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Spatial self-organization of ecosystems into large-scale (from micron to meters) pat-
terns is an important phenomenon in ecology, enabling organisms to cope with harsh 
environmental conditions and buffering ecosystem degradation. Scale-dependent feed-
backs provide the predominant conceptual framework for self-organized spatial patterns, 
explaining regular patterns observed in, e.g., arid ecosystems or mussel beds. Here, we 
highlight an alternative mechanism for self-organized patterns, based on the aggregation 
of a biotic or abiotic species, such as herbivores, sediment, or nutrients. Using a gener-
alized mathematical model, we demonstrate that ecosystems with aggregation-driven 
patterns have fundamentally different dynamics and resilience properties than ecosys-
tems with patterns that formed through scale-dependent feedbacks. Building on the 
physics theory for phase-separation dynamics, we show that patchy ecosystems with 
aggregation patterns are more vulnerable than systems with patterns formed through 
scale-dependent feedbacks, especially at small spatial scales. This is because local distur-
bances can trigger large-scale redistribution of resources, amplifying local degradation. 
Finally, we show that insights from physics, by providing mechanistic understanding 
of the initiation of aggregation patterns and their tendency to coarsen, provide a new 
indicator framework to signal proximity to ecological tipping points and subsequent 
ecosystem degradation for this class of patchy ecosystems.

self-organization | pattern formation | ecosystem resilience | early-warning signals

Theoretical models and observations (1–8) suggest that the large-scale regular spatial 
patterns found in many ecosystems change in a predictable way when approaching a 
potential tipping point, which is considered an important indicator for assessing ecosystem 
resilience (9–12). This indicator framework is based on reaction-diffusion models that 
generate spatially periodic (regular) patterns through a so-called Turing instability (13–15). 
These self-organized patterns form due to a combination of short-range facilitation and 
long-range inhibition, generally referred to as scale-dependent feedbacks (16–18). Such 
feedbacks result, for instance, from the concentration of a limiting resource (e.g., water) 
that is flowing through the system (12, 13, 19, 20), or the production of a growth-inhib-
iting substance (14, 21, 22). However, many ecosystems exhibit patterns that are far less 
regular and lack clear scale-dependent feedbacks (Fig. 1). These include non-regular pat-
terns generated by self-propelling disturbances (23), or patterns of coexisting patches 
resulting from positive feedback processes (11). Non-regular patterns have for instance 
been found of in grazing systems (24–28), biogeomorphological systems (29–33), such 
as seagrass beds and dune fields, and nutrient-poor systems (34–39), such as peatlands, 
meaning that the leading indicator framework does not apply to an important group of 
patchy ecosystems.

Here we identify a new generic mechanism behind self-organization of ecosystems, 
involving the aggregation of an abiotic or biotic species into non-regular patches. We will 
refer to this new mechanism as density-dependent aggregation, and we propose it as a 
possible explanation for the ubiquitous irregular patterns observed in ecosystems that 
apparently lack scale-dependent feedbacks. This mechanism involves aggregation of a 
mobile species or substance that is approximately conserved within the ecosystem, meaning 
that its fluxes in or out of the ecosystem are negligible compared to local redistribution 
processes. We demonstrate that these ecosystems can be expected to exhibit fundamentally 
different dynamics compared to ecosystems governed by scale-dependent feedbacks and 
introduce a novel indicator framework for ecosystem resilience that is based on phase-
separation theory (40–44). First, we highlight a number of ecosystems where density-
dependent aggregation may be responsible for the formation of self-organized spatial 
patterns. Second, we present a generalized, universal model of these ecosystems, discuss 
the feedbacks that trigger spatial pattern formation in this class of ecosystems, and demon-
strate that they are expected to exhibit principal dynamics that are akin to phase separation, 
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a concept stemming from physics and increasingly highlighted for 
biological systems (45–52). Finally, building on insights from 
physics, we introduce a new indicator framework to signal if eco-
systems are approaching tipping points at which dramatic shifts 
in ecosystem states occur.

Regular Patterns and Scale-Dependent 
Feedbacks

Arid vegetation patterns are a well-known example of spatial 
self-organization by means of scale-dependent feedbacks. In arid 
ecosystems, the growth of plants is locally enhanced through the 
concentration of water by plants (called small-scale positive feed-
back). This concentration process leads to a deprivation of water 
on a larger spatial scale (large-scale negative feedback; Fig. 2A), 
leading to dense patches of bush interspersed with bare soil 
(13, 53–55). Similarly, regular spatial patterns in intertidal mussel 
beds have been explained by scale-dependent feedbacks resulting 
from blue mussels that decrease their own mortality locally, while 
competing for algae on larger spatial scales (17, 56).

There are many other examples of spatial, scale-dependent feed-
backs generating regular patterns in ecology (16, 18, 57, 58). A 
common characteristic of these patterns is that positive feedback is 
dominant at short spatial scales, while negative feedback prevails at 
greater distances. A crucial condition for scale-dependent feedbacks 
to occur, and hence for these patterns to have a characteristic scale, 

is that resources are locally replenished and depleted (e.g., acting as 
a dissipative system). For example, water enters arid ecosystems 
through rainfall and leaves through evaporation (5, 18), and carbon 
enters and leaves mussel beds through algal inflow and respiration 
by mussels (17, 59), respectively. There are, however, ecosystems 
where spatial self-organization is caused by feedbacks between a ses-
sile engineering species and a mobile element (for instance a nutrient, 
or grazer, see examples in Table 1) that are not locally replenished 
and depleted, but instead are largely conserved within the system 
over relevant timescales (weeks, months, years). In these ecosystems, 
patchiness is driven by a conserved ecosystem component, either a 
resource or a consumer, whose mobility is determined by a sessile 
species. This class of ecosystems includes irregularly patterned grazing 
systems, biogeomorphic ecosystems, and nutrient-poor ecosystems, 
as we have summarized in Table 1. We highlight these classes in the 
following sections.

Ecosystems with Aggregation-driven 
Patchiness

Grazing Systems: Two-Phase Mosaics in Terrestrial Rangelands 
and Intertidal Seagrass Meadows. Many natural and domestic 
grazing systems are characterized by strong patchiness in the 
form of alternating short-grazed low biomass areas and high 
biomass patches that are hardly grazed. In these so-called two-
phase mosaics, herbivores typically prefer grazing in the low 
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Fig. 1. Patchy ecosystems with irregular patterns 
that lack scale-dependent feedbacks but that 
have strong feedbacks between a sessile species 
and mobile conserved consumer or resource. 
(A) Interactions between plants and herbivores 
result in the formation of grazing lanes on the 
island Schiermonnikoog, The Netherlands (53°28′N, 
6°9′E; photo by Holly Moors, 2015) and (B) mosaics 
in a seagrass meadow in the Uithuizerwad, The 
Netherlands [53°27′N, 6°41′E; reprinted from ref. 
25, which is licensed under CC BY 4.0]. (C and D) 
Feedbacks between dune and dryland vegetation 
and mobile sand result in coastal embryo dunes 
on the island Ameland, The Netherlands (53°27′N, 
5°45′E; photo by Bas Arens, 2005), and nebkhas 
near M’hamid, Morocco (29°49′N 5°43′W; Image 
credit: Koen Siteur). (E and F) The uptake and release 
of nutrients cause patterning of nutrient-poor 
peatlands in Siberia, Russia (56°16′N, 81°33′E) and 
corals of the Great Barrier Reef, Australia (18°17′S, 
147°42′E). Image credit:Maarten B. Eppinga (E) and 
imageBROKER / Alamy Stock Photo (F).



PNAS  2023  Vol. 120  No. 2  e2202683120� https://doi.org/10.1073/pnas.2202683120   3 of 12

biomass areas, thereby maintaining this state of low biomass in 
these areas [sometimes referred to as grazing lawns. (24, 60)]. 
There are various reasons for this preference. In shrublands, plants 
become woody as they mature or develop thorns or spines to 
guard against grazing. In grasslands, grasses become less nutritious 
with their increase in biomass (Fig.  1A). In intertidal seagrass 
meadows, sediment accumulates in dense seagrass patches, which 
stabilize the sediment and prevent erosion, hampering waterfowl 
in applying their preferred grazing strategy (dabbling) during 
low tide, as the dense patches are then elevated above the water, 
leaving only the water-logged hollows for grazing (see refs. 24, 25, 
and 61 and Fig. 1B). In these grazing systems, herbivores are a 
mobile agent that distributes depending on the spatial distribution 
of the plants, the sessile species. Plant density is in turn controlled 
by the grazing pressure of the herbivores. Although the local plant 
biomass affects the movement behavior of herbivores, it does 
not affect their reproduction and mortality rates, at least not at 
the same timescales. This means that, unlike arid ecosystems or 
mussel beds, the production and depletion of a resource, and the 
resulting scale-dependent feedbacks, do not play a role. Instead, 
the aggregation of herbivores in the short-grazed patches is what 
drives pattern formation.

Biogeomorphic Systems: Coastal Dunes and Nebkha 
Landscapes. In desert and beach systems, characterized by mobile 
sand, vegetation can be found to create hummocked structures. 
Examples include relatively small nebkha dunes, observed in many 
desert ecosystems (Fig. 1C), and extensive beach dunes covered 
by marram grass (Fig. 1D). These landscapes are formed through 
feedbacks between vegetation and sand. Vegetation decreases the 
mobility of sand by enhancing deposition rates and/or decreasing 
erosion rates, thereby demobilizing aeolian sand and preventing 
(re)mobilization of deposited sand, respectively. Sand, in turn, 
enhances the growth of plants through various mechanisms. It 

provides a fresh pathogen-free substrate for many dune grasses 
(31, 62, 63), enables vegetation to escape erosive conditions and 
elevated salinity levels, and provides nutrients and acts as water 
storage in desert systems (33, 64). Although vegetation traps 
sand in these ecosystems, it does not consume sand or remove 
it in another way, as is the case with water in arid ecosystems 
and algae in mussel bed ecosystems. Instead, plants in dune 
landscapes control the mobility of sand. Hence, the aggregation 
of sand in plant patches is the mechanism creating patterned dune 
landscapes, rather than scale-dependent feedbacks.

Nutrient-Poor Ecosystems: Coral Reefs, Peat Lands, and Subtidal 
Seagrass Meadows. Many nutrient-poor ecosystems exhibit 
patchiness, as the limited amount of resources within these systems 
does not allow for a uniform cover to be attained (Fig. 1 E and 
F). In these systems, resources are typically either suspended in 
(soil) water or have been taken up by organisms. Uptake by sessile 
organisms demobilizes the resource, while resources are again 
released to the water during or after an organism’s life. In coral 
reefs for example, filter-feeding corals and sponges passively or 
actively filter particulate organic matter out of the water column, 
an important source for inorganic nutrients. The nutrients are 
again released to the water due to shedding of cells by sponges 
or the secretion of mucus by corals (the latter is converted back 
to particulate form by sponges, also known as the “sponge loop”, 
refs. 65–69). This feedback loop, in combination with the 
mobility of suspended particles, is likely to amplify patchiness 
in many coral reefs. Hence, facilitative interactions play a key 
role in pattern formation in coral reef ecosystems, as it reduces 
the mortality-induced loss of resources. Similarly, patterning of 
subtidal seagrass meadows has been associated with facilitative 
effects, including stabilization of fine-grained sediment by the 
dissipation of wave energy (70). Here, seagrasses grow better when 
there is more sediment, while entrapment of sediment increases 
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Fig. 2. Two alternative models to describe spatial self-organization in ecology. (A and C) Scale-dependent feedbacks (SDFs) explain regular patterns observed 
in ecosystems with a flow-through of resources, such as water in arid ecosystems, that is concentrated by an ecosystem engineer. (B and D) Density-dependent 
aggregation (DDA) explains irregular patterns observed in ecosystems with a mobile abiotic or biotic species that is either in a highly mobile state (V ) or in a 
less mobile state (U), depending on the density of a sessile species. In this model, fluxes (arrows A and B) represent the mobilization and demobilization of the 
conserved species. For the ecosystems discussed in the main text, Table 2 lists the meaning of variables U and V , fluxes A and B, and the way feedbacks 1 and 
2 can be established.
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with seagrass density creating a local positive feedback loop. 
Besides demobilization of resources through uptake, resources 
can be demobilized in other ways. For example, phosphorous-
limited Siberian peatlands exhibit patterning (Fig.  1E) which 
is linked to the vascular plants that draw down the water table 
through evapotranspiration during the growth season, preventing 
phosphorous to leave the ridges dominated by dwarf shrubs, beech, 
and pine trees (34, 71, 72). Hence, phase separation could provide 
a viable alternative explanation for pattern formation in peat lands.

Results

A Generic Conceptual Framework. The ecosystems described 
above have in common that their patchiness is caused by an 
ecosystem component, either a resource or a consumer, whose 
mobility is determined by a sessile species. In these ecosystems, the 
dynamics of the mobile species can be described as being either in 
a highly mobile state V  (e.g., aeolian sand, foraging herbivores, and 
dissolved resources) or in a less mobile state U  such as deposited 
sand, grazing herbivores, and absorbed resources, with the sessile 
species controlling the fluxes between these two states (Fig. 2B). 
The sessile species can be modeled explicitly as U in case of a 
plant consuming a mobile nutrient, or implicitly in case of an arid 
shrub immobilizing sand, transferring from loose aeolian sand V 
to immobilized, fixed sand U under its roots.

The reversibility of the resource and consumer states is a crucial 
element of the model framework. This can be captured by a system 
of reaction-diffusion equations:

	 [1a]

 

	 [1b]

where U (X ,T ) and V (X ,T ) represent the mobile species in its 
less mobile and its highly mobile form, respectively, T  represents 
time, and X  and Y  represent space. These equations describe the 
conversion of mobile species U  into sedentary species V  and vice 
versa through reaction terms F (U , V ) and G(U , V ), as well as 
the lateral movement through diffusion. Since the mobile species 
(herbivores, sand, or resources) is not locally produced, nor 
destroyed and because it is assumed to reside either in the form 
of U  or V , we write

	 [2]

where C  is a positive constant converting U  into V , in real-world 
terms for instance the incorporation of nutrients into biomass. 
Substituting and scaling gives (see SI Appendix, Texts S1, S2, 
and S5 for details)

	 [3a]

 

	 [3b]

with � representing the ratio between the rate of diffusion of 
V  and U , and hence, δ < 1 is required for spatial patterns to 
develop. In this paper, we adopt f (u, v) equals uv − �u

u+�
 as a 

dimensionless generic model (see Materials and Methods). As Eq. 3 
might prove abstract and unspecific, we provide an example model 
of a nutrient-poor ecosystem in Table 2. It is worth noting that 
Eq. 3 does not follow Turing’s mechanism for pattern formation 
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Table 1. Three categories of ecosystems where density-dependent aggregation of a conserved biotic or abiotic 
species can trigger the formation of spatial patterns
Ecosystem Variables Fluxes Feedbacks
Grazing systems V : Foraging herbivores

U: Grazing herbivores
A: Herbivores switch to 

foraging
B: Herbivores switch to 

grazing

1: 
Grazing herbivores reduce plant biomass. Less 

attractive high biomass causes herbivores to stop 
grazing and start foraging.

2: 
Grazing herbivores reduce plant biomass. More 

attractive low biomass causes herbivores to stop 
foraging and start grazing.

Biogeomorphic 
systems

V : Aeolian/suspended sand
U: Deposited sand

A: Erosion
B: Deposition 1: 

Elevated areas enhance productivity. Plants reduce 
erosion.

2: 
Elevated areas enhance productivity. Plants enhance 

deposition.
Oligotrophic 

ecosystems
V : Dissolved resource
U: Sessile species

A: Release of resource 
through mortality

B: Uptake, trapping, 
and demobilization 

of resource

1: U
−

→A

Reduced release of resource with increasing biomass 
of sessile species.

2: U
+

→B

Enhanced uptake, trapping, and demobilization of 
resource with increasing biomass of sessile species.

Variables, fluxes, and feedbacks refer to Fig. 2B. Variables U and V  represent the less mobile and highly mobile state of the conserved species. A and B are the fluxes between U and V . 
Feedbacks 1 and/or 2 depicted in Fig. 2B are established through the interaction between U and a sessile species, as depicted in the right-hand column. In nutrient-poor ecosystems, U
represents the ecosystem engineer, and the feedbacks result from facilitation (decreased mortality). Examples of the listed feedbacks are discussed in the main text.

http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
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because its dynamics effectively follow a spinodal phase separation 
(73, 74), as we discuss later.

The densities of u and v can vary in space and in time; however, 
the total amount of the mobile species within the modeled domain 
remains constant in the absence of external sources. The conserved, 
spatially averaged density of the mobile species (u + v) will be 
referred to as the global density ⟨�⟩ :

	 [4]

where ⟨ ∗ ⟩ takes the spatial average (SI Appendix).
Reaction term f (u, v) includes both fluxes from v to u (demobi-

lization, for instance deposition) and fluxes from u to v (mobilization, 
for instance erosion), as depicted with arrows A and B, respectively, 
in Fig. 2B. In SI Appendix, Figs. S1–S3, we derive that for pattern 
formation to occur, u needs to reduce mobilization of u into v (dashed 
thin arrow 1 of Fig. 2B), and/or enhance demobilization of v into u 
(dashed thin arrow 2 of Fig. 2B), amplifying its own local density. 
Such feedbacks can emerge directly, for instance when a mobile 
nutrient is incorporated in plant tissue, or through interactions with 
a sessile engineering species with slower dynamics, for instance when 
aeolian sand is fixed by dune or desert vegetation, as discussed in the 
previous sections and given schematically in Table 1.

When in a patchy state, the net diffusion of u and v occurs in 
opposite directions, as illustrated by the horizontal arrows of Fig. 2B. 
For the equilibrium states of Eq. 3, it is possible to derive the con-
ditions of spatial mass redistribution as defined by the diffusion 
ratio (diffusion of u to diffusion of v, as shown in, SI Appendix, 
Fig. S7), as a function of u. Fig. 2D shows that the net diffusion can 
be negative for sufficiently high local densities of u, leading to aggre-
gation and subsequently an increase in u. Hence, in Eq. 3, densi-
ty-dependent aggregation drives pattern formation and dynamics 
by determining the spatial fluxes of u and v between neighboring 
low-density and high-density domains (74).

Phase Separation and Ostwald Ripening. A number of 
fundamental differences exist between pattern formation arising 
from scale-dependent feedback (e.g., Eqs. 8 and 9 in Methods) and 
density-dependent aggregation (Eq.  3). When scale-dependent 
feedbacks describe biological or physical processes with clearly 
defined spatial scales, they generate a stable periodic pattern that 
peaks at regular intervals (Fig. 3A). Patterns caused by density-
dependent aggregation are defined by two states, or “phases,” 
coexisting in space and separated by a transition or interface. 
This interface between the lower and higher plateau is mobile, 
and consequently patches in systems with density-dependent 
aggregation mechanism remain dynamic. As a result, density-

⟨�⟩ = ⟨u + v⟩ = v + �u,

Table 2. Example model that follows generalized Eq. 3
Mathematical equation Parameter
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�x2
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)
c1 : Plant uptake coefficient

c2, c3 : Plant mortality constants
c4 : Nutrient to biomass ratio
Di : Diffusion constant of P or N

The model represents a plant P that consumes a very mobile nutrient N that is conserved at large spatial scales in the ecosystem. Plant growth here is determined by its consumption of 
nutrient and described as c

1
NP. Plant mortality decreases with plant biomass due to a self-facilitation process and is described by c

2
P ∕ (c

3
+ P). Nutrients are removed from the nutrient 

pool by plant uptake and is replenished by plant mortality. The ratio of nutrient to biomass in plant tissue is given by c
4
.

Scale-dependent feedbacks Density-dependent aggregation

t=100 t=2500 t=100 t=2500

50
0

A B

C D

E F

Fig. 3. Differences in properties and dynamics of 
patterns in models with scale-dependent feedbacks 
(SDFs for short) and density-dependent aggregation 
(DDA for short). (A, C, and E) Scale-dependent 
feedbacks result in periodic (regular) patterns that 
have a characteristic wavelength (A) and are stable 
over time (C and Movie S1 for its spatiotemporal 
dynamics). This results in a patch-size distribution 
that is centered around a characteristic patch 
size (E). (B, D, and F) Patterns resulting from 
DDA, in contrast, are irregular and consist of 
alternate phases coexisting in space (B) and are 
continuously coarsening over time (D and Movie S2 
for its spatiotemporal dynamics). The coarsening 
dynamics result in a patch-size distribution that 
is continuously shifting in the direction of larger 
patches (F). Different patches survival curves at 
different times overlap perfectly when adjusted to 
the mean scale of the patches (Inset). Accordingly, 
the scaled patch-size distribution can be considered 
an emergent property of underlying phase-
separation process. Patch sizes were obtained as 
described methods in SI Appendix, Text S8.

http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
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dependent aggregation is characterized by patterns defined by 
a range of spatial scales (but not scale-free), following a log-
normal distribution. Hence, density-dependent aggregation 
is characterized by spatial patterns consisting of coexisting 
phases (resembling alternative stable states), as shown in the 
model simulation of Fig. 3 C and D. In physics, the emergence 
of such alternating phases out of uniformity is referred to as 
phase separation (75, 76). Phase separation finds its origin in 
the unmoving of two immiscible fluids like oil and water as put 
forward by Cahn and Hilliard (75, 76), but has also been identified 
as a mechanism behind cell polarization (51, 77–79) and has been 
suggested to be the principle mechanism behind the aggregation 
of animals (24, 42, 80–82) in recent years.

Non-regular and scale-free patterns have been put forward by 
a wide range of modeling approaches (see refs. 6, 7, 27, 83, 
and 84 for examples). Yet, the density-dependent aggregation 
mechanism has further properties separating it from scale-depend-
ent feedback, especially when scale-dependent feedbacks are lim-
ited to realistic spatial scales. The lack of a characteristic patch size 
leads to a pattern that is not only irregular [it may self-organize 
into a disordered hyperuniform state (85, 86)], but that also 
becomes coarser as time progresses, even though the fractional 
cover remains constant. This resembles a phenomenon known in 
physics as Ostwald ripening (43, 87, 88), which describes how 
small particles dissolve and contribute to the growth of larger 
particles. Similarly, in the density-dependent aggregation model, 
the mean patch size (radius) becomes larger over time, while the 
patch-size distribution remains the same. In fact, patch-size dis-
tributions at different moments in time collapse to the same 

distribution when the patch radius is scaled by dividing by the 
mean patch size, which is in line with Ostwald ripening theory. 
Phase-separation theory furthermore puts forward that the average 
wavelength of the patterns is expected to increase following a 
coarsening power law, as is predicted by the Cahn–Hilliard model 
(89), and observed in ecosystems (24), and sorted patterned 
ground (90). To the contrary, the wavelength of the patterns pre-
dicted by scale-dependent feedback models is typically centered 
around a constant value, although a multitude of wavelengths can 
develop under different conditions (11, 91, 92).

Resilience to Local Disturbances. A crucial characteristic of the 
patchiness created by density-dependent aggregation is that a local 
disturbance beyond a critical threshold (open circle in Fig. 2D, 
and dashed line Fig. 3B), can tip a patch from a state of expansion 
with persisting aggregation to a state of decline where the patch 
is being dispersed. As a consequence, this patch will disappear 
even when the disturbance has passed. Moreover, besides the 
bistability within patches, dynamics between patches can further 
amplify local disturbances. Fig. 4 shows that, in the absence of 
disturbances, larger patches tend to grow (green region of Fig. 4A) 
at the expense of smaller patches that tend to shrink (red region). 
If a growing patch is reduced in size due to some local disturbance, 
pushing it below a critical size threshold (the boundary of the 
red and green areas in Fig. 4A), it will start to shrink, eventually 
leading to the complete loss of the patch (Fig. 4C). Hence, the 
resilience of aggregation patterns to local disturbances is low 
due to a combination of bistability of patches and between-
patch competition. Yet, the model highlights that due to a water 
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Fig. 4. Dynamics of individual patches and ecological resilience to local disturbances. (A) The slow coarsening dynamics in aggregation patterns cause big patches 
to grow (green region) and small patches shrink over time (red region). (B) A comparison between the pattern at t = 2, 000 and t = 2, 500 shows the growth 
of large patches (green) and the shrinkage/disappearance of small patches (red). (C and D) Statistical properties of patch growth rate as a function of patch size, 
for the density-dependent aggregation and the scale-dependent feedbacks models. The reduced growth of small patches in C versus D implies that patches in 
systems with density-dependent aggregation may collapse once perturbed below a threshold level (the gray line), while this is not the case in models with scale-
dependent feedback. Consequently, systems with density-dependent aggregation have a lower patch-scale resilience than those with scale-dependent feedback.
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bed-like effect, patches will expand on other locations as they 
absorb the mobilized substances (resources or species). Therefore, 
resilience to  local disturbances is much higher on system-wide 
scale (cf. Fig. 4 C and D).

Similar to what is observed in systems with scale-dependent feed-
back (5, 11, 15, 93), gradual changes in environmental conditions 
can trigger rapid and hard to reverse shifts in ecosystems governed 
by density-dependent aggregation. Such gradual changes can for 
example be caused by the inflow or outflow of resources from else-
where or the migration or hunting of herbivores, expressed in our 
model as changes in the global density of the aggregating species or 
substance (⟨�⟩ ≡ ⟨u + v⟩). Both global density τ and diffusive ratio 
δ are essential degrees of freedom because they are the only control 
variables that dynamically affect the emergent properties of ecosys-
tems (Fig. 5A). We present the bifurcation diagram of Eq. 3 showing 
how the phase-separation patterns and their stability properties are 
affected by the global density � by means of a combination of the-
oretical analysis (SI Appendix, Texts S4 and S6) and numerical sim-
ulation, as shown in Movies S3.

Fig. 5A shows that, depending on the global density ⟨�⟩, the 
model resides in either a patchy state or in a uniform state. The 
region in parameter space in which only a patchy state is stable is 
referred to as the spinodal region in physics. Here patches form 
out of small inhomogeneities in a uniform ecosystem state, a pro-
cess known as spinodal decomposition (76), similar to diffusive 
instability in the context of reaction-diffusion models (15). 

Gradual changes, corresponding to pattern formation at the bor-
der of the spinodal region, lead to large-scale patterns, whereas 
more rapid changes, that allow patterns to form in the center of 
the spinodal region, lead to smaller-scale patterns. The spinodal 
region shares its border with a region referred to as the binodal 
region where, instead of through infinitesimal inhomogeneities 
of a uniform state, patches form through nucleation. Here, pattern 
formation requires nucleation sites, that is, large preexisting local 
inhomogeneities. It can be shown for Eq. 3 that a binodal region 
always exists on both sides of the spinodal region (SI Appendix, 
Texts S4 and S6), meaning a transition to a patchy state can be 
triggered by the introduction of nucleation sites (for instance, local 
restoration measures) under conditions where patches cannot 
establish by themselves. Due to the existence of both a patchy and 
a uniform ecosystem state (bistability) in the binodal region, both 
pattern formation and the loss of patterns are characterized by 
abrupt shifts and hysteresis associated with ecosystem degradation. 
This behavior is similar to what is observed in systems with 
scale-dependent feedback. 

Discussion

Self-organized patterns have been proposed as a key indicator for 
imminent catastrophic shifts in ecosystems, as well as an adapta-
tion of ecosystems evading dramatic changes, acting as a hallmark 
of ecological resilience (1, 8, 11, 27, 83, 97, 98). Thus far, this 

A

C

B

Fig. 5. Physics-based indicators for ecosystem degradation: patch-size distributions, cover, and local densities. (A) Spinodal and binodal curves separate regions 
in the two-parameter space, 1) where patterns form through growth of small inhomogeneities (spinodal decomposition; spinodal region), 2) where patterns can 
only form out of large inhomogeneities (“nucleation sites”; binodal region), and 3) where patterns cannot form. Movie S3 shows the spatial dynamics behavior of 
the phase-separation patterns within the spinodal regions. (B) Patchy ecosystems respond to changes in global densities by adapting their cover, following the 
linear relationship of Eq. 6 (blue line), without changing local densities. Shifts from patchy to uniform states occur at ⟨�⟩ = �̃+ = ũ+ + ṽ+ and ⟨�⟩ = �̃

0
≡ ũ

0
+ ṽ

0
, 

and shifts from uniform to patchy states occur through diffusive instabilities of the uniform states at ⟨�⟩ = �
D
 and ⟨�⟩ = �

T
, see SI Appendix, Texts S4 and S6 for 

a derivation of these tipping points. (C) As environmental conditions become harsher, here expressed as the global density ⟨�⟩ of the conserved species (the 
spatial average of u + v), patch-size distributions change from Right skewed (log-normal) to Left skewed and approach a theoretical probability density function 
derived by Lifshitz–Slyozov–Wagner (LSW). Here parameter ⟨�⟩ is 3.5, 5.0, and 7.5 for cases from Left to Right, respectively.

http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
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concept has mainly been applied to systems with regular pattern-
ing, where pattern formation is driven by scale-dependent feed-
back processes that follow Turing’s activator–inhibitor principle 
(16, 53, 93). The specificity of this mechanism limits the wide 
application of spatial patterns as an ecological indicator system. 
Here, we identify a different process for self-organized patterning 
that is akin to the physical process of phase separation (73, 76, 
89). This type of self-organization applies well to ecosystems where 
pattern formation is determined by more or less fixed amounts of 
biotic or abiotic agents such as nutrients, sediment, or consumers 
which become aggregated in patches, determining patch cover 
(53). Exchanges of these abiotic or biotic resources among the 
patches can result in apparent, asymmetric competition between 

neighboring patches (74). This results in a patch coarsening pro-
cess, where larger patches absorb more and more resources, while 
smaller patches wither away (Figs. 3 and 4). Such coarsening 
dynamics are a defining characteristic for phase-separating dynam-
ics in ecosystems (24, 42, 80, 90).

Density-dependent aggregation and the resulting dynamics have 
crucial implications for the resilience as well as the management of 
patterned ecosystems. While systems with regular patterns driven 
by scale-dependent feedback are highly resilient in returning to a 
patterned state while perturbed (10–12), perturbations have very 
different effects in ecosystems with phase-separation dynamics 
(cf. Fig. 4 C and D). Any localized perturbation is likely to amplify 
the competitive interactions between patches and may lead to local 

Box 1.  A Physics-Derived Indicator Framework

An important asset of self-organized patterns is their ability to help forecast the possibility of critical transitions to 
homogeneous states, events that can be difficult to reverse. Physics theory provides indicators for the degradation of 
patchy ecosystems described by Eq. 3. Local densities of the mobile species, cover, and patch-size (in area) distributions 
can be used to estimate the proximity of patchy ecosystems to tipping points toward a degraded uniform state, as described 
below (SI Appendix, S6.2).

Given that the coarsening dynamics are slow, the local densities (ũ+, ṽ+) and (ũ0, ṽ0) (Fig.  3B) can be determined 
through a so-called Maxwell construction [i.e., a flux-balance construction or moving local equilibria (73, 77), see also 
SI Appendix, S6.2]. In the patchy state of the model, the local densities of the mobile species are independent of the global 
density (SI Appendix, Text S4), meaning that they will not change as the system approaches a tipping point. However, local 
densities still provide information about the proximity of a tipping point, as the global and local densities are related as 
follows:

	
[5a]

 

	

[5b]

where ⟨ ∗ ⟩ takes the spatial average and c represents the fractional cover of the + state. Rewriting the above relationship gives:

	
[6]

which is referred to as the lever rule in physics textbooks (94). From Eq. 6, we can conclude that a cover of 100% is attained 
at ⟨�⟩ = �

+
 and that the cover reaches 0% at ⟨�⟩ = �0. This means that measurements of local densities can be used to determine 

the global densities at which the system will shift to a uniform state (i.e., where the cover reaches 0% or 100%). Furthermore, 
Eq. 6 suggests a linear relationship between global density and cover, meaning that changes in cover and the spatial patch-size 
distribution will signal changes in the global densities (Fig. 5 B and C).

Although patches are continuously growing and shrinking (Fig. 4), a quasi-equilibrium patch-size distribution is reached 
during the coursing process, in the sense of a distribution where patch size is rescaled by the mean patch size (Fig. 3 E and F). 
Based on the Cahn–Hilliard equation (76), Lifshitz and Slyozov (89) and Wagner (87) have derived an equilibrium probability 
density function for droplets of instance water that exhibit Ostwald ripening and that is approached as the volume fraction of 
the droplets approaches zero (87, 88, 95, 96):

	
[7]

Here g (r ; �) is the probability density, r is the droplet radius, and � is the mean droplet radius in the original seminal 
discovery. Fig. 5C shows that, as the cover decreases toward 0% (Right to Left), the modeled patch-size distributions approach 
the same distribution function as derived by Lifshitz and Slyozov (89) and Wagner (87), with a skewness of approximately 
−0.92. For density-dependent aggregation, a decrease in skewness of the patch-size distribution therefore signals a tipping point 
toward a bare state. Conversely, positive skewness in the log-normal distribution implies that a tipping point is not close, and 
hence, the system is quite resilient (green lines in Fig. 5C).

⟨u+v⟩≈ c
�
ũ++ ṽ+

�
+ (1− c)(ũ0+ ṽ0),

⟨�⟩ ≈ c �̃+ + (1 − c)�̃0,

c(⟨�⟩) ≈
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http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2202683120#supplementary-materials
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collapse of patches in the landscape. Yet, the resources contained in 
this patch will redistribute over the landscape, increasing patch 
growth elsewhere, creating a water bed effect. For example, sedi-
ments lost from degrading seagrass patches may end up in other 
seagrass patches, facilitating growth in these locations. Hence, phase 
separation will strongly decrease local resilience, hampering any 
restoration efforts, but maintaining ecosystem resilience at larger 
spatial and temporal scales. If human restoration efforts focus on 
on-the-spot restoration, for instance in very small reserves, 
phase-separation dynamics might limit recovery of localized patches 
of a mobile species. If restoration efforts involve large, landscape 
scales, phase-separation dynamics are beneficial, as local collapse 
will stimulate recovery elsewhere in the landscape. Hence, popula-
tions or ecosystems governed by phase-separation dynamics need 
to be managed in a fundamentally different way, focusing on land-
scape-wide, ecosystem-based management, rather than on localized 
efforts to compensate for human-induced disturbances.

Human-induced global changes push ecosystems worldwide 
toward and over their limits (99, 100). Therefore, there is a grow-
ing need for indicators to assess the resilience of ecosystems against 
external changes and disturbances. So far, existing studies have 
pointed out that self-organized patterns can serve as excellent hall-
mark of ecological resilience (1, 4, 6, 27, 101). However, these 
patterns are based on the well-defined Turing-like patterns. Hence, 
the patterns are stationary in time. In contrast, here we have intro-
duced a physics-based indicator framework to determine the resil-
ience of another important subset of self-organized patchy 
ecosystems, including grazing systems, biogeomorphic systems, 
and nutrient-poor ecosystems. Our new generic framework also 
displays spatial self-organized patterns, but the patterns display 
coarsening behavior where patch size increases over time, which 
results in a more patchy pattern with less regularity, comparable 
to so-called coexistence patterns (11, 91, 92) or disturbance-driven 
patterns (23). However, individual aggregation patches display 
either shrinkage or growth depending on their size relative to the 
critical patch size (Fig. 4), as well as a relatively constant patch 
cover, a dynamic not previously been found in self-organized eco-
systems. We emphasize again that the basic mechanism for pat-
terning presented here does not depend on the specific feedbacks 
chosen for f (u, v) in Eq. 3 (i.e., different from the well-studied 
scale-dependent feedback mechanism). They have the common 
property that they lead to aggregation of a conserved, mobile 
substance or species into a patchy, less mobile state.

Our study here provides a generic theoretical framework for 
ecological systems that approximate mass conservation (42, 73). 
This generic theory provides an explanation for observations in 
some grazing systems that are not well understood. For example, 
Berg et al. (26) showed that for a constant herbivore density, 
the fractional cover of less digestible tall salt-marsh vegetation 
remains the same (47%), but that the pattern becomes coarser 
over time. Kéfi et al. (27) showed that patch-size distributions 
in Mediterranean rangelands start to deviate from a right-tailed 
distribution [power-law or log-normal distributions; (28, 102)] 
as grazing pressure increases, as predicted by our model. 
Similarly, Xu et al. (103) observed a decrease in the skewness 
of patch sizes in a global dataset of irregularly patterned arid 
rangelands as cover decreases, in line with our theoretical find-
ings. Our theory generalizes these observations from grazing 
systems, meaning that similar trends are expected to be found 
in nutrient-poor systems and biogeomorphic systems with a 
limiting nutrient or substrate, respectively, that is contained in 
the landscape.

Scale-dependent feedback and density-dependent aggregation 
processes are not mutually exclusive in causing pattern formation 

in ecosystems, as both types of processes can interact to sculpt the 
spatial distribution of species (33, 104). For instance, in desert 
plants (bromeliad Tillandsia landbeckii) surviving on advective 
fluxes of humidity (fog) form banded patterns through interception 
of fog-water, creating a scale-dependent feedback. In turn, vegeta-
tion aggregates aeolian sand to create nebkha-like landscapes, which 
follow the density-dependent aggregation principle (33, 104). 
Similarly, in mussel beds, large-scale patterns form through densi-
ty-dependent feedback due to the interplay of facilitation and com-
petition between mussels (10, 17, 105), while aggregative movement 
within mussels generates pattern formation at small spatial scales 
(<1 m) nested within the large-scale patterns (42, 56). Model anal-
ysis highlighted that the nested patterns have a strong positive effect 
on the resilience of the mussel beds. A third example is the formation 
of bacterial colony patterns in a particular strain of Bacillus subtilis 
(106, 107), where several mechanisms determining movement 
interact at the same time. Finally, physical and geological processes 
can impose patterns and other forms of heterogeneity upon ecosys-
tems, for instance in the form of stone aggregation driven by frost 
upheaval in arctic ecosystems (90). Large-scale landscape heteroge-
neity, for instance in the slope along hillsides, can generate a mul-
titude of pattern wavelengths to occur close to each other. Moreover, 
recently insights into multistability of patterns (3) in ecosystems 
with scale-dependent feedback highlight that a multitude of stable, 
alternate pattern wavelengths is possible even without landscape 
variability. Hence, the interplay of biological and physical/geological 
processes would create landscapes that exhibit a variety of patterns 
with different lengths and shapes. In many real-world ecosystems, 
multiple pattern-forming processes interact to determine ecosystem 
shape and functioning.

Non-regular, patchy patterns have been observed in a wide 
range of systems. Many of them are caused by processes different 
from aggregation of substances or species and have been described 
by models that follow different principles (28, 108) than the one 
proposed in this paper. Small-scale, self-propelling disturbances 
can generate large-scale, scale-free patterns in forest prone to fire 
(23, 84), or mussel beds on rocky shores (109), a pattern-forming 
process that is referred to as self-organized criticality in the liter-
ature (109). Scale-free patterns also have been predicted to occur 
in relation to intense grazing (27), or fast water redistribution in 
arid ecosystems (7). So-called coexistence patterns may develop 
without mass conservation in systems where strong local positive 
feedbacks create two-phase patchiness resulting from bistability 
(11, 91). The current study provides a number of handles to dis-
tinguish the above patterns from patterns caused by density-de-
pendent aggregation. First, patch-size distributions caused by 
density-dependent aggregation are not scale-free but follow a 
log-normal distribution. Second, the patterns caused by densi-
ty-dependent aggregation are predicted to coarsen in time and 
hence do not form a stationary patch distribution. This feature 
separates them from scale-dependent and coexistence patterns. 
Yet, coarsening might be difficult to observe in real-world systems, 
as the coarsening process slows down as time progresses, and more-
over, coarsening can cease due to decreased mobility of the organ-
isms, as was observed for instance in mussels (42). Moreover, 
coarsening can be caused by various physical processes, as described 
in this paper and in other studies, and hence additional observa-
tions or experiments are needed to further solidify potential under-
lying processes. Identifying pattern-forming processes based on 
the dynamic properties of spatial patterning will provide an inter-
esting but challenging avenue of research for future studies of 
pattern formation in ecology and beyond.

In this paper, we have extended the use of phase separation as 
a pattern-generating process from single-species examples [e.g., 
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aggregation of mussels or ungulate herbivores (42, 80)] to univer-
sal two-species ecosystems, potentially expanding the applicability 
of phase separation within ecology. Our study demonstrates that 
within-patch bistability (e.g., patch collapse following a distur-
bance), between-patch competition, and hysteresis cause intrinsic 
vulnerability of patchy ecosystems governed by density-dependent 
aggregation. We have derived the feedbacks required for densi-
ty-dependent aggregation and highlighted ecosystems with aggre-
gation patterns, which could help identify these vulnerable 
ecosystems (Fig. 4 C and D). Statistics on size and spacing of 
patches could provide additional ways to distinguish between 
aggregation patterns and other types of patterns (11, 28, 108), 
even without knowledge of the exact pattern-forming processes. 
One of the most significant features of phase-separation patterns 
is the continuing coarsening, which distinguished this class of 
patterns from other forms of spatial topography, such as hetero-
geneities of the soil. Density-dependent aggregation generates a 
diversity of patterns because of the coarsening behavior. Those 
patterns share properties similar to at least a subset of coexistence 
patterns (11), but differ substantially in their dynamics. Whether 
and how these patterns are different and how they are mechanis-
tically linked remains an outstanding question for future research. 
For instance, theory on Ostwald ripening (88, 110) and hyper-
uniformity (85, 86, 111) could guide such disordered-like statistics 
in future studies on the diversity of self-organized patterns.

To summarize, our study contributes to a more complete indi-
cator framework based on self-organized patchiness in ecology, 
providing a thorough understanding of irregularly patterned eco-
systems that lack both scale-dependent feedbacks associated with 
spatially periodic Turing patterns (5, 16, 93) and self-propelling 
localized disturbances associated with scale-free patterns that typ-
ify self-organized criticality (112). Our extension of the theoretical 
framework of spatial indicators for tipping points in ecology can 
be used to provide tools for researchers and managers monitoring 
ecosystem degradation (61, 97).

Materials and Methods

Mathematical Analysis of Eq. 3. The steady states of Eq. 3 comprise spatially 
uniform states and patterned states. The uniform steady states are given by com-
binations of u and v which satisfy f (

−

u,
−

v ) = 0 and u + v = ⟨�⟩, where 
−

u and 
−

v  denote the steady states. Patterns form through diffusive instabilities of the 
uniform state at ⟨�⟩ = �D, which corresponds to

We provide a detailed linear stability analysis of Eq. 3 on the patterned for-
mation in SI Appendix, Texts S1–S3.

Numerical Analysis. Most of the results presented in this paper are based on 
mathematical analysis of the generic model 3 (Eq. 3). For the analysis of the patch 
dynamics and patch statistics, we numerically solved a model with the specified 
reaction term f (u, v):

The model was compared with a scale-dependent feedback model, similar to 
the model (5, 17)

� [8]

	

[9]

Model Implementation. The models were implemented by discretizing 
t , x, and y. The dimensionless time t  ran from 0 to 2,500, with a timestep 
of Δt = 0.005. Dimensionless space was implemented on a grid of 
1, 024 × 1, 024, representing a domain of 100 × 100.

The models were solved in MATLAB R2019B and PyOpenCL using finite dif-
ference methods. All codes to produce the figures are available in the repository 
GitHub https://github.com/liuqx315/PS-Resilience-in-Ecosystems (113). The rates 
of change in u and v were calculated from forward differences, and the diffusion 
rates of u and v were calculated using the second-order central differences. The 
grids were loaded on a graphics processing unit (Nvidia Quadro K6000) to accel-
erate the computations.

Periodic boundaries were used to minimize boundary effects. The uniform 
steady state was used as initial condition for u and v for all model runs. To trigger 
pattern formation, a small amount of additive, spatially uncorrelated, normally 
distributed noise with a standard deviation of � = 10−4 was added to both u 
and v at t = 0.

The following parameter values were used for the model runs: � = 4, 
� = 1, and � = 1∕16 for the density-dependent aggregation model (Eq. 3) 
with function f (u, v), but � = 1, � ∈ [2.1, 3.5], and � = 0.01 for the scale-de-
pendent feedback model (Eqs. 8 and 9). The global density of the mobile species 
was set to ⟨�⟩ = 3, except for the model runs of Fig. 5 C and D.

Patch-Size Distributions. The sizes of the patches in the model were determined 
using u at t = 250. A gridcell was said to be in a patch if u > ũ−, yielding a 
binary matrix. The areas of patches were determined by counting the number of 
connected grid cells and multiplying by the area of a single grid cell Δx × Δy, 
where connected grid cells share a Von Neumann neighborhood, while acknowl-
edging the periodic boundaries.

From the patch areas ai, a patch radius ri was estimated to enable compar-
ison with theoretical predictions: ri =

√
ai ∕2�. Notice that, although this 

conversion only makes sense for circular patches, it does not affect the fit of the 
log-normal distribution, which best described the patch-size distributions for the 
high global densities at which non-circular patches were found. This is because if 
a is log-normally distributed (as suggested by theory and empirical studies), then √
a is too, since ln

√
a = 1∕2 lna. In Figs. 3F (Inset) and Fig. 5C, the patch sizes 

were scaled by dividing by the mean of the estimated patch radius.
Two probability density functions were fitted to the obtained patch-size distri-

butions. The first is the log-normal distribution:

The model was parametrized using the maximum likelihood estimates:

	
[10]

	

[11]

The second model is a distribution that follows from Lifshitz–Slyozov–Wagner 
(LSW) theory for Ostwald ripening (87–89, 110):

	
[12]

for 0 < r < 3∕2𝜇 and g(r;�) = 0 for r ≥ 3∕2�, with � being the 
mean patch radius. Following Tiryakioglu et al. (110), this model was parametrized 
using the maximum likelihood estimate of �, rather than the sample mean. The 
maximum likelihood estimates of � are given by the solution of:

	 [13]
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As the global density ⟨�⟩ decreases, the modeled patch-size distributions 
become left skewed (negative skewness, see Fig. 5C). The log-normal distribution 
always has a positive skewness:

and is not able to reproduce the change in skewness. The LSW distribution 
on the other hand has a constant negative skewness, Γ = − 0.92002, which 
approximates the simulated skewness at low global densities.

Both models were further compared by calculating weighted AIC values (wAIC), 
following Wagenmaker and Farrell (114). The wAIC can be interpreted as the 
probability that a distribution function is the best model, given the data and the 
set of candidate models.

Data, Materials, and Software Availability. All codes to produce the fig-
ures are available in the repository GitHub https://github.com/liuqx315/
PS-Resilience-in-Ecosystems. All study data are included in the article and/
or SI Appendix.
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