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Abstract: The paper aims at the preparation of chitosan self-healing hydrogels, designed as carriers
for local drug delivery by parenteral administration. To this aim, 30 hydrogels were prepared using
chitosan and pyridoxal 5-phosphate (P5P), the active form of vitamin B6 as precursors, by varying
the ratio of glucosamine units and aldehyde on the one hand and the water content on the other
hand. The driving forces of hydrogelation were investigated by nuclear magnetic resonance (NMR),
Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, and polarized light microscopy
(POM) measurements. NMR technique was also used to investigate the stability of hydrogels over
time, and their morphological particularities were assessed by scanning electron microscopy (SEM).
Degradability of the hydrogels was studied in media of four different pH, and preliminary self-
healing ability was visually established by injection through a syringe needle. In-depth rheological
investigation was conducted in order to monitor the storage and loss moduli, linear viscoelastic
regime, and structural recovery capacity. It was concluded that chitosan crosslinking with pyridoxal
5-phosphate is a suitable route to reach self-healing hydrogels with a good balance of mechanical
properties/structural recovery, good stability over time, and degradability controlled by pH.

Keywords: chitosan; pyridoxal 5-phosphate; hydrogels; self-healing; rheology

1. Introduction

Hydrogels are three-dimensional polymeric networks with high water content, which
found a great variety of applications in biomedicine, agriculture, or environmental protec-
tion. Recent studies revealed self-healing (SH) hydrogels as a new type of soft matter with
a unique ability to recover the structure and function after applying an external stimulus,
such as an injection through a needle [1]. Thus, the SH hydrogels are valuable materials,
which offer the advantage of simple administration by injection at a certain site of the body,
to fill a cavity with an irregular shape or to form a coating on a surface in tissue engineering
or wound healing. Moreover, by loading with bioactive compounds, they transform into
excellent vehicles for drug delivery systems to be applied for local action, in tumors or
on wounds [2,3]. Many efforts were directed toward the development of SH hydrogels.
Rationally speaking, the SH hydrogels can be prepared via non-covalent or reversible
covalent bonds that break under external stress and reform when the stress is removed.
Thus, the SH mechanism is grounded on the dynamic equilibrium between dissociation
and recombination of various interactions, which allows the hydrogel to heal damages and
reform shapes. Studies on SH hydrogels demonstrated that while physical interactions lead
to a fragile and rapid dynamic equilibrium, the dynamic covalent bonds lead to a stable
and slow one [4]. Common reversible dynamic bonds used for building SH hydrogels
include imine, boronate, oxime, disulfide, and acylhydrazone bonds, or Diels–Alder reac-
tions, whereas non-covalent interaction includes hydrogen bonds, or ionic, host–guest, and
hydrophobic interactions [5]. SH hydrogels are often prepared using synthetic polymers
such as polyvinyl alcohol, poly(ethylene oxide), poly(N-isopropylacrylamide), polyacrylic
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acid, polystearyl methacrylate, poly (N,N-dimethylacrylamide) or polyoxyethylene acry-
late, which present the main disadvantage of being non-biodegradable, limiting thus the
in vivo application [1,3,5]. To overcome this drawback, natural originating polymers are
desirable alternatives, chitosan being a promising one [6]. Chitosan is a natural originating
polymer with good biocompatibility and biodegradability, which is already broadly used
in pharmaceutical and medical fields [7]. From the chemical point of view, chitosan is a
polyamine, and its main reaction path is the formation of imine bonds, which are well-
recognized reversible bonds with great reaction speed under mild conditions [8–10]. The
literature survey reveals chitosan self-healing hydrogels prepared via imine bonds with
a large variety of crosslinkers: glyoxal [11], glutaraldehyde [12], polyethylene glycol [13],
Pluronic-F127 [14], sodium alginate [15], konjac glucomannan [16], and xanthan gum [17].
Nevertheless, the glyoxal and glutaraldehyde were demonstrated as being toxic (mutagenic
and neurotoxic) [18,19], while the synthetic polymer crosslinkers are non-biodegradable.

Our studies in the field of chitosan hydrogels demonstrated a new crosslinking route
of chitosan with monoaldehydes, based on the formation of imine units and self-assembling
into clusters with the role of crosslinking nodes [20–26]. The method is promising, giving
access to a large variety of multifunctional hydrogels, whose properties can be tuned
by a proper choice of the monoaldehyde crosslinker. Moreover, the aldehydes exist in a
large variety in nature, having a high potential to be biocompatible. Such an aldehyde
is pyridoxal 5-phosphate (P5P), the active form of vitamin B6, approved by the FDA for
human usage as a food supplement, which proved preventive tumorigenesis activity [27]
and synergistic effect with some antitumor drugs [28]. In this framework, the hydrogels
prepared from chitosan and P5P keep the promise of active carriers for antitumor drug
delivery in local therapy. The rational question is if these hydrogels based on the reversible
imine bonds present a self-healing effect and can be administered at the tumor site by
injection. To find the answer to this question, a large series of hydrogels based on chitosan
and P5P were prepared, and the influence of their composition on the mechanical and
thixotropic properties was investigated by rheological measurements. Moreover, their
self-healing ability was verified by laboratory tests. It was demonstrated that hydrogels
based on chitosan and P5P have self-healing ability and can be easily applied by injection.

2. Materials and Methods
2.1. Materials

Low molecular weight chitosan (Ch) (Mv = 169.9 kDa and DD = 83% established by vis-
cosimetry and NMR methods [29]), pyridoxal 5-phosphate (≥98%), acetic acid (HAc) (≥ 99%),
sodium acetate (≥ 99%), disodium hydrogen phosphate (for analysis), potassium dihydrogen
phosphate (for analysis), sodium chloride (≥ 99%), potassium chloride (≥ 99%), and sodium
hydroxide (≥ 99%) from Aldrich (Darmstadt, Germany) were used without further purification.

2.2. Synthesis

A large series of 30 hydrogels were prepared by mixing chitosan with pyridoxal
5-phosphate in an aqueous acetic acid solution, varying the molar ratio of glucosamine
units of chitosan and P5P (NH2/CHO ratio) on the one hand, and the water content on
the other hand (Table 1). Then, 2 mL solution of 3.985–0.455% P5P in 0.35% aqueous HAc
was added under vortex shaking to a chitosan solution (3%, 1%, 0.6%, and 0.43%), at
55 ◦C (Table 1). Hydrogelation instantaneously occurred for the mixtures with high content
of P5P and slower for those containing lower content of P5P. All samples were obtained
starting from 60 mg chitosan dissolved in: 4 mL of water (1–9); 8 mL of water (1d–5d);
12 mL of water (1t–4t); or 16 mL of water (1q–2q) (Table 1).

The hydrogels were coded with numbers and letters to reflect their composition. Thus,
the number indicates the molar ratio between NH2/CHO (from 1 to 9), and the letter
indicates the increase in the water content in hydrogel: no letter indicates the use of a
3% solution of chitosan; d: 1% (double water content in hydrogels); t: 0.6% (triple water
content in hydrogels); q: 0.43% (four times higher water content in hydrogels), e.g., 2t is the
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code for the hydrogel with a 2/1 ratio of NH2/CHO, triple diluted compared to the most
concentrated hydrogel (3%).

Table 1. The composition of hydrogels and gelation time.

Sample NH2/CHO
Ratio

Chitosan
(mg) P5P (mg) Water

Volume (mL)
Water

Content (%)
Solid

Content (%) Gelation Time

1 1:1 60 79.7 4 96.63 3.37 i
1d 1:1 60 79.7 8 98.28 1.72 i
1t 1:1 60 79.7 12 98.85 1.15 i
1q 1:1 60 79.7 16 99.13 0.87 5′

1.5 1.5:1 60 53.2 4 97.25 2.75 i
1.5d 1.5:1 60 53.2 8 98.60 1.40 i
1.5t 1.5:1 60 53.2 12 99.07 0.93 i
1.5q 1.5:1 60 53.2 16 99.30 0.70 30′

2 2:1 60 39.8 4 97.57 2.43 i
2d 2:1 60 39.8 8 98.77 1.23 i
2t 2:1 60 39.8 12 99.18 0.82 5′

2q 2:1 60 39.8 16 99.38 0.62 24 h

2.5 2.5:1 60 31.8 4 97.76 2.24 i
2.5d 2.5:1 60 31.8 8 98.87 1.13 5′

2.5t 2.5:1 60 31.8 12 99.24 0.76 24 h
2.5q 2.5:1 60 31.8 16 99.43 0.57 -

3 3:1 60 26.6 4 97.88 2.12 i
3d 3:1 60 26.6 8 98.93 1.07 30′

3t 3:1 60 26.6 12 99.28 0.72 24 h
3q 3;1 60 26.6 16 99.46 0.54 -

3.5 3.5:1 60 22.8 4 97.97 2.03 i
3.5t 3.5:1 60 22.8 12 99.31 0.69 24 h
3.5q 3.5:1 60 22.8 16 99.49 0.51 -

4 4:1 60 19.9 4 98.04 1.96 i
4d 4:1 60 19.9 8 99.01 0.99 30′

4t 4:1 60 19.9 12 99.34 0.66 24 h
4q 4:1 60 19.9 16 99.50 0.50 -

4.5 4.5:1 60 17.7 4 98.09 1.91 i
4.5t 4.5:1 60 17.7 12 99.36 0.64 -

5 5:1 60 15.9 4 98.14 1.86 i
5d 5:1 60 15.9 8 99.06 0.94 24 h

6 6:1 60 13.3 4 98.20 1.80 5′

7 7:1 60 11.4 4 98.25 1.75 30′

8 8:1 60 10.0 4 98.28 1.72 5 h

9 9:1 60 8.9 4 98.31 1.69 24 h

i—instantaneous gelation; —-no hydrogel formation.

2.3. Equipment and Methods

The solid hydrogel samples (xerogels) were prepared by hydrogel freezing in liquid
nitrogen, followed by drying under reduced pressure (1.150 mbar) at 50 ◦C for 24 h, using
a Labconco Free Zone Freeze Dry System equipment (Kansas, MO, USA).

NMR spectra were recorded on a Nuclear Magnetic Resonance (NMR) BRUKER
Advance DRX 400 MHz spectrometer (Billerica, MA, USA), at room temperature, on
hydrogel samples prepared in the NMR tubes using deuterated water.

FTIR spectra were recorded on Bruker Vertex 70 FTIR Spectrophotometer (Ettligen,
Germany) using the ATR module on xerogel samples. OPUS 6.5 and OriginPro 8.5 software
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(Ettligen, Germany) were involved in the deconvolution of spectra in the 1700–1580 cm−1

region, using the curve fitting method with Lorentzian 50% and Gaussian 50%.
The supramolecular structure of the hydrogel was investigated with a diffractometer

Benchtop Miniflex 600 Rigaku (Tokyo, Japan), from 5 to 40◦, registered with 0.01 step and
3◦/min speed, on the xerogel pellets, and with a Polarized Optical Microscope (Zeiss Axio
Imager.A2m, camera Axiocam 208 cc (Wetzlar, Germany)), on thin xerogel slices.

Scanning electron microscope (SEM) was used to assess the morphology of the hy-
drogels by observing the xerogels with an SEM-EDAX–Quanta 200 (Eindhoven, Germany)
using a field emission and voltage of 20 keV.

The hydrogels’ stability in media of different pH was investigated by gravimetric
method, as follows. The hydrogel samples were weighed to contain 5 mg of dried sub-
stances (mi). Each sample was immersed in a 5 mL buffer solution of different pH at 37 ◦C
for 9 days, and the buffer solution was refreshed every 3 days. After 9 days, the samples
were taken out, washed three times with distilled water to remove salts residues, and then
lyophilized. The obtained xerogels were weighted (mx), and the mass loss was calculated
with the equation: mass loss = (mi − mx)/mi × 100, for each pH, at 9 days. The investi-
gation was conducted in buffer media of different pH, as follows: pH = 5.6 (HAc/NaAc),
pH = 6.8 (DHP, PDP, NaCl, and KCl), pH = 7.4 (DHP, PDP, NaCl, and KCl),) and pH = 8.0
((DHP, PDP, NaCl, KCl, and NaOH).

The rheological investigations were carried out on an MCR302 Anton-Paar rheometer
(Graz, Austria) with the plane–plane geometry (diameter of 50 mm). The rheometer is
equipped with Peltier temperature control, and the solvent evaporation was prevented by
using a trap cover (Malvern Instruments Ltd., Worcestershire, UK). The linear viscoelastic
regime (LVR) for each sample was determined by an amplitude sweep test at a constant
oscillation frequency (ω) of 10 rad s−1 in the shear stress (τ) range of 10−3–2 × 102 Pa.
The storage (G′) and the loss (G′′) moduli values were determined by a frequency sweep
test in the oscillatory frequency (ω) range of 10−1–102 rad s−1 at a strain (γ) value from
LVR. Finally, the structural recovery capacity of the investigated samples after applying
three consecutive flow steps, 1–100–1%, at 10 rad s−1, was evaluated. The rheological
measurements were performed at 37 ◦C in duplicate to estimate the variability of the
results, using a fresh sample for each test. The errors were lower than 13%. For some
strongly crosslinked samples, no rheological measurements could be performed due to
their brittle properties.

3. Results and Discussions
3.1. Synthesis and Structural Characterization

A large series of 30 hydrogels was prepared by reacting chitosan with pyridoxal 5-
phosphate (P5P) in different molar ratios between glucosamine units of chitosan and P5P
aldehyde, and using different concentrations of the chitosan solutions, to reach hydrogels
with different water content (Scheme 1, Table 1). The hydrogel formation was determined
by tube inversion test and by rheological experiments.

Scheme 1. Representation of chitosan hydrogelation with P5P.

Structural and supramolecular characterization of the hydrogels revealed that hydro-
gelation took place due to the formation of imine units and the occurrence of physical
forces between the chitosan chains and P5P.

The formation of the imine units was confirmed on the one hand through 1H-NMR
spectra that displayed the occurrence of the specific chemical shift of imine proton around



Polymers 2022, 14, 2570 5 of 14

9 ppm and on the other hand through FTIR spectra by the occurrence of specific vibration
band of imine bond around 1602–1613 cm−1 (Figure 1a–d) [23,30]. It should be mentioned
that 1H-NMR spectra also revealed the presence of aldehyde proton, in agreement with
an equilibrium state of the imination reaction, shifted to the products when the functional
amine units were in excess compared to aldehyde ones [20,22].

Figure 1. (a) NMR spectra of representative hydrogels and pristine aldehyde; (b) FTIR spectra of repre-
sentative xerogels compared to pristine aldehyde and chitosan; (c,d) deconvolution of 1580–1700 cm−1

domain for chitosan and 1t hydrogel; (e) X-ray diffractograms of representative xerogels and pristine
chitosan; (f) Representative POM image of xerogel 1.5t (to be representative, the hydrogels given in
figure have different molar ratio of glucosamine/aldehyde units and/or different water volumes).
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Further, the intermolecular forces were confirmed by the shifting of the maximum
of the broad band characteristic for the vibration of the hydroxyl, amine, and H-bonds
between them, from 3300 cm−1 in chitosan to 3600 cm−1 in hydrogels. This was associated
with the modification of the H-bond environment, as well documented for other chitosan
hydrogels [20–23,31]. The occurrence of intermolecular forces was also demonstrated by the
X-ray diffraction of the hydrogels when compared to pristine chitosan. Chitosan displayed
two broad overlapped diffraction bands from 8 to 14◦ and from 15 to 27◦, corresponding
to the inter-chain and intra-molecular distances, respectively, in line with the presence of
ordered clusters characteristic for the semicrystalline nature of chitosan [32]. By comparison,
the hydrogels showed only a broad diffraction band from 12 to 27◦, indicating a larger
polydispersity of intermolecular distances (Figure 1e). This is in accordance with the
(i) weakening of the intermolecular forces between the chitosan chains caused by the
grafting of the imine units and (ii) manifestation of new intermolecular forces, i.e., H-bonds
prompted by the hydroxyl groups of phosphate units of P5P. These data indicate that
chitosan hydrogelation was driven by the imination and physical forces induced by the
newly formed imine units. On the other hand, POM images showed intense birefringence,
the signature of an ordering degree (Figure 1f) [20–25,33]. Coupling X-ray and POM data,
it can be envisaged that intermolecular forces directed a supramolecular arrangement of
the imino-chitosan chains.

3.2. Morphology

The morphological appearance of the hydrogels was investigated by SEM analysis of
the corresponding xerogels (Figure 2). All hydrogels displayed microporous morphology,
with pore dimensions varying as a function of water content and crosslinking degree. Thus,
as expected, the increase in the water content in hydrogels was accompanied by the increase
in the pore diameter from around 10 µm to approx. 50 µm. Against the rule reported in the
literature for the covalent crosslinked hydrogels, according to which the pore dimension
increases as the crosslinking degree decreases [34,35], the studied hydrogels indicated the
pore dimension increasing along the crosslinking degree increasing. Moreover, the increase
in water content led to a less uniform distribution of the pore diameters, most probably
due to the diminishing of the intermolecular physical connections amongst the chitosan
chains and P5P.

3.3. The Hydrogel Stability over Time

The paper’s aim was to reach self-healing hydrogels that can be easily injected, and
to this end, hydrogels with high water content were prepared. As the 1H-NMR spectra
indicated an equilibrium of the imination reaction, it is desirable to know how the stability
(and implicit properties) of the hydrogels is affected by this equilibrium. 1H-NMR spectra
recorded over time (1, 7, 15, and 22 days) evidenced the progressive diminishing of the
integrals of imine and aldehyde protons and the appearance of the enol proton (around
6.5 ppm) [23] for the hydrogels with high water content (those prepared with chitosan
solutions 0.6% and 0.43%) (Figure 3a). This suggested that a too diluted system favored
the shifting of imination to the reagents and the stabilization of the enol form of aldehyde.
No such behavior was noticed for the hydrogels with lower water content (those prepared
with 3% and 1% chitosan solutions); the hydrogel spectra remained unaffected over 22 days
(Figure 3b). The 1H-NMR modification of the hydrogels with higher water content was
accompanied by the gel–sol transition, pointing to their limited storage duration at room
temperature, less than 22 days.
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Figure 2. SEM images for representative xerogels (scale bar: 50 µm) and corresponding histograms
(to be representative, the samples given in figure have different molar ratio of glucosamine/aldehyde
units and/or different water volumes).

Figure 3. Representative 1H-NMR spectra of hydrogels (a) with higher water content 1q, 2t and
(b) lower water content 3d, 4d, recorded over time (from up to down: 1, 7, 15, and 22 days).
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As the hydrogels were thought as SH hydrogels to be injected at targeted sites in the
body, their stability/degradation behavior was investigated in media of different pH: 5.6,
6.8, 7.4, and 8, corresponding to different body fluids (tumors, normal tissue, peritoneal
fluid) [36,37]. It is known that hydrogels swell in aqueous media due to their ability
to absorb high water content, and their swelling rate is influenced by the pH and the
hydrogel porosity. Concurrently, the pH triggers different dissolution patterns of the
hydrogels [20–26,38–40]. In this context, the stability of hydrogels was monitored in media
of four different pHs (Figure 4). No visual alteration of the hydrogels was seen over 9 days
of investigation. Nevertheless, gravimetric monitoring revealed a progressive degradation,
reaching a mass loss from 13 to 56%, function of media pH and hydrogel composition
(Figure 4). As expected, the hydrogels degraded faster in acidic acetate buffer (pH = 5.6), in
agreement with the shifting of imination equilibrium to the reagents and faster dissolution
of chitosan under the influence of protons [41,42]. Interestingly, against the expectations,
the mass loss decreased as the content of P5P decreased. A possible explanation for this
can be the structural similarity of the phosphate group of the P5P unit with the phosphate
buffer, which favored the dissolution.

Figure 4. Mass loss of the hydrogel samples in media of different pH, over 9 days.

3.4. Visual Testing of Self-Healing Ability of the Hydrogels

As was demonstrated in Section 3.1, the hydrogelation of chitosan with P5P was the
result of the formation of reversible imine bonds and intermolecular physical interactions,
both of them being favorable for the self-healing process [1–6]. The ability of hydrogels to
self-heal was preliminarily investigated by the injection of the hydrogels through a syringe
needle. As can be seen in Figure 5a–d,f, the hydrogels could easily pass through a needle of
0.6 mm without clogging and reshape the hydrogel. For better visualization of the self-healing,
part of the hydrogel has been stained with methylene blue and injected next to a pristine
hydrogel (Figure 5e,g), and they instantly connected, forming a single piece. This self-healing
behavior points to an easy administration at specific sites, e.g., tumors or wounds.

3.5. Rheological Properties

As the studied hydrogels showed visual self-healing behavior, the next step to obtain
more information on the recovery degree and to have an insight into their mechanical
stability was to investigate their rheological properties [43,44]. The shear stress dependence
of viscoelastic moduli, determined by amplitude sweep measurements, showed the gel-like
behavior of the investigated samples (G′ > G′′) (Figure 6). G′ and G′′ values were constant
below the limiting shear stress, τl, which corresponds to a limiting strain, γl. Viscoelastic
moduli start to decrease above τl due to the modification of sample structure, and after
critical shear stress or strain (where G′ = G′′), the network structure was destructed, the
sample acquiring liquid-like properties with G′ < G′′.
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Figure 5. Images revealing the ability of the hydrogels to self-heal and to be injected (a–d,f) represent
pristine hydrogels injected through a needle, and (e) and (g) represent hydrogels stained with
methylene blue and injected next to pristine hydrogel) (exemplified on the hydrogel 2d).

Figure 6. Effect of (a) water content in hydrogel and (b) P5P amount on the linear viscoelastic regime
at 37 ◦C and 10 rad s−1.

The increase in water content and the decrease in P5P amount led to the shortening of
the linear viscoelastic range (LVR) (Figure 6, Table 2). Thereby, a double water amount in
hydrogels caused a diminishing of almost one order of magnitude of the interval in which
G′ and G′′ are constant, i.e., below 40.8 Pa for the sample 2d and below 4.7 Pa for the sample
2q (Figure 6a). The decrease in P5P amount in the starting system (higher NH2/CHO ratio)
determined the decrease in the limit stress of LVR, e.g., from 40.8 Pa (sample 2d) to 0.6 Pa
(sample 4d) (Figure 6b).

The effect of water content and NH2/CHO ratio on the G′ and G′′ values was also
investigated by frequency sweep measurements at a strain of 1% from LVR (Figure 7). G′

and G′′ decreased when the water content in hydrogels decreased due to the reduced prob-
ability of chitosan-P5P-chitosan contacts, which leads to decreased crosslinking capacity
(Figure 7a). Thus, a double amount of water inflicted the diminishing of the G′ and G′′

values (at 1 rad s−1) from 326 Pa and 28.7 Pa (sample 2d) to 20.2 Pa and 2.8 Pa (sample 2q).
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Table 2. Rheological parameters of the investigated samples.

Sample τl
a

(Pa)
γl

a

(%)
G′ b

(Pa)
G′′ b

(Pa)
tan δ b

(=G′′/G′)
Structure

Recovery c(%)

1q 6.5 39.7 15.7 1.9 0.12 80.1
2d 40.8 15.8 326 28.7 0.09 74.7
2t 7.4 18.9 38.4 4.8 0.13 79.1
2q 4.7 25.2 20.2 2.8 0.14 80.0

2.5d 20.4 15.8 87 7.3 0.08 76.1
2.5t 0.4 6.3 16.3 2.1 0.13 89.3
3d 11.7 15.8 77.4 6.3 0.08 78.8
3t 0.3 9.9 1.1 0.4 0.36 94.7

3.5t 2.1 39.7 3.3 0.5 0.15 -
4d 0.6 25.1 3.4 0.9 0.26 97.6
4t 0.2 25.3 0.4 0.2 0.50 100
6 5.9 46 5.6 2.1 0.38 -
9 8.8 39.7 11.6 2.1 0.18 -

a τl and γl represent the limit shear stress and strain from which the sample structure starts to change (determined
by amplitude sweep measurements at 10 rad s−1); b values provided from the frequency sweep tests at 1 rad s−1;
c the percentage of the G′ recovery determined at the end of the three flow steps.

Figure 7. Variation of G′ and G′′ as a function of ω for the samples with different (a) dilutions of the
starting system and (b) NH2/CHO ratios at 37 ◦C and amplitude strain of 1%.

Generally, a lower amount of crosslinker causes the formation of a smaller number of
bridges between the chitosan chains and a decrease in the density of the hydrogel network,
leading to worsened viscoelastic properties. This general rule also applied to the studied
hydrogels, with G′ and G” reducing by two orders of magnitude from 326 Pa and 28.7 Pa
for the sample 2d (NH2/CHO = 2) to 3.4 Pa and 0.9 Pa for the sample 4d (NH2/CHO = 4),
confirming a higher crosslinking degree for the hydrogel samples prepared with higher
P5P amounts (Figure 7b, Table 2).

Considering the rheological data obtained by the amplitude and frequency sweep
tests, in Figure 8, it is illustrated the effect of water content and NH2/CHO ratio of the
hydrogels on the γl and the loss tangent (tan δ = G”/G′). The loss tangent, tan δ, gives the
information about the viscoelasticity degree of the material in the investigation conditions:
tan δ > 1 is characteristic for liquid-like materials, and tan δ < 1 is characteristic for solid-like
materials [45]. The widest ranges of linear viscoelasticity were recorded for the hydrogels
with NH2/CHO ratios up to 3, with double water amount (Figure 8a). The other samples
exhibited the limit of LVR below 10 Pa (Table 2). The samples with NH2/CHO ≤ 2.5,
regardless of the water content, exhibit the lowest values of tan δ due to their stronger
network (Figure 8b).
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Figure 8. Effect of water content in hydrogel and NH2/CHO ratio on (a) limiting shear stress, τl of
LVR, and (b) tan δ.

The structural recovery ability of the samples was studied at 10 rads−1 by applying
three shear steps: 1% (300 s); 100% (300 s); 1% (360 s) [46]. Figure 9a shows the effect of the
NH2/CHO ratio on the G′ recovery degree for the samples 2d, 3d, and 4d.

Figure 9. (a) Effect of NH2/CHO ratio on the structure recovery ability determined by the continuous
step strain measurements (1–100–1%) at = 10 rad s−1 and (b) recovery degree of samples with various
dilutions and NH2/CHO ratios.

The samples displayed G′ values that remain constant during the measurements at
low strain amplitude, and by applying a strain of 100%, G′ immediately decreases. At high
deformation amplitude, a decrease in G′ was observed in the first seconds of shear and the
constant value was reached after about 150 s. Upon the removal of the high strain pulse,
G′ quickly increases, recovering partially or totally the network structure. The structure
recovery degrees of investigated samples show values higher than 74.7%, indicating a good
thixotropic recovery (Figure 9b, Table 2) [47]. The increase in water content and decrease in
the P5P content favored the structural recovery degree of the hydrogel network. The effect
of water content on the structural recovery degree was more important for the samples
containing a smaller amount of P5P crosslinker (higher NH2/CHO ratio). Thereby, for the
sample with NH2/CHO = 2, the structural recovery degree increases from 74.7% for the
sample 2d to 80% for the sample 2q. On the other hand, the structural recovery degree of
the sample with NH2/CHO = 3 increased from 78.8% for 3d to 94.7% for 3t. The higher
structural recovery degree of the samples with lower crosslinker amount and/or higher
water content was correlated with the easier restoration of the physical forces in the less
viscous hydrogel.
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In conclusion, the rheological investigation of the effect of water content and crosslinker
amount on the viscoelastic properties of the hydrogels shed light on their gel-like and
thixotropic behavior. For all studied samples, it was evidenced the gel-like behavior with
G′ greater than G”. The increase in the crosslinker content, on the one hand, widens the
range of shear stability and enhances the mechanical properties and, on the other hand,
decreases the structural recovery degree (thixotropic behavior). Analyzing both the effect of
the amount of crosslinker and water content on the rheological properties, it was found that
the optimum experimental conditions to obtain the convenient viscoelastic behavior corre-
spond to NH2/CHO < 3, with a water content corresponding to the hydrogel preparation
from chitosan solutions 1%.

Comparing the data with other SH chitosan hydrogels [11–17,48,49], it should be re-
marked that chitosan crosslinking with P5P yielded SH hydrogels for a large variety of
compositions allowing the fine-tuning of the other properties in view of specific applications.

4. Conclusions

A large series of 30 hydrogels was prepared from chitosan and pyridoxal 5-phosphate,
varying the glucosamine/aldehyde ratio from 1 to 9, and the water content by using chi-
tosan solutions of 3, 1, 0.6, and 0.43%. The NMR, FTIR, X-ray, and POM investigation
indicated that hydrogelation was guided by the formation of imine bonds and physical
forces between chitosan chains and pyridoxal 5-phosphate. The hydrogels had microp-
orous morphology with pore diameter controlled by the water content, degradability in
aqueous media controlled by pH, and good stability over 22 days. By visual assessment, the
studied hydrogels were capable of passing through a needle of 0.6 mm without clogging
and reshaping the hydrogel, indicating self-healing ability. Deeper rheological investi-
gations demonstrated that the viscoelastic properties decreased along with the increase
in NH2/CHO ratio and water content, indicating the best mechanical properties for the
hydrogels with NH2/CHO ≤ 3, regardless of the water content. On the other hand, the
structural recovery degree increased when NH2/CHO and water volume in hydrogel
increased, reaching values higher than 70% for the hydrogels with NH2/CHO ≤ 4. From
the perspective of the application is injectable hydrogels, the best balance of mechani-
cal properties/structure recovery degree was reached for the hydrogel prepared using
an NH2/CHO ratio of 4 and chitosan solution of 1%. These results indicate the studied
hydrogels as valuable vehicles for antitumor drug delivery.
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