.x
http://doi.org/10.1016/j.neuroscience.2015.02.032
http://doi.org/10.1016/j.hal.2010.05.002
http://doi.org/10.1073/pnas.0404926101
http://doi.org/10.3390/toxins8080238
http://www.ncbi.nlm.nih.gov/pubmed/27537913
http://doi.org/10.1016/j.expneurol.2014.06.003
http://doi.org/10.1098/rspb.2015.2397
http://www.ncbi.nlm.nih.gov/pubmed/26791617
http://doi.org/10.1371/journal.pone.0213346
http://www.ncbi.nlm.nih.gov/pubmed/30893348
http://doi.org/10.1016/j.jalz.2017.08.014
http://doi.org/10.2174/156720509787602834
http://doi.org/10.3389/fmars.2020.00630
http://doi.org/10.3390/vetsci2040407
http://doi.org/10.3390/toxins12100629
http://doi.org/10.1097/WNR.0b013e32834fe6d6
http://doi.org/10.1177/0300985810388525
http://doi.org/10.1212/WNL.41.4.479
http://doi.org/10.1016/j.toxicon.2013.04.010
http://doi.org/10.1016/j.toxicon.2014.07.018
http://www.ncbi.nlm.nih.gov/pubmed/25123936
http://doi.org/10.1371/journal.pone.0083406
http://www.ncbi.nlm.nih.gov/pubmed/24349504
http://doi.org/10.1016/j.jep.2005.12.032
http://www.ncbi.nlm.nih.gov/pubmed/16457975
http://doi.org/10.1046/j.1523-1739.2003.02049.x
http://doi.org/10.1016/j.jalz.2019.06.3914
http://www.ncbi.nlm.nih.gov/pubmed/31519494
http://doi.org/10.1111/j.1440-1789.2010.01119.x
http://www.ncbi.nlm.nih.gov/pubmed/20500453
http://doi.org/10.1212/WNL.58.6.956
http://doi.org/10.3109/17482960903268700
http://doi.org/10.1016/j.ctim.2020.102499
http://doi.org/10.1186/s12940-021-00755-6


Toxins 2021, 13, 697 14 of 15

35. Taylor, D.L.; Calabrese, N.M. Mercury content of blue crabs (Callinectes sapidus) from southern New England coastal habitats:
Contamination in an emergent fishery and risks to human consumers. Mar. Pollut. Bull. 2018, 126, 166–178. [CrossRef]

36. Brand, L.E. Human exposure to cyanobacteria and BMAA. Amyotroph. Lateral Scler. Off. Publ. World Fed. Neurol. Res. Group Motor
Neuron Dis. 2009, 10 (Suppl. 2), 85–95. [CrossRef]

37. Hong, Y.S.; Kim, Y.M.; Lee, K.E. Methylmercury exposure and health effects. J. Prev. Med. Public Health 2012, 45, 353–363.
[CrossRef] [PubMed]

38. Lance, E.; Arnich, N.; Maignien, T.; Bire, R. Occurrence of beta-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic
Environments and Aquatic Food Sources for Humans. Toxins 2018, 10, 83. [CrossRef] [PubMed]

39. Buckman, K.L.; Mason, R.P.; Seelen, E.; Taylor, V.F.; Balcom, P.H.; Chipman, J.; Chen, C.Y. Patterns in forage fish mercury
concentrations across Northeast US estuaries. Environ. Res. 2021, 194, 110629. [CrossRef] [PubMed]

40. Xie, X.; Basile, M.; Mash, D.C. Cerebral uptake and protein incorporation of cyanobacterial toxin beta-N-methylamino-L-alanine.
Neuroreport 2013, 24, 779–784. [CrossRef] [PubMed]

41. Waidyanatha, S.; Ryan, K.; Sanders, J.M.; McDonald, J.D.; Wegerski, C.J.; Doyle-Eisle, M.; Garner, C.E. Disposition of beta-N-
methylamino-l-alanine (L-BMAA), a neurotoxin, in rodents following a single or repeated oral exposure. Toxicol. Appl. Pharmacol.
2018, 339, 151–160. [CrossRef]

42. Duncan, M.W.; Villacreses, N.E.; Pearson, P.G.; Wyatt, L.; Rapoport, S.I.; Kopin, I.J.; Markey, S.P.; Smith, Q.R. 2-amino-3-
(methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-brain barrier permeability in the rat. J. Pharmacol. Exp. Ther.
1991, 258, 27–35.

43. Rand, M.D.; Caito, S.W. Variation in the biological half-life of methylmercury in humans: Methods, measurements and meaning.
Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129301. [CrossRef]

44. Dunlop, R.A.; Cox, P.A.; Banack, S.A.; Rodgers, K.J. The non-protein amino acid BMAA is misincorporated into human proteins
in place of l-serine causing protein misfolding and aggregation. PLoS ONE 2013, 8, e75376. [CrossRef]

45. Davis, D.A.; Cox, P.A.; Banack, S.A.; Lecusay, P.D.; Garamszegi, S.P.; Hagan, M.J.; Powell, J.T.; Metcalf, J.S.; Palmour, R.M.;
Beierschmitt, A.; et al. l-Serine Reduces Spinal Cord Pathology in a Vervet Model of Preclinical ALS/MND. J. Neuropathol. Exp.
Neurol. 2020, 79, 393–406. [CrossRef]

46. Spencer, P.S.; Hugon, J.; Ludolph, A.; Nunn, P.B.; Ross, S.M.; Roy, D.N.; Schaumburg, H.H. Discovery and partial characterization
of primate motor-system toxins. Ciba Found. Symp. 1987, 126, 221–238.

47. Spencer, P.S.; Nunn, P.B.; Hugon, J.; Ludolph, A.C.; Ross, S.M.; Roy, D.N.; Robertson, R.C. Guam amyotrophic lateral sclerosis-
parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987, 237, 517–522. [CrossRef]

48. Cox, P.A.; Banack, S.A.; Murch, S.J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the
Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 2003, 100, 13380–13383. [CrossRef]

49. Oyanagi, K.; Yamazaki, M.; Hashimoto, T.; Asakawa, M.; Wakabayashi, K.; Takahashi, H. Hippocampal sclerosis in the
parkinsonism-dementia complex of Guam: Quantitative examination of neurons, neurofibrillary tangles, and TDP-43 immunore-
activity in CA1. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2015, 35, 224–235. [CrossRef]

50. Nelson, P.T.; Dickson, D.W.; Trojanowski, J.Q.; Jack, C.R.; Boyle, P.A.; Arfanakis, K.; Rademakers, R.; Alafuzoff, I.; Attems, J.;
Brayne, C.; et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 2019,
142, 1503–1527. [CrossRef]

51. Mackenzie, I.R.; Rademakers, R.; Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
Lancet Neurol. 2010, 9, 995–1007. [CrossRef]

52. Josephs, K.A.; Whitwell, J.L.; Knopman, D.S.; Hu, W.T.; Stroh, D.A.; Baker, M.; Rademakers, R.; Boeve, B.F.; Parisi, J.E.; Smith,
G.E.; et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 2008, 70,
1850–1857. [CrossRef]

53. Geser, F.; Winton, M.J.; Kwong, L.K.; Xu, Y.; Xie, S.X.; Igaz, L.M.; Garruto, R.M.; Perl, D.P.; Galasko, D.; Lee, V.M.; et al. Pathological
TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol. 2008, 115, 133–145.
[CrossRef]

54. Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio,
E.H.; et al. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol. 2014,
128, 755–766. [CrossRef]

55. Ash, P.E.A.; Dhawan, U.; Boudeau, S.; Lei, S.; Carlomagno, Y.; Knobel, M.; Al Mohanna, L.F.A.; Boomhower, S.R.; Newland, M.C.;
Sherr, D.H.; et al. Heavy Metal Neurotoxicants Induce ALS-Linked TDP-43 Pathology. Toxicol. Sci. 2019, 167, 105–115. [CrossRef]

56. Munoz-Saez, E.; de Munck, E.; Arahuetes, R.M.; Solas, M.T.; Martinez, A.M.; Miguel, B.G. beta-N-methylamino-L-alanine induces
changes in both GSK3 and TDP-43 in human neuroblastoma. J. Toxicol. Sci. 2013, 38, 425–430. [CrossRef]

57. Scott, L.L.; Downing, T.G. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with
Neurodegenerative Diseases. Toxins 2017, 10, 22. [CrossRef]

58. Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public
Health 2014, 47, 74–83. [CrossRef]

59. Li, X.; Pan, J.; Wei, Y.; Ni, L.; Xu, B.; Deng, Y.; Yang, T.; Liu, W. Mechanisms of oxidative stress in methylmercury-induced
neurodevelopmental toxicity. Neurotoxicology 2021, 85, 33–46. [CrossRef]

60. Yorifuji, T. Lessons From an Early-stage Epidemiological Study of Minamata Disease. J. Epidemiol. 2020, 30, 12–14. [CrossRef]

http://doi.org/10.1016/j.marpolbul.2017.10.089
http://doi.org/10.3109/17482960903273585
http://doi.org/10.3961/jpmph.2012.45.6.353
http://www.ncbi.nlm.nih.gov/pubmed/23230465
http://doi.org/10.3390/toxins10020083
http://www.ncbi.nlm.nih.gov/pubmed/29443939
http://doi.org/10.1016/j.envres.2020.110629
http://www.ncbi.nlm.nih.gov/pubmed/33358725
http://doi.org/10.1097/WNR.0b013e328363fd89
http://www.ncbi.nlm.nih.gov/pubmed/23979257
http://doi.org/10.1016/j.taap.2017.12.008
http://doi.org/10.1016/j.bbagen.2019.02.003
http://doi.org/10.1371/journal.pone.0075376
http://doi.org/10.1093/jnen/nlaa002
http://doi.org/10.1126/science.3603037
http://doi.org/10.1073/pnas.2235808100
http://doi.org/10.1111/neup.12185
http://doi.org/10.1093/brain/awz099
http://doi.org/10.1016/S1474-4422(10)70195-2
http://doi.org/10.1212/01.wnl.0000304041.09418.b1
http://doi.org/10.1007/s00401-007-0257-y
http://doi.org/10.1007/s00401-014-1349-0
http://doi.org/10.1093/toxsci/kfy267
http://doi.org/10.2131/jts.38.425
http://doi.org/10.3390/toxins10010022
http://doi.org/10.3961/jpmph.2014.47.2.74
http://doi.org/10.1016/j.neuro.2021.05.002
http://doi.org/10.2188/jea.JE20190089


Toxins 2021, 13, 697 15 of 15

61. U.S. Food and Drug Administration. Mercury Concentrations in Fish from the FDA Monitoring Program (1990–2010); U.S. Food and
Drug Administration: Sliver Spring, MD, USA, 2017.

62. Godfrey, M.E.; Wojcik, D.P.; Krone, C.A. Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J.
Alzheimer’s Dis. JAD 2003, 5, 189–195. [CrossRef]

63. Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A Hypothesis and Evidence That Mercury May be an Etiological
Factor in Alzheimer’s Disease. Int. J. Environ. Res. Public. Health 2019, 16, 5152. [CrossRef]

64. Yokoo, E.M.; Valente, J.G.; Grattan, L.; Schmidt, S.L.; Platt, I.; Silbergeld, E.K. Low level methylmercury exposure affects
neuropsychological function in adults. Environ. Health Glob. Access Sci. Source 2003, 2, 8. [CrossRef]

65. Eto, K.; Takizawa, Y.; Akagi, H.; Haraguchi, K.; Asano, S.; Takahata, N.; Tokunaga, H. Differential diagnosis between organic and
inorganic mercury poisoning in human cases—The pathologic point of view. Toxicol. Pathol. 1999, 27, 664–671. [CrossRef]

66. Bjorkman, L.; Lundekvam, B.F.; Laegreid, T.; Bertelsen, B.I.; Morild, I.; Lilleng, P.; Lind, B.; Palm, B.; Vahter, M. Mercury in human
brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environ. Health A Glob. Access Sci. Source 2007, 6, 30.
[CrossRef]

67. Davis, L.E.; Kornfeld, M.; Mooney, H.S.; Fiedler, K.J.; Haaland, K.Y.; Orrison, W.W.; Cernichiari, E.; Clarkson, T.W. Methylmercury
poisoning: Long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neurol. 1994, 35,
680–688. [CrossRef]

68. Rao, S.D.; Banack, S.A.; Cox, P.A.; Weiss, J.H. BMAA selectively injures motor neurons via AMPA/kainate receptor activation.
Exp. Neurol. 2006, 201, 244–252. [CrossRef]

69. Silva, D.F.; Candeias, E.; Esteves, A.R.; Magalhaes, J.D.; Ferreira, I.L.; Nunes-Costa, D.; Rego, A.C.; Empadinhas, N.; Cardoso, S.M.
Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer’s disease features in cortical
neurons. J. Neuroinflamm. 2020, 17, 332. [CrossRef] [PubMed]

70. Hiraoka, H.; Nakahara, K.; Kaneko, Y.; Akiyama, S.; Okuda, K.; Iwawaki, T.; Fujimura, M.; Kumagai, Y.; Takasugi, N.; Uehara, T.
Modulation of Unfolded Protein Response by Methylmercury. Biol. Pharm. Bull. 2017, 40, 1595–1598. [CrossRef] [PubMed]

71. Dunlop, R.A.; Powell, J.T.; Metcalf, J.S.; Guillemin, G.J.; Cox, P.A. L-Serine-Mediated Neuroprotection Includes the Upregulation
of the ER Stress Chaperone Protein Disulfide Isomerase (PDI). Neurotox. Res. 2018, 33, 113–122. [CrossRef] [PubMed]

72. Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing
mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [CrossRef] [PubMed]

73. Di Guardo, G. Alzheimer’s disease, cellular prion protein, and dolphins. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14,
259–260. [CrossRef] [PubMed]

74. Guzman-Verri, C.; Gonzalez-Barrientos, R.; Hernandez-Mora, G.; Morales, J.A.; Baquero-Calvo, E.; Chaves-Olarte, E.; Moreno, E.
Brucella ceti and brucellosis in cetaceans. Front. Cell. Infect. Microbiol. 2012, 2, 3. [CrossRef]

75. Davison, N.J.; Brownlow, A.; Doeschate, M.T.; Dale, E.J.; Foster, G.; Muchowski, J.; Perrett, L.L.; Rocchi, M.; Whatmore, A.M.;
Dagleish, M.P. Neurobrucellosis due to Brucella ceti ST26 in Three Sowerby’s Beaked Whales (Mesoplodon bidens). J. Comp. Pathol.
2021, 182, 1–8. [CrossRef] [PubMed]

76. Hernandez-Mora, G.; Gonzalez-Barrientos, R.; Morales, J.A.; Chaves-Olarte, E.; Guzman-Verri, C.; Barquero-Calvo, E.; De-Miguel,
M.J.; Marin, C.M.; Blasco, J.M.; Moreno, E. Neurobrucellosis in stranded dolphins, Costa Rica. Emerg. Infect. Dis. 2008, 14,
1430–1433. [CrossRef]

77. Geraci, J.R.; Lounsbury, V.L.; Yates, N. Marine Mammals Ashore, A Field Guide for Strandings, 2nd ed.; National Aquarium in
Baltimore, Inc.: Baltimore, MD, USA, 2005; p. 382.

78. LeDuc, R.G.; Perrin, W.F.; Dizon, A.E. Phylogenetic Relationships Among the Delphinid Cetaceans Based on Full Cytochrome B
Sequences. Mar. Mammal Sci. 1999, 15, 619–648. [CrossRef]

79. Chen, I.H.; Chou, L.S.; Chou, S.J.; Wang, J.H.; Stott, J.; Blanchard, M.; Jen, I.F.; Yang, W.C. Selection of suitable reference genes for
normalization of quantitative RT-PCR in peripheral blood samples of bottlenose dolphins (Tursiops truncatus). Sci. Rep. 2015,
5, 15425. [CrossRef] [PubMed]

80. Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108.
[CrossRef]

81. USEPA. Method 1630, Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence
Spectrometry; Office of Water, Ed.; USEPA: Washington, DC, USA, 2001.

82. Oelschlager, H.H.; Haas-Rioth, M.; Fung, C.; Ridgway, S.H.; Knauth, M. Morphology and evolutionary biology of the dolphin
(Delphinus sp.) brain—MR imaging and conventional histology. Brain Behav. Evol. 2008, 71, 68–86. [CrossRef] [PubMed]

83. Mirra, S.S.; Hart, M.N.; Terry, R.D. Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch.
Pathol. Lab. Med. 1993, 117, 132–144.

84. Hof, P.R.; Chanis, R.; Marino, L. Cortical complexity in cetacean brains. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2005, 287,
1142–1152. [CrossRef] [PubMed]

http://doi.org/10.3233/JAD-2003-5303
http://doi.org/10.3390/ijerph16245152
http://doi.org/10.1186/1476-069X-2-8
http://doi.org/10.1177/019262339902700608
http://doi.org/10.1186/1476-069X-6-30
http://doi.org/10.1002/ana.410350608
http://doi.org/10.1016/j.expneurol.2006.04.017
http://doi.org/10.1186/s12974-020-02004-y
http://www.ncbi.nlm.nih.gov/pubmed/33153477
http://doi.org/10.1248/bpb.b17-00359
http://www.ncbi.nlm.nih.gov/pubmed/28867746
http://doi.org/10.1007/s12640-017-9817-7
http://www.ncbi.nlm.nih.gov/pubmed/28975502
http://doi.org/10.1111/gcb.15163
http://www.ncbi.nlm.nih.gov/pubmed/32558115
http://doi.org/10.1016/j.jalz.2017.12.002
http://www.ncbi.nlm.nih.gov/pubmed/29348035
http://doi.org/10.3389/fcimb.2012.00003
http://doi.org/10.1016/j.jcpa.2020.10.005
http://www.ncbi.nlm.nih.gov/pubmed/33494901
http://doi.org/10.3201/eid1409.071056
http://doi.org/10.1111/j.1748-7692.1999.tb00833.x
http://doi.org/10.1038/srep15425
http://www.ncbi.nlm.nih.gov/pubmed/26486099
http://doi.org/10.1038/nprot.2008.73
http://doi.org/10.1159/000110495
http://www.ncbi.nlm.nih.gov/pubmed/17975302
http://doi.org/10.1002/ar.a.20258
http://www.ncbi.nlm.nih.gov/pubmed/16200644

	Introduction 
	Results 
	Stranded Dolphins 
	BMAA Exposure 
	Gene Expression Markers 
	Neurofibrillary Tangles 
	Neuritic Plaques 
	TDP-43 Neuronal Intracytoplasmic Inclusions 
	Methylmercury Exposure 
	Additional Histopathological Findings 

	Discussion 
	Conclusions 
	Methods and Materials 
	Dolphins 
	Extraction of Dolphin RNAs 
	qPCR Analysis 
	HPLC-FD for BMAA Detection 
	PT-GC-AFS for MeHg Detection 
	Immunohistochemistry 
	Neuropathological Analysis 
	Statistics 

	References

